山东省青岛市城阳区2018-2019学年九年级数学上学期期末试卷(含解析)
- 格式:doc
- 大小:1.29 MB
- 文档页数:27
山东省青岛市城阳区2018-2019学年九年级数学上学期期末试
一、选择题
1.如图,是一个几何体的三视图,则这个三视图,则这个几何体是()
A.长方体B.圆柱体C.球体D.圆锥体
2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sin B的值为()
A.B.C.D.
3.已知反比例函数y=的图象经过点(﹣5,3),则k的值为()A.﹣15 B.C.﹣2 D.
4.菱形ABCD的周长为20cm,∠ABC=120°,则对角线BD等于()A.4cm B.6cm C.5cm D.10cm
5.如图,在△ABC中,点D在AB上一点,下列条件中,能使△ABC与△BDC相似的是()
A.∠B=∠ACD B.∠ACB=∠ADC C.AC2=AD•AB D.BC2=BD•AB
6.一个密闭不透明的盒子里由若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入10个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子,不断重复,共摸球200次,其中40次摸到黑球,则可以估计盒中大约有白球()A.30个B.35个C.40个D.50个
7.若k≠0,则函数y=和y=kx+3在同一直角坐标系上的图象大致是()
A.B.C.D.
8.若二次函数y=ax2﹣2x﹣1的图象和x轴有交点,则a的取值范围为()A.a>﹣1 B.a>﹣1且a≠0 C.a≥﹣1 D.a≥﹣1且a≠0 二、填空题
9.已知=,则=.
10.计算:cos60°+tan60°=.
11.高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为米.
12.如图,在平面直角坐标系中,点A在反比例函数y=(k<0,x<0)的图象上,过点A作AB∥y轴交x轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是8,则k=.
13.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.该矩形草坪BC边的长是米.
14.如图,矩形ABCD中,AB=2,E为对角线BD上一点,且BE=3DE,CE⊥BD于E,则BC =.
15.已知A(0,3)和B(2,3)在抛物线y=x2+bx+c上,则二次函数y=x2+bx+c的对称轴为直线.
16.已知反比例函数y=的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,M n,则=.
三、作图题
17.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.
四、解答题
18.计算
(1)x2+6x﹣2=0(配方法)
(2)已知关于x的方程2x2+(k﹣2)x+1=0有两个相等的实数根,求k的值.
19.小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.
20.在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.
(1)请根据题意,求y与x之间的函数表达式;
(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?
(3)如果为了防汛工作的紧急需要,必须在10天内完成任务,那么每天至少要完成多少米?
21.某商店经销一种销售成本为每件40元的商品,根据市场分析,当销售定价为52元时,每月可售出180件,定价每增加1元,销售量就将减少10件;定价每减少1元,销售量就将增加10件.若商店想在销售成本不高于7200元的情况下,使该商品的月销售利润达到2000元,则销售价应定为每件多少元?
22.小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)
(参考数据:sin15°=,cos15°=,tan15°=)
23.如图,在▱ABCD中,AC⊥CD.
(1)延长DC到E,使CE=CD,连接BE,求证:四边形ABEC是矩形;
(2)若点F,G分别是BC,AD的中点,连接AF,CG,试判断四边形AFCG是什么特殊的四边形?并证明你的结论.
24.如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用y=﹣x2+bx+c表示,且抛物线经过点B(,2),C (2,).
请根据以上信息,解答下列问题;
(1)求抛物线的函数关系式,并确定喷水装置OA的高度;
(2)喷出的水流距水面的最大高度是多少米?
(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
25.(8分)△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
26.如图,在矩形ABCD中,AB=6,BC=8.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点时停止运动.点P也同时停止.点P,Q运动速度均为每秒1个单位长度,连接PQ,设运动时间为t(t>0)秒.
(1)当点Q从B点向A点运动时(未到达A点),
①当t=时PQ∥BC
②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;