运算放大器应用电路的设计与制作
- 格式:doc
- 大小:375.00 KB
- 文档页数:13
一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
详解运放七大应用电路设计运放的基本分析方法:虚断,虚短。
对于不熟悉的运放应用电路,就使用该基本分析方法。
运放是用途广泛的器件,接入适当的反馈(网络),可用作精密的交流和直流放大器、有源(滤波器)、(振荡器)及电压(比较器)。
1、运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。
有源滤波的好处是可以让大于截止频率的(信号)更快速的衰减,而且滤波特性对(电容)、电阻的要求不高。
该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。
其中电阻R280是防止输入悬空,会导致运放输出异常。
滤波最常用的3种二阶有源低通滤波电路为巴特沃兹,单调下降,曲线平坦最平滑;巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即(仿真)的该电路。
一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。
如果该滤波器还有放大功能,要知道该滤波器的增益是多少。
当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。
二阶有源低通滤波电路的通带放大倍数为1+(Rf)/R1 ,与一阶低通滤波电路相同;截止频率为注明,m的单位为欧姆,N 的单位为u 所以计算得出截止频率为切比雪夫,迅速衰减,但通带中有纹波;贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。
2、运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。
该电路实际上是过零比较器和深度放大电路的结合。
将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。
运算放大器的应用实验报告仪用运算放大器及其应用实验报告实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:仪用运算放大器及其应用实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构及设计方法;3.掌握仪表放大器的测试方法; 4.学习仪表放大器在电子设计中的应用。
二、实验内容和原理1.用通用运算放大器设计一个仪表放大器(用LM358芯片)2.用INA128 精密低功耗仪器放大器设计一个仪表放大器仪表放大器是一种高增益放大器,其具有差分输入、单端输出、高输入阻抗及高共模抑制比等特点。
仪表放大器采用运算放大器构成,但在性能上与运算放大器有很大的差异。
标准运算放大器的闭环增益由反馈网络决定;而仪表放大器使用了一个与其信号输入端隔离的内部反馈电阻网络,因此具有很高的共模抑制比KCMR,在有共模信号的情况下也能放大很微弱的差分信号。
当前在数据采集、医疗仪器、信号处理等电子系统设计中普遍采用仪表放大器对弱信号进行高精度处理。
常用的仪表放大器可采用由三个运算放大器构成,也可直接选用单片仪表放大器。
单片仪表放大器具有高精度、低噪声、设计简单等特点以成为优选器件。
三、主要仪器设备LM358芯片INA128 精密低功耗仪器放大器四、操作方法和实验步骤两种仪表放大器的性能测量:一、电压增益和最大不失真输出,并计算出共模抑制比输入正弦波,改变输入信号幅度或频率,用示波器监测输出波形,在不失真的情况下,测量输入电压为最大或最小时的电压增益,及最大不失真输出电压,并计算共模抑制比。
二、输出端噪声电压输入为0,用示波器测量峰峰值。
实验六集成运算放大器的线性应用(最全)word资料实验六 集成运算放大器的线性应用一、设计目的1.熟悉µA741集电路使用技术要求。
2.掌握µA741的运算电路的组成,并能验证运算的功能。
二、电路结构及说明1.反相放大器电路结构:理想条件下,表达式:1f i o u R Ru u A -==。
说明:21R R =时电路保持平衡。
2.同相放大器电路结构理想条件下,表达式:1f i o u 1R R u u A +==。
说明:21R R = ,f 3R R =电路保持平衡,减少输入引起失调电压的误差。
3.反相比例加法器电路结构 理想条件下,表达式)(B A 4fo u u R R u +-=。
说明:43R R =,543//R R R =电路保持平衡;单电源供电,利用分压方式得A u 、B u 。
4.差动减法器电路结构 理想条件下,达式)(B A 3fo u u R R u --=。
说明:43R R =电路保持平衡。
5.反相积分器电路结构理想条件下,表达式:dt t u CR u )(1i 1o ⎰-=。
说明:输入方波信号,输出是输入对时间的积分,负号表示输入与输出反相。
当输入电压为方波时,输出电压为三角波,其输出电压的峰值为:)2(211P -SP P -OP TC R u u -=(1)C 为反馈元件。
f R 为分流电阻,它是给直流反馈提供通路避免失调电压在输出端产生积累电荷,使积分器产生饱和,f R 取大些可改善积分线性。
(2)21R R =保持电路平衡。
(3)当选择时间常数T C R ==1τ时,那么:P -SP 1P -SP P -OP 41)2(21u T C R u u -=-=。
(其中T 表示信号频率的周期) 三、实验仪器1. 直流稳压电源 一台 2.函数信号发生器 一台 3.示波器 一台 4.晶体管毫伏表 一台 5.数字万用表 一块 四、设计要求和内容1.反相放大器。
实验四 运算放大器应用综合实验一、实验目的1、 了解运算放大器的基本使用方法,学会使用通用型线性运放μA741。
2、 应用集成运放构成基本运算电路——比例运算电路,测定它们的运算关系。
3、 掌握加法、减法运算电路的构成、基本工作原理和测试方法。
二、预习要求1、 集成电路运算放大器的主要参数。
2、 同相比例、反相比例电路的构成以及输出、输入之间的运算关系。
3、 加法、减法电路的构成及运算关系。
三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。
四、实验内容及步骤运放的线性应用——比例及加减法电路实验 1、反相比例运算反相比例运算电路如图3.1所示,按图接线。
根据表3.1给定的u i 值,测量对应的u o 值并记入表3.1中。
并用示波器观察输入V i 和输出V o 波形及相位。
理论值: i ii f o u V u R R u 10101003-=-=-=注意:①当V i 为直流信号时,u i 直接从实验台上的-5~+5V 直流电源上获取,用数字直流电压表分别测量u i 、u o 。
②当u i 为交流信号时,u i 由函数信号发生器提供频率为1kHz 正弦波信号,用交流毫伏表分别测量u i 、u o 。
(下同)图3.1 反相比例运算电路表3.1测量结束后,将Rf改为电位器Rp,观察输入ui一定,调节Rp,输出的变化规律。
2、同相比例运算同相比例运算电路如图3.2所示,根据表3.2给定的u i值,测量对应的u o值并记入表3.2中。
并用示波器观察输入u i和输出u o波形及相位。
理论值: u O=(1+R f/R3)u i=11u i。
图3.2 同相比例运算电路表3.2测量结束后,将Rf改为电位器Rp,观察输入ui一定,调节Rp,输出的变化规律。
表3.2 同相比例参数测量3、加法运算加法运算原理电路如图3.3。
根据表3.3给定的u i1、u i2值,测量对应的u o值,并记入表3.3中。
运放电路设计实验报告实验目的:用集成运算放大器实现下列运算关系: u 0=2u 1+3u 2-5∫u 3dt.1. 设计过程1.1电路设计图一:反相输入求和电路图二:积分运算电路为实现2u 1+3u 2可先选用反相输入求和电路并通过参数设置得到-2u 1-3u 2,设计如图一所示。
为实现-5∫u 3dt 可选用积分运算电路如图二。
将上述两个电路的输出作为另一个运放的输入,可获得题目所要求的运算关系,设计如图三所示。
另外,需要在电容两端并联一个电阻,这是为了防止由积分漂移造成的失真现象。
图三1.2参数选择在反相求和电路中,由运算关系及元器件取值范围的限定,我们不妨取R 11=20kΩ,R8=30 kΩ,R10=60 kΩ。
R9为静态平衡电阻,其作用是用来补偿偏置电流所产生的失调。
R9=R11∥R8∥R10=10 kΩ。
在积分运算电路中,由积分关系,u0=-错误!未找到引用源。
∫uidt.为满足题意要求,RC=0.2。
又100 Ω≤R≤1MΩ,0.01uf≤C≤10uf,可令R1=100 kΩ,C=2uf。
R2=R1=100 kΩ。
R7为防止漂移,可令其值为R7=1MΩ。
在总电路中,为了确保前两个电路的放大倍数不受影响,可令R5=R6=R3=R4=10 kΩ。
综上,可以一个运算放大电路,满足u0=2u1+3u2-5∫u3dt。
2.实验结果通过multisim软件的仿真,可以得到实验结果如下:根据上图连接示波器,channel A 接总输出端,Channel B 接积分运算电路输出端,Channel C 接反相求和电路输出端,Channel D 接信号发生器端。
通过设置输入信号后观察各输出波形。
理论情况下,U A =U B -U C =-5∫u 3dt-(-2u 1-3u 2)= 2u 1+3u 2-5∫u 3dt.(1)u1、u2输入幅值为1V 的直流信号,u3输入频率100Hz ,1000Vp 的正弦波,得到仿真结果如下图实验值U A =5.914V ,U B -U C =0.917-(-4.995)=5.912V 。
三墩职业技术学院实验报告课程名称:电子电路设计实验指导老师: 成绩:__________________实验名称:集成运算放大器应用电路研究 实验类型:设计 同组学生:__________ 一、实验目的 二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备 五、实验步骤与过程 六、实验调试、实验数据记录 七、实验结果和分析处理 八、讨论、心得一、实验目的1、研究由集成运放构成的比例、加法、减法等基本运算电路的组成与功能,加深对集成运放线性应用电路结构和性能特点的理解,掌握其设计方法。
2、研究放大电路增益带宽积与单位增益带宽的关系。
3、了解运算放大器构成的基本运算电路在实际应用时的局限性和应考虑的问题。
二、实验任务与要求 总体要求:(1)实验电路的选择和外围元件参数的确定要有依据和计算过程。
(2)运放电源电压 ±(12~15)V 。
(3)原始数据记录要详尽。
1、反相放大器的设计研究(1)设计一反相放大电路,要求10||,10=Ω=v i A k R 。
(2)安装该电路,加1kHz 正弦信号,研究输入、输出信号的幅度、相位关系。
2、设计并安装一个算术运算电路,要现:)5.0(21i i o V V V +-=1i V 用直流、2i V 用正弦信号在合适的幅度和频率围,进行验证并记录波形及参数。
3、增益带宽积研究在合适的幅度和1kHz的频率下,测出输出信号的峰峰值,然后逐渐加大频率,直至输出信号峰峰值变为原来的0.707倍,测下此时的电压。
比较不同的反馈电阻(即不同增益)对上限截止频率的影响。
三、实验方案设计与实验参数计算1、理论基础(1)集成运放高电压增益、高输入电阻、低输出电阻、直接耦合的多级放大集成电路。
在运放输出端与输入端之间接不同的反馈网络,可实现不同用途的电路:信号放大、信号运算、信号处理(滤波、调制)、波形产生和变换等。
运算放大器应用电路的设计与制作(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反响电路时,可以灵敏地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个局部组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性局部。
如图2所示。
U -对应的端子为“-〞,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+〞,当输入U +单独由该端参加时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益〔开环电压放大倍数〕。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud 〔U +-U -〕,由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短〞。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断〞,这说明运放对其前级汲取电流极小。
上述两个特性是分析理想运放应用电路的根本原那么,可简化运放电路的计算。
3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号参加反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
熟悉运放三种输入方式的基本运算电路及其设计方法ﻫ2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。
3、了解积分、微分电路的工作原理和输出与输入的函数关系.ﻫﻫ学习重点:应用虚短和虚断的概念分析运算电路。
ﻫﻫ学习难点:实际运算放大器的误差分析ﻫﻫ集成运放的线性工作区域前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放.ﻫ当集成运放工作在线性区时,作为一个线性放大元件ﻫﻫ v o=A vo v id=Avo(v+-v-)ﻫﻫ通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证vo不超出线性范围。
ﻫ对于工作在线性区的理想运放有如下特点:ﻫ∵理想运放Avo=∞,则 v+-v—=v o/ Avo=0 v+=v—ﻫ∵理想运放R i=∞ i+=i—=0ﻫﻫ这恰好就是深度负反馈下的虚短概念。
ﻫﻫ已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i=2MΩ。
则v+—v—=?,i+=?,i-=?ﻫﻫ可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。
这说明在工程应用上,把实际运放当成理想运放来分析是合理的 .返回第二节基本运算电路比例运算电路是一种最基本、最简单的运算电路,如图8。
1所示.后面几种运算电路都可在比例电路的基础上发展起来演变得到。
v o∝v i:v o=k v i(比例系数k即反馈电路增益 A vF,vo=A vF v i)输入信号的接法有三种:ﻫﻫ反相输入(电压并联负反馈)见图8.2ﻫﻫ同相输入(电压串联负反馈)见图8.3ﻫ差动输入(前两种方式的组合)ﻫ讨论:ﻫ1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。
2)分析时都可利用"虚短”和”虚断”的结论: iI=0、vN=vp .见图8.4ﻫ3)A vF的正负号决定于输入v i接至何处:ﻫ接反相端:A vF<0ﻫ接同相端:A vF>0,见图8。
集成运算放⼤器的应⽤实验报告集成运算放⼤器实验报告集成运算放⼤器是⼀种⾼性能多级直接耦合具有两个输⼊端、⼀个输出端的电压放⼤电路。
具有⾼增益、⾼输⼊阻抗低输出阻抗的特点。
通常,线性应⽤电路需要引⼊负反馈⽹络,构成各种不同功能的实际应⽤电路。
(a)µA741⾼增益运算放⼤器(b)LM324四运算放⼤器图2.4.2 典型的集成运放外引脚排列1. ⽐例、加减、微分、积分运算电路设计与实验1.1原理图(a) 反相⽐例运算电路 (b) 同相⽐例运算电路图1.1 典型的⽐例运算电路(a) 反相求和运算电路 (b) 同相求和运算电路图1.2 典型的求和运算电路(a) 单运放减法运算电路 (b) 双运放减法运算电路图1.3 典型的减法运算电路图1.4 积分电路图1.5 微分电路图 1.6 实际微分电路(PID)2.⽅波、三⾓波发⽣器2.1原理图图2.1 ⽅波、三⾓波发⽣器2.2理论分析(参照实验教材分析⼯作原理和周期、频率、幅度近似计算出以上结果) 2.2.1频率分析2.2.2幅度分析2.2.3幅度调整图2.2 ⽅波幅度通过R4、R5⽐例调整2.2.4减法器图2.3 减法器(交流正弦信号来⾃⽰波器)图2.4 积分器(⽅波信号可以来⾃⽰波器)图2.5 微分器(⽅波信号可以来⾃⽰波器)2.4.1 ⽐例、加减运算电路设计与实验由运放构成的⽐例、求和电路,实际是利⽤运放在线性应⽤时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。
⼀、实验⽬的1.掌握常⽤集成运放组成的⽐例放⼤电路的基本设计⽅法; 2.掌握各种求和电路的设计⽅法;3.熟悉⽐例放⼤电路、求和电路的调试及测量⽅法。
⼆、实验仪器及备⽤元器件(1)实验仪器(2)实验备⽤器件三、电路原理集成运算放⼤器,配备很⼩的⼏个外接电阻,可以构成各种⽐例运算电路和求和电路。
图2.4.3(a )⽰出了典型的反相⽐例运算电路。
依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输⼊电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输⼊的相位相反。
基于运算放大器设计电路运算放大器(Operational Amplifier,简称OP-AMP)是一种常见的电子元件,它能够对输入信号进行放大、滤波、积分等处理。
在电子电路设计中,基于运算放大器设计电路是一项重要的任务。
本文将介绍运算放大器的基本原理和设计方法,并以一个具体的电路设计案例加以说明。
首先,让我们来了解一下运算放大器的基本原理。
运算放大器一般由一个差分输入级、一个电压放大器和一个输出级组成。
它的输入端有一个非反相输入端(+)和一个反相输入端(-),输出端则与反相输入端相连。
当在非反相输入端加上一个正电压(V+)时,在反相输入端就会产生一个相等但与V+相反的负电压(V-),这个电压差将被放大并输出。
运算放大器具有高放大倍数、输入阻抗高、输出阻抗低等特点,使得它在电子电路中有着广泛的应用。
基于运算放大器设计电路时,首先需要明确电路实现的功能和需求。
例如,如果需要设计一个放大器电路,要求输入信号经过放大后输出,并能满足一定的增益和频率响应要求。
在这种情况下,我们可以选择一个合适的运算放大器芯片,并根据其参数来确定外围电路的设计。
在选择运算放大器芯片时,需要考虑输入电压范围、供电电压、增益带宽积等参数。
根据需求,如果需要放大带宽较高的信号,则需要选择增益带宽积较大的运算放大器。
进一步,我们可以根据电路设计的增益要求来确定运算放大器芯片的放大倍数。
接下来,根据所选运算放大器芯片的数据手册,我们可以找到相应的电路连接方式。
常见的连接方式有反相放大器、非反相放大器、仪表放大器等,根据具体需求选择合适的电路连接方式。
以反相放大器为例,该电路的输入信号与反相输入端相连,输出信号则取自反相输入端。
通过适当设置反馈电阻和输入电阻,可以调整放大倍数以满足设计要求。
此外,为了保证电路的稳定性和可靠性,还需要考虑功耗、温度特性、输入偏置电流等因素。
可以选择具有较低功耗和温漂的运算放大器芯片,并通过合适的设计来降低输入偏置电流对电路性能的影响。
抗干扰运算放大器的电路设计与实现抗干扰运算放大器是一种常用的电路,它能够抵抗外界干扰信号的干扰,并放大输入信号。
在电子设备中,干扰信号是一个常见的问题,它会导致系统性能下降甚至失效。
因此,设计和实现一个稳定可靠的抗干扰运算放大器是很重要的。
我们需要了解抗干扰运算放大器的基本原理。
它通常由一个差动放大器和一个输出级组成。
差动放大器是这个电路的核心部分,它通过两个输入端和一个输出端来放大输入信号。
为了增强抗干扰能力,我们可以在差动放大器的输入端添加一个低通滤波器,以滤除高频干扰信号。
同时,我们还可以在输出级添加一个反馈电路,以提高整个系统的稳定性。
在设计抗干扰运算放大器时,需要考虑以下几个关键因素。
首先是输入电阻和输入电容的选择。
输入电阻应足够大,以避免对输入信号产生较大的负载效应。
输入电容应足够小,以减少对输入信号的干扰。
其次是放大倍数的确定。
放大倍数应根据实际需求和输入信号的幅度确定,过大的放大倍数可能会引入更多的干扰。
最后是反馈电路的设计。
反馈电路应能够提供稳定的负反馈,以减小系统的非线性和失调。
在实现抗干扰运算放大器时,我们可以选择合适的器件和元件。
差动放大器可以选择使用双晶体管或运算放大器作为运算放大器的核心部件。
其他元件如电阻、电容和电感可以根据具体设计要求选择。
为了验证抗干扰运算放大器的性能,我们可以进行一系列的实验。
首先,可以测试电路的输入和输出特性,如输入阻抗、输出阻抗、放大倍数和频率响应等。
其次,可以测试电路的抗干扰能力,如对共模干扰信号和差模干扰信号的抑制效果。
最后,可以进行长时间稳定性测试,以验证电路的可靠性和稳定性。
抗干扰运算放大器的设计和实现是一个复杂而关键的任务。
通过合理选择器件和元件,并进行详细的实验验证,我们可以设计出一个稳定可靠、抗干扰能力强的抗干扰运算放大器电路。
这对于提高电子设备的性能和可靠性具有重要意义。
毕业设计85集成运算放大器的非线性应用—限幅电路限幅电路是一种常用的非线性应用电路,常用于将信号限制在特定范围内。
在毕业设计中,我们可以利用85集成运算放大器设计一个限幅电路,用于限制输入信号在一定的电压范围内。
本文将对限幅电路的原理、设计步骤以及一些使用注意事项进行详细介绍。
限幅电路的原理是利用85集成运算放大器的饱和特性,将输入信号的幅值限制在一定的范围内。
具体实现的方式如下:首先,将输入信号接入到放大器的非反馈输入端口,并通过负反馈将输出信号反馈到反馈输入端口。
然后,在反馈路径上连接两个二极管,其方向相反。
当输入信号的幅值超过二极管的正向或反向导通电压时,二极管将开始导通,将反馈路径截断,从而限制输出信号的幅值。
设计限幅电路时,我们需要首先确定输入信号的幅值范围,然后选择合适的二极管。
一般情况下,我们会选择正向导通电压为0.7V的硅二极管。
接下来,我们需要计算二极管电流。
根据放大器的输入电流要求,我们可以选择合适的电阻值来限制二极管电流。
然后,根据输入电阻和电压放大倍数,计算出所需的反馈电阻值。
最后,根据反馈电阻和二极管电流,计算反馈电压。
在设计过程中,需要注意以下几点。
首先,输入信号的幅值范围应该小于放大器的饱和电压范围,以保证限幅电路的正常工作。
其次,选择的二极管应具有良好的温度稳定性和高导通能力。
此外,设计过程中应注意功耗和功率稳定性等问题。
在实际应用中,限幅电路常用于音频信号放大器、电压稳定器等电路中,用于限制输入信号的幅值,保护后续电路和设备免受过大幅值信号的损害。
总结起来,限幅电路是一种常用的非线性应用电路,可以通过利用85集成运算放大器的饱和特性,将输入信号的幅值限制在一定的范围内。
设计限幅电路需要确定输入信号的幅值范围,选择合适的二极管,并进行电流和电压的计算。
在实际应用中,限幅电路常用于保护电路和设备免受过大幅值信号的损害。
目录摘要 (3)第一章引言 (4)第二章基础知识介绍 (5)集成电路简介 (5)CMOS运算放大器 (5)理想运放的模型 (5)非理想运算放大器 (6)运放的性能指标 (6)CMOS运算放大器的常见结构 (7)单级运算放大器 (7)简单差分放大器 (8)版图的相关知识 (9)版图介绍 (9)硅栅CMOS工艺版图和工艺的关系 (9)Tanner介绍 (10)第三章电路设计 (11)总体方案 (11)各级电路设计 (11)第三级电路设计 (11)第二级电路设计 (12)第一级电路设计 (13)三级运放整体电路图及仿真结果分析 (15)第四章版图设计 (16)版图设计的流程 (16)参照所设计的电路图的宽长比,画出各MOS管 (16)布局 (18)画保护环 (18)画电容 (18)画压焊点 (19)整个版图 (20)第五章 T-Spice仿真 (22)提取T-Spice文件 (22)用T-Spice仿真 (25)仿真结果分析 (27)第六章总结 (28)参考文献 (29)摘要本次专业综合课程设计的主要内容是设计一个CMOS三级运算跨导放大器,该放大器可根据不同的使用要求,通过开关的开和闭,选择单级、两级、三级组成放大器,以获得不同的增益和带宽。
用ORCAD画电路图,设计、计算宽长比,仿真,达到要求的技术指标,逐级进行设计仿真。
然后用L-Edit软件根据设计的宽长比画版图,最后通过T-Spice仿真,得到达到性能指标的仿真结果。
设计的主要结果归纳如下:(1)运算放大器的基本工作原理(2)电路分析(3)设计宽长比(4)画版图(5)仿真(6)结果分析关键词:CMOS运算跨导放大器;差分运放;宽长比;版图设计;T-Spice 仿真第一章引言众所周知,微电子技术、电力电子技术和计算机技术在相互渗透、相互支撑和相互促进的紧密关系中,均得到了飞速的发展。
现代信息社会的支柱——计算机和通讯,其主要硬件设备是集成电路。
常规运算放大器的自举电路设计-设计应用当现成的运算放大器(op amp)不能提供特定应用所需的信号摆幅范围时,工程师面临两种选择:使用高压运算放大器或设计分立解决方案,不过这两种选择的成本可能都很高。
对许多应用来说,第三种选择——自举——可能是比较廉价的替代方案。
除了动态性能要求极为苛刻的应用,自举电源电路的设计是相当简单的。
自举简介常规运算放大器要求其输入电压在其电源轨范围内。
如果输入信号可能超过电源轨,可以通过电阻衰减过大输入,使这些输入降至电源范围以内的电平。
这样处理并不理想,因为它会对输入阻抗、噪声和漂移产生不利影响。
同样的电源轨也会限制放大器输出,闭环增益的大小存在一个限值,以避免将输出驱动到饱和状态。
因此,如果要求处理输入和/或输出上的大信号偏离,则需要宽电源轨和能在这些电源轨上工作的放大器。
ADI 的24V 至220V 精密运算放大器ADHV4702-1 是适合这种情况的出色选择,不过自举低压运算放大器也能满足应用要求。
是否使用自举主要取决于动态要求和功耗限制。
自举会创建一个自适应双电源,其正负电压不是以地为基准,而是以输出信号的瞬时值为基准,有时称之为飞轨(flying rail) 配置。
在这种配置中,电源随着运算放大器的输出电压(VOUT) 上下移动。
因此,VOUT始终处于中间电源电压,并且电源电压能够相对于地移动。
使用自举可以非常容易地实现这种自适应双电源。
实际上,自举必须符合一些准则,有些准则微不足道,但没有一个准则是特别麻烦的。
如下是基本的准则:● 输出负载不得过大。
● 响应速度不得低于运算放大器的压摆率。
● 必须能处理所需的电压水平和相关的功耗。
工作原理飞轨概念是指正负电源轨连续调整,使其电压始终关于输出电压对称。
这样,输出始终位于电源范围内。
电路架构包括一对互补分立晶体管和一个阻性偏置网络。
NPN 发射极(或N 沟道MOSFET 的源极引脚)提供VCC,PNP 发射极(或P 沟道MOSFET 的源极引脚)用作VEE。
一种运算放大器电路设计如何设计一种运算放大器电路。
一、简介运算放大器(operational amplifier,简称Op-Amp)是一种高增益、直流耦合的差分放大器电路。
它是现代电子设备中的关键组件,被广泛应用于信号放大、滤波、波形整形、模拟运算等领域。
本文将针对一种运算放大器电路的设计进行详细介绍和解析。
二、电路要求我们需要设计一种运算放大器电路,满足以下要求:1. 输入电压范围:±10V2. 增益:1000V/V3. 输入电阻:1MΩ4. 输出电阻:100Ω三、电路设计步骤1. 选择适当的运放芯片根据设计要求,我们需要选择一个适用的运放芯片。
常见的运放芯片有LM741、TL071等。
由于输入电压范围较大,我们选择TL071芯片。
2. 输入电路设计根据要求,输入电路的输入电阻应为1MΩ。
为了满足这一要求,我们以非反相输入端为例,设计一个基准电位器电路。
将电位器连接到非反相输入端,电位器两端接地,调节电位器的滑动片位置,使得输入电阻等于1MΩ。
3. 反相输入端接地运放电路的反相输入端非常接近地电位,即大部分情况下可以视作接地。
因此,将反相输入端接地的设计可以简化电路结构,提高整体稳定性。
4. 反馈电阻设计根据增益的要求,我们可以选择一个合适的反馈电阻。
根据运放的运算放大性质,我们可以利用反馈电阻来控制放大倍数。
根据增益公式A = -Rf/R1,我们可以选择Rf=100kΩ,R1=100Ω。
5. 输出电阻设计根据要求,输出电阻应为100Ω。
由于运放的输出电阻较小,一般远小于要求的输出电阻,因此无需特别设计输出电阻。
6. 供电电源设计运算放大器的工作电源一般为双极性直流电源。
根据芯片规格书,我们可以选择±12V的双极电源供电。
7. 连接线和电源线的布线一般情况下,要求输入电缆、反馈电缆和功率电缆分开布线,以避免相互干扰。
四、测试与验证完成电路设计后,我们需要进行测试和验证。
首先,我们可以将输入信号接入电路,观察输出信号的放大倍数是否符合设计要求。
运算放大器的实验报告运算放大器的实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于电路设计和信号处理中。
本实验旨在通过实际搭建电路和测量数据,深入了解运算放大器的原理和特性,并验证其在电路设计中的应用。
一、实验目的本实验的主要目的有以下几个方面:1. 理解运算放大器的基本工作原理;2. 掌握运算放大器的输入输出特性;3. 熟悉常见的运算放大器电路应用。
二、实验仪器和材料1. 运算放大器芯片;2. 电阻、电容等基本电子元件;3. 示波器、函数信号发生器等实验设备。
三、实验步骤1. 搭建基本的运算放大器电路,包括反馈电阻、输入电阻等;2. 连接示波器和函数信号发生器,调节函数信号发生器的频率和振幅;3. 测量运算放大器的输入电压和输出电压,并记录数据;4. 分析实验数据,绘制输入输出特性曲线和增益曲线。
四、实验结果与分析通过实验测量得到的数据,我们可以得出以下结论:1. 运算放大器具有很高的输入阻抗和很低的输出阻抗,能够有效放大输入信号;2. 在线性范围内,运算放大器输出电压与输入电压成正比,增益稳定;3. 当输入信号超出运算放大器的工作范围时,输出电压将出现失真。
五、实验应用运算放大器在电路设计中有广泛的应用,以下是几个常见的例子:1. 比较器:利用运算放大器的输入特性,可以将其作为比较器使用,用于判断两个电压的大小关系;2. 滤波器:通过调整运算放大器的反馈电阻和电容,可以搭建低通、高通、带通等滤波器电路;3. 信号放大器:将运算放大器作为信号放大器使用,可以放大微弱信号,提高信号质量。
六、实验总结通过本次实验,我们深入了解了运算放大器的原理和特性,掌握了运算放大器的基本应用。
实验结果表明,在电路设计中,运算放大器是一种非常重要且常用的器件,能够实现信号放大、滤波、比较等功能。
然而,我们也要注意运算放大器的工作范围和输入输出特性,避免出现失真和不稳定的情况。
运算放大器应用电路的设计与制作一.实验目的1.掌握运算放大器和滤波电路的基本工作原理;2.掌握运用运算放大器实现滤波电路的原理方法;3.会用Multisim10对电路进行仿真分析;二.实验内容1.讲解运算放大器和滤波电路的基本工作原理;2.讲解用运算放大器实现滤波电路的原理方法;3.用Multisim10对二阶有源低通滤波电路进行仿真分析;三.实验仪器1.支持Win2000/2003/Me/XP/vista的PC机;2.Multisim10软件;四.实验原理(一)运算放大器1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。
如图2所示。
U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号加入反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:i1fO U R R U -=为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。
反向比例电路对于输入信号的负载能力有一定的要求。
(b) 同向比例电路同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端:图4 同相比例电路电路图它的输出电压与输入电压之间的关系为:; R’=R 1 // R F 只要改变比例系数就能改变输出电压,且U i 与U 0的方向相同,同向比例电路对集成运放的共模抑制比要求高。
(c) 差动比例电路差动比例电路如图5所示,输入信号分别加在反相输入端和同相输入端:图5 差动比例电路电路图其输入和输出的关系为:)U (U R R U i1i21fO --= 可以看出它实际完成的是:对输入两信号的差运算。
i 1fO )U R R (1U +=(2)和/差电路(a)反相求和电路其电路图如图6所示(输入端的个数可根据需要进行调整):图6 反相求和电路图其中电阻R'满足:f 321'//////R R R R R =它的输出电压与输入电压的关系为:它的特点与反相比例电路相同,可以十分方便的通过改变某一电路的输入电阻,来改变电路的比例关系,而不影响其它支路的比例关系。
(b)同相求和电路其电路如图7所示(输入端的个数可根据需要进行调整):图7 同向求和电路图它的输出电压与输入电压的关系为: 它的调节不如反相求和电路,而且它的共模输入信号大,因此它的应用不很广泛。
(c)和差电路其电路图如图8所示,此电路的功能是对U i1、U i2进行反相求和,对U i3、U i4进行同相求和,然后进行的叠加即得和差结果。
⎪⎪⎭⎫ ⎝⎛++-=33f22f 11f 0i i i U R R U R R U R R U ⎪⎪⎭⎫⎝⎛++=c i b i ai R U R U R U R U 321f 0图8 和差电路图它的输入输出电压的关系是:由于该电路用一只集成运放,它的电阻计算和电路调整均不方便,因此我们常用二级集成运放组成和差电路。
它的电路图如图9所示:图9 二级集成和差电路图它的输入输出电压的关系是:它的后级对前级没有影响(采用理想的集成运放),它的计算十分方便。
(3) 积分电路和微分电路 (a)积分电路其电路图如图10所示:它是利用电容的充放电来实现积分运算,可实现积分运算及产生三角波形等。
图10 积分电路图⎪⎪⎭⎫⎝⎛--+=22114433f 0R U R U R U R U R U i i i i它的输入、输出电压的关系为:其中: 表示电容两端的初始电压值.如果电路输入的电压波形是方形,则产生三角波形输出。
(b)微分电路微分是积分的逆运算,它的输出电压与输入电压呈微分关系。
电路如图11所示:图11 微分电路图R u -=0它的输入、输出电压的关系为:(4) 对数和指数运算电路 (a)对数运算电路对数运算电路就是是输出电压与输入电压呈对数函数。
我们把反相比例电路中Rf 用二极管或三级管代替级组成了对数运算电路。
电路图如图12所示:图12 对数运算电路它的输入、输出电压的关系为(也可以用三级管代替二极管):0101=+-=⎰t ct t i u dt u RCu Sir RI u U u ln 0-≈(b)指数运算电路指数运算电路是对数运算的逆运算,将指数运算电路的二极管(三级管)与电阻R 对换即可。
电路图如13所示:图13 指数运算电路它的输入、输出电压的关系为:利用对数和指数运算以及比例,和差运算电路,可组成乘法或除法运算电路和其它非线性运算电路。
(二)无源滤波电路滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过。
滤波电路的分类:*低通滤波器:允许低频率的信号通过,将高频信号衰减; *高通滤波器:允许高频信号通过,将低频信号衰减;*带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; *带阻滤波器:阻止某一频带范围内的信号通过,允许此频带以外的信号衰减;仅由无源元件(电阻、电容、电感)组成的滤波电路,为无源滤波电路。
它有很大的缺陷如:电路增益小,驱动负载能力差等。
为此我们要学习有源滤波电路。
(三)有源滤波电路有源滤波器是指利用放大器、电阻和电容组成的滤波电路,可用在信息处理、数据传输、抑制干扰等方面。
但因受运算放大器频带限制,这种滤波器主要用于低频范围。
(1)一阶有源低通滤波器其电路如图14-a 所示,它是由一级RC 低通电路的输出再接上一个同相输入比例放大器构成, 幅频特性如图14-b 所示, 通带以外以dB 20-/十倍频衰减:ri u u S I u Re0-=图14-a 一阶有源低通滤波电路图14-b 一阶有源低通幅频特性该电路的传递函数为:式中RC1=ω称为截止角频率,传递函数的模为2)(1)(ovovAjAωωω+=幅角为arctgωωωϕ-=)(。
在节点B有:联立以上二等式得:DCv iR1RfCv oR-+CB-3-20110实际的理想的-20dB/十倍频程ω/ωo1111)()()(ωωωωωωωjAjRRjVjVjA vofiov+=++==)()()(4321=-++-+-YUUYUYUUYUUPAAOAiA)(54=+-YUYUUPAP考虑到:则:A(S)即是二阶压控电压源滤波器传递函数的一般表达式。
只要适当选择Y i (i =1~5),就可以构成低通、高通、带通等有源滤波器。
五 . 实验步骤1. 设Y 1=1/R 1, Y 2=sC 1, Y 3=0, Y 4=1/R 2,Y 5=sC 2,将它们代入A(S)中,可得到二阶压控电压源低通滤波器的传递函数如下:令则有:0))((2144321454=--⎥⎦⎤⎢⎣⎡-++++Y U Y U Y Y Y Y Y Y Y Y U O i P )(ba aO N P R R R U U U +=≈[]43214321541)1()()()()(Y Y A Y Y Y Y Y Y Y Y Y A s U S U S A UF UF iO +-+++++==[]2121212*********1211)1(1)()()(C C R R C C R R A C R C R C R S S C C R R A S U S U S A UF UF i O +-+++⋅==[]1)1(11212222121+-+++=S A C R C R C R S C C R R A UF UF)1()(1111212212121212UF nabUF O A C R R R C C C R R Q C C R R R R AA -++==+==ω222211)()()()(nn n O n n O i O S QS A S Q S A S U S U S A ωωωωω++=+⋅+==上式为二阶低通滤波器传递函数的典型表达式。
其中ωn为特征角频率,而Q则称为等效品质因数。
2. 启动Multisim10,按图16在工作区搭建二阶有源低通滤波器。
图16二阶有源低通滤波器电路3. 启动仿真,点击波特图仪,可以看见二阶有源低通滤波器的幅频特性如图17所示。
图17二阶有源低通滤波器的幅频特性4.利用AC Analysis(交流分析)分析二阶有源低通滤波器电路的频率特性。
分析步骤如下:①点击Options→Preferences→Show node names使图16电路显示节点编号,在本电路中输出节点编号为2。
12345A13554BM12VVCC-12VVE ERa47.5kΩ1%Rb27.4kΩ1%Ui0.5 Vpk100kHzoutinXBP1R110kΩ1%R210kΩ1%C147nFC247nF②点击Simulate→Analysis→AC Analysis,将弹出AC Analysis对话框,进入交流分析状态。
在图18所示Frequency Parameters参数设置对话框中,确定分析的起始频率、终点频率、扫描形式、分析采样点数和纵向坐标(Vertical scale)等参数。