第二节 二重积分的计算法
- 格式:ppt
- 大小:1.92 MB
- 文档页数:39
第二节_二重积分的计算法二重积分:在平面上规定一个有界闭合区域D,对于D上的每一点P(x,y),都有一个标量函数f(x,y)与之对应。
则二重积分的数值就是由函数f(x,y)在区域D上所有点处的函数值决定的。
二重积分一般可以表示为∬Df(x,y)dA。
计算二重积分的方法主要有以下几种:直角坐标法、极坐标法、换元积分法和累次积分法。
1.直角坐标法:针对矩形、直角三角形、抛物线和折线边界的区域,可以直接使用直角坐标法来计算二重积分。
具体步骤如下:(1)写出二重积分的累加和形式:I=ΣΣf(x,y)ΔA。
(2)将区域D分成若干小矩形,计算每个小矩形的面积ΔA。
(3)在每个小矩形上选择代表点(x,y),计算f(x,y)的函数值。
(4)将函数值与相应小矩形的面积相乘,加和求和即可得到二重积分的数值。
2.极坐标法:当具有极坐标对称性的区域时,采用极坐标法可以简化计算。
具体步骤如下:(1) 确定极坐标变换:x=r*cosθ,y=r*sinθ。
(2) 根据变换的雅可比矩阵计算面积元素dA的极坐标形式:dA=rdrdθ。
(3) 将二重积分转化为极坐标下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Df(r*cosθ,r*sinθ)rdrdθ。
(4)将极坐标下的积分区域和积分限进行变换,然后按照累次积分进行计算。
3.换元积分法:当二重积分区域D的边界方程比较复杂时,可以使用换元积分法来简化计算。
具体步骤如下:(1)根据边界方程对二重积分区域D进行变换,将原来的二重积分区域映射到一个新的坐标系中的区域G。
(2)根据变换的雅可比矩阵,计算新坐标系下的面积元素dA'。
(3) 将二重积分转化为新坐标系下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Gf(x(u,v),y(u,v)),J(u,v),dudv,其中J(u,v)为雅可比行列式。
(4)对新坐标系下的累次积分按照直角坐标法或极坐标法进行计算。
4.累次积分法:当二重积分区域D可以通过垂直于坐标轴的直线进行划分时,可以使用累次积分法进行计算。
第二节 二重积分的计算方法教学目的:利用直角坐标系把二重积分化为二次积分 教学重难点:将积分区域用不等式组表示 教 法:讲授 课 时:4仅仅依靠二重积分的定义及其性质,不可能对一般的二重积分进行计算。
本节介绍一种二重积分的计算方法,这种方法是把二重积分化为两次单积分(即两次定积分)来计算。
一、利用直角坐标系计算二重积分我们首先来考虑直角坐标系下面积元素σd 的表达形式。
在二重积分的定义中对区域D 的分割是任意的,极限∑=→∆ni i i i f 10),(lim σηξλ都存在,那么对于区域进行特殊分割该极限也应该存在。
因此,在直角坐标系下,我们用平行于x 轴和y 轴的两族直线把区域D 分割成许多小区域(图10—4)。
除靠区域D 边界曲线的一些小区域外,其余的都是小矩形区域。
当这些小区域的直径的最大者λ→0时,这些靠区域D 边界的不规则的小区域的面积之和趋于0。
因此,第i 个小矩形区域i σ∆的面积k j i y x ∆⋅∆=∆σ。
因此,直角坐标系下面积元素dxdy d =σ。
于是二重积分的直角坐标形式为⎰⎰⎰⎰=DDdxdy y x f d y x f ),(),(σ。
由二重积分的几何意义知道,如果0),(≥y x f ,⎰⎰Dd y x f σ),(的值等于一个以D 为底、以曲面),(y x f z =为顶的曲顶柱体的体积。
下面我们用定积分的微元法来推导二重积分的计算公式。
若积分区域D 可用不等式组表示为⎩⎨⎧≤≤≤≤)()(21x y x b x a ϕϕ 如图10—5,选x 为积分变量,x ∈[a ,b],任取小区间[x ,dx x +]⊂ [a ,b]。
在x 轴上分别过点x 、dx x +作垂直于x 轴的平面,设)(x A 表示过点x 垂直x 轴的平面与曲顶柱体相交的截面的面积,则小薄片的体积近似等于以)(x A 为底、dx 为高的柱体的体积,即体积元素 dx x A dV )(=该截面是一个以区间)](),([21x x ϕϕ为底边、以曲线),(y x f z =(x 固定)为曲边的曲边梯形,因此⎰=)()(21),()(x x dy y x f x A ϕϕ所以⎰⎰⎰=ba Ddx x A d y x f )(),(σ=dx dy y x f x x ba ]),([)()(21⎰⎰ϕϕ,即dx dy y x f d y x f x x b a D]),([),()()(21⎰⎰⎰⎰=ϕϕσ。