当前位置:文档之家› (完整版)绝对值的意义及应用

(完整版)绝对值的意义及应用

(完整版)绝对值的意义及应用
(完整版)绝对值的意义及应用

绝对值的意义及应用

绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首

先必须弄清绝对值的意义和性质。对于数x而言,它的绝对值表示为:|x|.

一. 绝对值的实质:

正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即

也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x| > 0,请牢牢记住这一点。

二. 绝对值的几何意义:

一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1.有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c| 化简结果

为()

A. 2a+3b-c B . 3b-c C . b+c D . c-b

(第二届“希望杯”数学邀请赛初一试题)

解:由图形可知a v 0, c>b>0,且|c| > |b| >|a|,贝U a+b> 0, b-c v 0. 所以原式=-a+b+a+b-b+c = b+c,故应选(C).

三. 绝对值的性质:

1. 有理数的绝对值是一个非负数,即|x| > 0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x< |x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6| = |-6| ,但6丰-6),只

有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法

1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利

用绝对值定义去掉绝对值的符号进行运算。

例 2. 已知:|x-2|+x-2 = 0,

求:(1)x+2 的最大值;(2)6-x 的最小值。

解:?/ |x-2|+x-2 = 0 ,??? |x-2| = -(x-2)

根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,

? x-2 w 0,即卩x w 2,这表示x的最大值为2

(1) 当x= 2时,x+2得最大值2+2= 4;

(2) 当x= 2时,6-x得最小值6-2 = 4

2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

例 3. 已知|x-2|+x 与x-2+|x| 互为相反数,求x 的最大值.

解:由题意得(|x-2|+x)+(x-2+|x|) = 0,整理得|x-2|+|x|+2x-2 = 0

令|x-2| = 0,得x= 2,令|x| = 0,得x = 0 以0,2为分界点,分为三段讨论:

(1) x >2时,原方程化为x-2+x+2x-2 = 0,解得x = 1,因不在x>2的范围内,舍去。

(2) 0 w x v 2 时,原方程化为2-x+x+2x-2 = 0,解得x= 0

(3) x v 0时,原方程化为2-x-x+2x-2 = 0,从而得x v 0 综合⑴、(2)、⑶知x w 0,所以x的最

大值为0

3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。

例4.若|a-2| = 2-a,求a的取值范围。

解:根据已知条件等式的结构特征,我们把a-2 看作一个整体,那么原式变形为|a-2| =-(a-2),又由绝对值概念知a-2 w 0,故a的取值范围是a w 2

4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算.

例5.求满足关系式|x-3|-|x+1| = 4的x的取值范围.

解:原式可化为|x-3|-|x-(-1)| =4

它表示在数轴上点x 到点 3 的距离与到点-1 的距离的差为 4 由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

所以原式的解为X W -1

五?有关绝对值知识的应用

1. 如果根据已知条件或题目中的隐含条件可以确定绝对值符号内的数(或代数式)为“负”值或“非负”值,则由绝对值的定义可直接写出其结果

例 6.设x, y, a是实数,并且凶=1-a , |y| = (1-a)(a-1-a 2),试求|x|+y+ al2+1的值等于 _____ .

解:显然|x| > 0, |y| > 0,

■/ a- 1 - = - (a- - ^<0,

???由凶》0得1-a》0,由|y|》0得1-a w 0,

???1-a = 0,从而x= 0, y= 0, a= 1

?原式=|0|+0+1 2+1 = 2

2. 如果根据已知或题目自身不能确定绝对值符号内的代数式为“负”或“非负”,就应分别对各种情况进行讨论。讨论的方法有:

(1) 直接利用绝对值的性质,去掉绝对值符号,把式子转化为不含绝对值的式子进行讨

论。

例7.已知|a| = 3, |b| = 2,求a+b的值。

解:?/ |a| = 3, |b| = 2,

? a = 3 或-3 , b = 2 或-2

因此a, b的取值应分四种情况:

a= 3, b = 2 或a= 3, b= -2 或a = -3 , b = 2 或a = -3 , b = -2 ,

从而易求a+b的值分别为5 , 1, -1 , -5

解这类问题,要正确组合,全面思考,谨防漏解。

(2) 采用零点分区间法,求出绝对值的零点,把数轴分成相应的几个区间进行讨论(所谓绝对值的零点就是使绝对值符号内的代数式等于零的字母所取值在数轴上所对应的点)。

例8.化简:|1-3x|+|1+2x| .

1 1

解:由1 3x 0和1 2x 0得两个零点:x —和x —,这两个点把数轴分成三

3 2

(1 当x -时,1 3x 0 , 1 2x 0 2

原式(13x) [ (1 2x)] 5x;

(2)当1

1

x 时,1 3x 0, 1 2x 0

23

原式(1 3x) (1 2x) 2 x ;

1

(3)当x 丄时,1 3x 0, 1 2x 0 ,

3

原式=-(1-3x)+(1+2x) = 5x.

3. 利用绝对值的几何意义解含绝对值的方程,这样既直观,又简便。

因为凶的几何意义是表示数轴上点x到原点的距离,因此|x-a|的几何意义是表示点x 到点a的距离.由此可知,方程|x-a| = k的解是x= a+k或x = a-k(k > 0)

例9. |x-2|+|x-1|+|x-3| 的最小值是()

A. 1 B . 2 C . 3 D . 4

解:设A(1) , B(2) , C(3) , P(x),如图所示,求|x-1|+|x-2|+|x-3| 的最小值,即是在数轴上求一点P,使AP+BP+P(为最小,显然,当P与B重合,即x= 2时,其和有最小值2, 故应选(B)

A BCP) C

4 』 & A I +

Qi 1 2 3

4. 利用“一个实数的绝对值是一个非负数”这一性质解题,可使问题化难为易。在运用这一性质时,常与非负数的性质:“有限个非负数的和为零时,则每一个非负数必为零”

联用。

例10.若|m+1|+|2n+1| = 0,那么m2003-n4= _________ .

i n

简解m= - 1, n=-原式=一汝.

/ io

六.绝对值化简与求值的基本方法

例11.若a、b互为相反数,cd互为负倒数.则|a+b+cd| = ___________________ . (96年泰州市初中数学竞赛)

解:由题设知a+b= 0, cd = -1,贝U |a+b+cd| = |0-1| = 1

例12.若|x-y+2|与|x+y-1|互为相反数,则xy的负倒数是 ________________ . (95年希望杯邀请

部分:

赛初一培训题)

解:由题设知|x-y+2| > 0, |x+y-1| >0,但二者互为相反数,故只能x-y+2 = 0,

1 3

解得x - , y , xy

2 2

4

其负倒数是一

3

例13.已知a、b是互为相反数,c、d是互为负倒数,x的绝对值等于它的相反数的

则x3+abcdx+a-bcd的值是_________ .(94年希望杯邀请赛初一试题)

解:由题设知a+b= 0, cd = -1 .又x的绝对值等于它的相反数的2倍, x = 0,

???原式=03+0+a-b ? (-1) = a+b = 0

例14.化简|x+1|+|x-2|

令x +1 = 0, x-2 = 0,得x = -1 与x = 2,

故可分段定正负再去符号.

(1) 当x V -1 时,

原式=-(x+1)-(x-2) = -2x+1 ;

(2) 当-1 < x v 2 时,

原式=(x+1)-(x-2) = 3;

(3) 当x > 2 时,

原式=x+1+(x-2) = 2x-1

—2x +1 —'」

原式=? 3 —声<2)

1 (蛊>2)

L

说明:例14中没有给定字母任何条件,这种问题应先求零点,然后分区间定正负再去绝对值符号,这种方法可归纳为:“求零点,分区间,定性质,去符号”。

例15.设x是实数,y= |x-1|+|x+1| 。下列四个结论:

I .y没有最小值;

n .只有一个x使y取到最小值;

川.有有限多个x(不只一个)使y取到最小值;x+y-1 2倍,

IV .有无穷多个x使y取到最小值。其中正确的是().

六年级绝对值应用(讲义及答案)精益版

绝对值应用(讲义) ? 课前预习 1. a 的相反数是_______,a b -的相反数是_______,a b c -+的相反数是 ________;若0a b c -+<,则a b c -+=________. 2. 已知0a c <<,0ab >,b c a <<,在下图数轴上标出b ,c 的大致位置. 3. 当a >0时,a =____,a a =____;当a <0时,a =____,a a =____. ? 知识点睛 1. 去绝对值: ①看_____,定_____;②依法则,留_____;③去括号,合并. 2. 分类讨论: ①_____________________________________________; ②_____________________________________________. 3. 绝对值的几何意义: a b -表示在数轴上数a 与数b 对应点之间的距离. ? 精讲精练 1. 小明得到了一个如图所示的数轴草图,他想知道一些式子的符号,请你帮他 完成. a -____0,a b +____0,a b -____0,b a -____0.(填“>”、“<”或“=”) a 2. 设有理数a ,b ,c 在数轴上的对应点如图所示,则b -a ____0,a +c _____0.化简2b a c a c a -+-+-=____________. 3. 设有理数a ,b 在数轴上的对应点如图所示,化简1a b a b b +---+-. 01a b

4. 已知0a c <<,0ab >,b c a >>,化简b a b c a b c -++-++. 5. 已知0c a <<,0ab <,a c b >>,化简a a c b c b a -+----. 6. 已知0a b +<,化简13a b a b +----. 7. 若15x -=,1y =,则x y -的值为__________________. 8. 若24x +=,3y =,则x y +的值为_________________. 9. 若4a =,2b =,且a b a b +=+,则a b -的值是多少?

绝对值几何意义和绝对值方程

绝对值几何意义和绝对值方程 Ⅰ重点突破 重点针对复习 【重点知识点1】绝对值的几何意义 [针对训练1] (南雅-15)1.阅读材料,回答下列问题: 数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示; 在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2; 在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7; 在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5; 在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;…… 如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|. (1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于; (2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x. ①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=; ②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.

2.先阅读,后探究相关的问题 【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离. (1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是; (2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为; (3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等; (4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是. 3.结合数轴与绝对值的知识回答下列问题: (1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=. (2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为; (3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是. (4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.

绝对值的意义及应用(最新整理)

绝对值的意义及应用 绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首 先必须弄清绝对值的意义和性质。对于数x而言,它的绝对值表示为:|x|. 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即 也就是说,|x|表示数轴上坐标为x的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A.2a+3b-c B.3b-c C.b+c D.c-b (第二届“希望杯”数学邀请赛初一试题) 解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0. 所以原式=-a+b+a+b-b+c=b+c,故应选(C). 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤ |x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只 有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 四. 含绝对值问题的有效处理方法 1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利 用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0, 求:(1)x+2的最大值;(2)6-x的最小值。 解:∵|x-2|+x-2=0,∴|x-2|=-(x-2) 根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零, ∴x-2≤0,即x≤2,这表示x的最大值为2 (1)当x=2时,x+2得最大值2+2=4; (2)当x=2时,6-x得最小值6-2=4 2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。 例3. 已知|x-2|+x与x-2+|x|互为相反数,求x的最大值. 解:由题意得(|x-2|+x)+(x-2+|x|)=0,整理得|x-2|+|x|+2x-2=0 令|x-2|=0,得x=2,令|x|=0,得x=0 以0,2为分界点,分为三段讨论: (1)x≥2时,原方程化为x-2+x+2x-2=0,解得x=1,因不在x≥2的范围内,舍去。 (2)0≤x<2时,原方程化为2-x+x+2x-2=0,解得x=0 (3)x<0时,原方程化为2-x-x+2x-2=0,从而得x<0 综合(1)、(2)、(3)知x≤0,所以x的最大值为0 3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。 例4. 若|a-2|=2-a,求a的取值范围。 解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2 4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算. 例5. 求满足关系式|x-3|-|x+1|=4的x的取值范围. 解:原式可化为|x-3|-|x-(-1)|=4 它表示在数轴上点x到点3的距离与到点-1的距离的差为4 由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

绝对值的性质及运用

知识精讲 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值 号. ②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离. 绝对值

【例题精讲】 模块一、绝对值的性质 【例1】到数轴原点的距离是2的点表示的数是( ) A .±2 B.2 C .-2 D .4 【例2】下列说法正确的有( ) ①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数. A .②④⑤⑥ B .③⑤ C .③④⑤ D .③⑤⑥ 【例3】如果a 的绝对值是2,那么a 是( ) A .2 B .-2 C .±2 D.12 ± 【例4】若a <0,则4a +7|a |等于( ) A .11a B .-11a C .-3a D .3a 【例5】一个数与这个数的绝对值相等,那么这个数是( ) A .1,0 B .正数 C .非正数 D .非负数 【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( ) A .7或-7 B .7或3 C .3或-3 D .-7或-3 【例7】若1-=x x ,则x 是( ) A .正数 B .负数 C .非负数 D .非正数 【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b

绝对值的性质及运用

知识精讲 绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离. 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值号. ②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a的绝对值: ① (0) 0(0) (0) a a a a a a > ? ? == ? ?-< ? ②(0) (0) a a a a a ≥ ? =? -< ? ③(0) (0) a a a a a > ? =? -≤ ? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0 a b c ++=,则0 a=,0 b=,0 c= 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0) b≠; (4)222 |||| a a a ==; a的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【例题精讲】 模块一、绝对值的性质 【例1】到数轴原点的距离是2的点表示的数是() A.±2 B.2 C.-2 D.4 绝对值

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念 轴对称图形的定义 如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。 轴对称图形的性质 1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。(对于一个图形来说) (2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。这条直线就是对称轴。两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。(对于两个图形来说) (3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。 中心对称的定义: 把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。 中心对称的性质: ①于中心对称的两个图形是全等形。 ②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 ③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。 识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。 既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等. 只是中心对称图形的有:平行四边形等. 既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0);

(7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b| 【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

中心对称教学设计

《中心对称》教学设计 人教版教科书数学九年级上册 哈尔滨市道里区第一五九中学校张琪 【摘要】 本节课主要研究了中心对称的有关概念及中心对称的基本性质 【关键词】中心对称,对称中心,对称点 【教材分析】 1.考试说明 ①了解中心对称的有关概念 ②掌握中心对称的基本性质 2. 教学目标 ⑴. 知识技能 ①了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题 ②通过具体实例认识两个图形关于某一点中心对称的本质:就是一个图形绕一点旋转 180°而成。 ③理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心 所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用 ⑵.过程与方法 在发现、探究的过程中完成对中心对称变换从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力 ⑶. 情感态度与价值观 利用图形探索中心对称的性质,让学生体验数学与生活是紧密联系的,体会到生活中的对称美,发展学生的审美能力,增强对图形的欣赏意识。 3.教学重点 ①利用中心对称、对称中心、关于中心对称点的概念解决一些问题 ②中心对称的两条基本性质及其运用 4.教学难点:中心对称的性质及利用以上性质进行作图 【学情分析】 学生在学习了旋转的基础上学习中心对称,在作图方面已经有了一定的基础,中心对称是一种特殊的旋转,对于性质的得出难度不大。 【教学策略】 利用多媒体的形式展示,通过学生自主动脑思考得出结论。 【教学过程】 一、创设情境,引入新课 观察: ①如图1把其中一个图案绕点O旋转180°,你有什么发现?

图1 ②如图2,线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180o,你有什么发现? 图2 老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△OCD重合. 归纳:把一个图形绕某一个点旋转180o,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点。 【设计意图】 从旋转变换的角度引入中心对称的概念,让学生体会知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称要求旋转角必须为180 o,)渗透了从一般到特殊的数学思想方法. 二、师生合作,探求新知 [探究]如图,旋转三角板,画关于点O对称的两个三角形; 第一步,画出△ABC; 第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C'; 第三步,移开三角板。 这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系? [发现]我们可以发现:(1)点O是线段AA'的中点;(2)△AB C≌△A'B'C'。 上述发现可以证明如下.

绝对值几何意义应用

仅供参考学习个人收集整理 绝对值几何意义应用 一、几何意义类型:0a?a?a 类型一、0:表示数轴上地点地距离;到原点 ab??b?a bb aa 地距离(或点;类型二、:表示数轴上地点到点到点地距离) )?baa?b??()?ab?(?b?b aa?地距离):表示数轴上地点到点类型三、到点;地距离(点ax?ax :表示数轴上地点地距离;到点类型四、)a?(?x?a?x xa?. 类型五、到点:表示数轴上地点地距离二、例题应用:4?xx?4x ,则、地几何意义是数轴上表示地点与表示地点之间地距离,若例1.(1)=2?x. 3x?1?x?3x ,则(2)地几何意义是数轴上表示地点与表示地点之间地距离,若、?x. 15??qm若3)、如图所示数轴上四个点地位置关系,且它们表示地数分别为m、n、p、q.,(1 n?q?n,pp?m?,15m???m?8np??q?n?1,qp3 ;若,则,n?p?.则 a?b?b?c?a?cc,,ba,,如果在数轴上地对应点为A,(4)、不相等地有理数B,C. 在数轴上地位置关系B,,C 则点A a?b?9,c?d?16且a?b?c?d?25da、cb、、,求均为有理数,拓展:已知 b?a?d?c的值. ??且a?b?c?d?25.25a?b?c?a (9b?)??16?ddc???解析: ?b?9?a,c?d?16?b?a?d?c?9?16??7. 3x??x?32?x?x时,取最大值,最大)(例2.1、①当取最小值;②时,当 值为. 1 / 8 个人收集整理仅供参考学习 x?3?x?2?7x?; 利用绝对值在数轴上地几何意义得(2)、①已知,

绝对值的性质及运用

绝对值 基本要求:借助数轴理解绝对值得意义,会求实数得绝对值 略高要求:会利用绝对值得知识解决简单得化简问题 【知识点整理】 绝对值得几何意义:一个数得绝对值就就是数轴上表示数得点与原点得距离、数得绝对值记作、 绝对值得代数意义:一个正数得绝对值就是它本身;一个负数得绝对值就是它得相反数;0得绝对值就是0、注意:①取绝对值也就是一种运算,运算符号就是“”,求一个数得绝对值,就就是根据性质去掉绝对值符号、 ②绝对值得性质:一个正数得绝对值就是它本身;一个负数得绝对值就是它得相反数;得绝对值就是、 ③绝对值具有非负性,取绝对值得结果总就是正数或0、 ④任何一个有理数都就是由两部分组成:符号与它得绝对值,如:符号就是负号,绝对值就是、 求字母得绝对值: ①②③ 利用绝对值比较两个负有理数得大小:两个负数,绝对值大得反而小、 绝对值非负性:如果若干个非负数得与为0,那么这若干个非负数都必为0、 例如:若,则,, 绝对值得其它重要性质: (1)任何一个数得绝对值都不小于这个数,也不小于这个数得相反数,即,且; (2)若,则或; (3);; (4); 得几何意义:在数轴上,表示这个数得点离开原点得距离. 得几何意义:在数轴上,表示数.对应数轴上两点间得距离. 【例题精讲】 模块一、绝对值得性质 【例1】到数轴原点得距离就是2得点表示得数就是( ) A.±2 B.2 C.-2 D.4 【例2】下列说法正确得有() ①有理数得绝对值一定比0大;②如果两个有理数得绝对值相等,那么这两个数相等;③互为相反数 得两个数得绝对值相等;④没有最小得有理数,也没有绝对值最小得有理数;⑤所有得有理数都可以用数轴上得点来表示;⑥符号不同得两个数互为相反数. A.②④⑤⑥B.③⑤C.③④⑤D.③⑤⑥ 【例3】如果a得绝对值就是2,那么a就是() A.2 B.-2 C.±2 D. 【例4】若a<0,则4a+7|a|等于()

绝对值几何意义知识点经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

《中心对称图形的概念和性质》教案

(九年级数学)圆16——圆的复习1 第 周星期 班别: 姓名: 学号: 一、知识点 1、圆的对称性:圆既是轴对称图形又是 图形; 是它的对称轴, 是它的对称中心。 2、圆周角、弧和弦之间的关系:在一个圆中,如果圆心角相等, 那么它所对的弧________,所对的弦_________. 3、垂径定理: ∵AB 为⊙O 的直径,(或者:弦AB 过圆心) AB ⊥CD ∴DP= , =? DB ,=? DA (垂径定理) 5、同弧所对圆周角和圆心角的关系: 弧的度数=所对 的度数=所对 的度数2倍 二、做一做 (一)填空题 1、如图(1),若∠AOB=60°,则︵AB 的度数为 ,∠ACB= 。 2、100 的弧所对的圆周角为 ,圆心角为 。 3.如图2,在同心圆O 中,?AB 的度数是60°,则? CD 的度数 是 . 4、如图,在⊙O 中,AB ∥CD ,?AC 的度数为45°,则∠BOD 的 度数为 . 5、一条弦把圆分成1:3两部分,则该弦所对的圆心角为________。 6、如图(3) 如果∠ACB=140°,则∠AOB=

如果∠AOB=110°,则∠ACB= 7、如图(4),在⊙O中,半径OC⊥AB于D,若AB=16cm,OD=6cm,则⊙O的半径为。 8、如图(4),在半径为5cm的圆中,线段OD=3cm,则这条弦的 长是 cm. 9、如图(4),弦长AB=43,CD =2,则它的弧所在圆的半 径为cm。 10、图(5):若AB为⊙O的直径,弦CD⊥AB于E,AE=16, BE=4,则直径AB= ;OE= ;CD=________。 11、P为⊙O内一点,PO=4cm,过P最长的弦为10cm,则过P 点最短的弦长为_____cm。 12、如图(6):半径为8的⊙O中,O点到弦AB的距离为4,, 是∠AOB=。 13、在⊙O中,3cm的一条弦所对的圆心角是60°,则圆的直径是 cm. 14、如图3,⊙O的直径AB与弦CD交于点M,添加条件(写 出一个即可)就可得到M是AB的中点; (二)、选择题 15.AB是⊙O的弦,∠AOB = 80?,则AB所对的圆周角是 A.40?B.40?或140?C.20?D.80?或100? 16.如图,△ABC是⊙O的内接三角形,AB = AC且∠CAB = 60?,D是上一点,AC与BD交于E,连接DC、AD,则图中60?角共有 ()个。 A.3 B.4 C.5 D.6

绝对值应用(绝对值的几何意义)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:绝对值的几何意义: ①表示在数轴上,x所对应的点与_______的距离. ②表示在数轴上____________________________对应点之间的距离. ③表示____________________________对应点之间的距离. 绝对值应用(绝对值的几何意义)(北师版)一、单选题(共10道,每道10分) 1.已知,则a,b的值分别为( ) A.a=3,b=5 B.a=-3,b=5 C.a=3,b=-5 D.a=-3,b=-5 答案:B 解题思路: 试题难度:三颗星知识点:绝对值的非负性 2.若,则ab=( )

A.0 B.3 C.-3 D.±3 答案:C 解题思路: 试题难度:三颗星知识点:绝对值的非负性 3.若与互为相反数,则a+b=( ) A.-1 B.1 C.5 D.-5 答案:A 解题思路: 试题难度:三颗星知识点:绝对值的非负性 4.若x为有理数,则的最小值为( )

C.3 D.5 答案:A 解题思路: 试题难度:三颗星知识点:绝对值的几何意义 5.若x为有理数,则的最小值为( ) A.1 B.3

答案:D 解题思路: 试题难度:三颗星知识点:绝对值的几何意义 6.若x为有理数,则的最小值为( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:绝对值的几何意义

7.若x为有理数,则的最小值为( ) A.2 B.3 C.4 D.5 答案:C 解题思路: 试题难度:三颗星知识点:绝对值的几何意义 8.当x=____时,有最_____值,是_____.( ) A.0,小,6 B.0,大,6 C.0,小,0 D.0,大,0 答案:A 解题思路: 试题难度:三颗星知识点:利用绝对值的非负性求最值 9.当x=____时,有最_____值,是_____.( ) A.4,小,3 B.4,大,-3 C.4,小,-3 D.0,大,3 答案:C

绝对值的性质及运用

基本要求:借助数轴理解绝对值的意义,会求实数的绝对值 略高要求:会利用绝对值的知识解决简单的化简问题 【知识点整理】 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离. 【例题精讲】 模块一、绝对值的性质 【例1】到数轴原点的距离是2的点表示的数是( ) A .±2 B .2 C .-2 D .4 【例2】下列说法正确的有( ) ①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相绝对值

绝对值的性质及化简

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 例题精讲 绝对值的性质及化简

中心对称概念和性质

https://www.doczj.com/doc/7214944066.html, ------------------华夏教育资源库 中心对称概念和性质 目的要求: 1、使学生了解中心对称概念,了解关于中心对称的两个图形,其对称点连线都经过对称中心,并且被对称中心平分。 2、使学生会画与已知图形成中心对称的图形。 教学重点:中心对称的概念 教学难点:掌握理解中心对称的概念 教具准备:一副三角板、圆规 教学方法:类比的方法 教学过程: 复习提问: 1、什么叫轴对称?它有什么性质? 2、举出一些轴对称的例子。 新课讲解: 在前一章,我们学过关于直线对称的图形。在日常生活和生产劳动中,还会遇到关于点对称的图形。例如,飞机的螺旋桨,风车的风轮等,就是关于一点对称的图形的实例,它们的每个叶片转动180°后,都转到与它相对的叶片的位置。因为具有关于点对称的图形的物体能够在平面内稳定的旋转,所以在生产中有关旋转的零部件常设计成关于某点为对称的图形,现在我们来研究这种图形的性质(学出课题)。 把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称。这个点叫做对称中心。这两个图形关于点对称也称中心对称。这两个图形中的对应点叫做关于中心的对称点。 指出,中心对称的含义是:(1)有两个图形能够完全重合;(2)重合方式有限制,不是把一个平移到另一个上面,也不是沿一条直线对折,而是把一个图形绕指定点旋转180°之后与另一个重合。由此可见,中心对称图形一定全等,而全等的图形不一定中心对称。 有定义可知,中心对称是指两个图形之间的形状与位置之间的关系,具有这种关系的两个图形有些特殊性质。 定理1 关于中心对称的两个图形是全等形。 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 定理2 的逆定理也是成立的。 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 我们有时用它来判定两个图形关于一点对称。 例:已知四边形ABCD 和点O 画四边形A′B′C′D′,使它与已知四边形关于点O 对称。 分析:要画四边形ABCD 关于点O 的对称图形,只要画A 、B、C、D 四点关于点O 的对称点,再顺次连结各点即可。 画法:1、连结AO 并延长到A′,使OA′=OA ,得到点A 的对称点A′。https://www.doczj.com/doc/7214944066.html, ------------------华夏教育资源库

绝对值的性质及运用

绝对值的性质及运用 LELE was finally revised on the morning of December 16, 2020

基本要求:借助数轴理解绝对值的意义,会求实数的绝对值 略高要求:会利用绝对值的知识解决简单的化简问题 【知识点整理】 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉 绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离. 绝对值

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题 【例1】求 y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少 初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。 绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。 绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。 众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。 设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|, 由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|; 同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|, 由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。 一般说来,设f(x)=|x-a?|+|x-a?|+|x-a?|+???+|x-a n|, 其中a?≤a?≤…≤a n,那么: 当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1; 且f(a)=(a n-a1)+(a n-1-a2)+???+(a n/2+1-a n/2) =(a n+a n-1+??? a n/2+1)-(a1+a2+???+a n/2) 当n为奇数时,f min(x)=f(a(n+1)/2); 且f(a)=(a n-a1)+(a n-1-a2)+???+【a(n+1)/2+1-a(n+1)/2-1】 =【a n+a n-1+??? a(n+1)/2+1】-【a1+a2+???+ a(n+1)/2-1】

相关主题
文本预览
相关文档 最新文档