平面几何的几个重要的定理--梅涅劳斯定理
- 格式:doc
- 大小:386.50 KB
- 文档页数:14
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q P AB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE//BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACKEBC BH B EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆ C BA1A 1B 1C 三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4三点共线、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习Z Y X 2ABC Z Y X 1ZBAZYA CY XC BX BDEAZB AZ AF DC YA CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅平面几何的几个重要定理――――塞瓦定理 塞瓦定理:1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VBUC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆MQRACPB;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1交于一点;成立,即而显然有:我们只须证明,,,的中线证明:记ABC AB CBC A BA B C AC A B CB C A BA B C AC AB CBC A BA B C AC CC BB AA ABC ∆∴=⋅⋅====⋅⋅∆1,,1111111111111111111111分线交于一点;】证明:三角形的角平【练习1 高交于一点;】证明:锐角三角形的【练习2ABCP P BM AN N M BC AC L L AB C ABC ⊥∠∆,证明:的交点是和,设和足分别是的垂线,垂和作边,从于的平分线交于中,角:在锐角例2CB A1A 1B 1C CBA1A 1B 1CABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBKNB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111FDAEDA ANAM BF BD AF CE CD AE FBAFEA CE DC BD P CF BE AD BFBDAF AN CE CD AE AM BF AF BD AN CE AE CD AM BDF ANF CDE AME BC MN BCAD ∠=∠∴=∴⋅=⋅∴=⋅⋅⋅=⋅===∴∆≅∆∆≅∆⊥1,,,//,根据塞瓦定理可得:共点于、、于是,可得,故三线共点;、、,证明:,且、、外有三点】已知【练习CR BN AM BCM ACN ABR CBM CAN BAR R N M ABC γβα=∠=∠=∠=∠=∠=∠∆,,3K LNMCBAFDAEDA F E AB AC CP BP AD P BC D ABC AD ∠∠∆=,则和交于、分别与、上任一点,是边上,若在的高,且是设例.3ANAM FDA EDA N M DF DE AD A =∠=∠可以转化为证明,。
梅涅劳斯定理:1l ABC ABC BC CA AB BP P Q R 1PC CQ ARQA RB∆∆⋅⋅=定理:若直线不经过的顶点,并且与的三边、、或它们的延长线分别交于、、,则1A B C C B AC A Bh h h A B C l h h h BP CQ AR PC QA RB h h h ⋅⋅=⋅⋅=证:设、、分别是、、到直线的垂线的长度,则:注:此定理常运用求证三角形相似的过程中的线段成比例的条件;1//ABC CK CE ACK E AK D AC F DE CK BF CE ∆∠例:若直角中,是斜边上的高,是的平分线,点在上,是的中点,是与的交点,证明:。
,901EBC B BH EBC ACK HBC ACE HBC HCB ACE HCB BH CE EBC BC EP CK EPCD AE KFACK D E F DA EK FCKF EK CK EP BP BK KF BK FC AE AC AC BC BE FC BEKF BKFKB KC KE∆∠∠=∠∠=∠∠+∠=∠+∠=︒⊥∴∆=∆⋅⋅=====∴∆≅证:在中,作的平分线则:即:为等腰三角形作上的高,则:对于和三点、、依梅涅劳斯定理有:于是=即:=依分比定理有:=//CKE BF CE∆∴ 2P Q R ABC BC CA AB P Q R ABC BP 021PC P Q R CQ AR QA RB∆∆⋅⋅=定理:设、、分别是的三边、、上或它们的延长线上的三点,并且、、三点中,位于边上的点的个数为或,这时若,求证:、、三点共线;''''''''''1BP BP 11PC PC 02,PQ AB R CQ AR CQ AR AR AR QA R BQA RB R B RBP Q R ABC R R AB AB R R AB R R AR AR ⋅⋅=⋅⋅=∆>证:设直线与直线交于,于是由定理得:又,则:=由于在同一直线上的、、三点中,位于边上的点的个数也为或,因此与或者同在线段上,或者同在的延长线上;若与同在线段上,则与必定重合,不然的话,设'''''',,AR AR AR AR AB AR AB AR BR BR BR BR BR BR-<-<>这时即于是可得这与=矛盾''R R AB R R P Q R 类似地可证得当与同在的延长线上时,与也重合综上可得:、、三点共线;注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;1111112.P ABC A B C P BC CA AB A B C ∆例点位于的外接圆上;、、是从点向、、引的垂线的垂足,证明点、、共线;111111111111111cos ,cos cos cos ,cos cos ,,1BA BP PBCCA CP PCB CB AC CP PCA AP PABAB AP PAC BC PB PBAPAC PBC PAB PCB PCA PBA BA CB AC A B C CA AB BC ⋅∠=-⋅∠⋅∠⋅∠=-=-⋅∠⋅∠∠=∠∠=∠∠+∠=⋅⋅证:易得:将上面三条式子相乘,且可得=,依梅涅劳斯定理可知、、三点共线;1111111111111::K A B C DACA D AC AD ABCD BC BD B C B D =【练习】从点引四条直线,另两条直线分别交这四条直线于、、、和、、、,试证:2ABC BC CA AB DEF EF BC FD CA DE AB X Y Z ∆【练习】设不等腰的内切圆在三边、、上的切点分别为、、,则与,与,与的交点、、在同一条直线上;1111121121122223AA BB CC O AB A B C BC B C A AC A C B A B C 【练习】已知直线,,相交于,直线和的交点为,直线与的交点是,直线与的交点是,试证:、、三点共线;4E C A B F D AB ED CD AF CD AF EF BC L M N L M N 【练习】在一条直线上取点、、,在另一条上取点、、,记直线和,和,和,和的交点依次为、、,证明:、、共线11111111111111111111111111111111//11111:AD A D AD A D L A AL B BL LD A K A C LC B KAD LC AK BC LD A D AK AC A K LC LC B C BK B D LD BK BD B K LD A C B D AD BC AC BD A D B C A AC AD BC BD ∆∆⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅⋅==练习的证明证:若,结论显然成立;若与相交与点,则把梅涅劳斯定理分别用于和可得:将上面四条式子相乘可得:即:1111111:C AD B C B D21112BX CE AFABC XFE XC EA FBBX FBAE AF XC CE CY DC AZ EAYA AF ZB BDBX CY AZXC YA ZBX Y Z ABC X Y Z ∆⋅⋅==⋅⋅=∆练习的证明证:被直线所截,由定理可得:又代人上式可得:=同理可得:==将上面三条式子相乘可得:又、、都不在的边上,由定理可得、、三点共线2221111111121121121121121121121121123(,),(,),(,)111A B C BC B C AC A C AB A B OAB A B C OBC B C A OAC A C B AA OB BC OC BB CA OA CC AB OA BB AC CC OB BA AA OC CB BC ⋅⋅=⋅⋅=⋅⋅=练习的证明证:设、、分别是直线和,和,和的交点,对所得的三角形和在它们边上的点:和,和,和,应用梅涅劳斯定理有:将上面的三条式子相乘可得:2222222221,,AB CA AC CB BA A B C ⋅⋅=由梅涅劳斯定理可知共线4(,,),(,,),(,,),(,,),(,,)11111EF CD EF AB AB CD U V W UVW L D E A M F B C N A C E B D F UE VL WD VA UF WM UN WC VBVE WL UD WA VF YM VN UC WB WA UC VE WB UD VFVA WC UE VB WD UFVL W WL ∆⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅练习的证明证:记直线和,和,和的交点分别为、、,对,应用梅涅劳斯定理于五组三元点,则有将上面五条式子相乘可得:1,,,M UNL M N UM VN⋅=∴点共线。
平面几何的几个重要的定理(一)梅涅劳斯定理一、基础知识梅涅劳斯定理 若直线l 不经过△ABC 的顶点,并且与△ABC 的三边BC 、CA 、AB 或它们的延长线分别交于P 、Q 、R ,则1BP CQ AR PC QA RB ⋅⋅= 梅涅劳斯定理的逆定理 设P 、Q 、R 分别是△ABC 的三边BC 、CA 、AB 或它们的延长线上的三点(并且P 、Q 、R 三点中,位于△ABC 边上的点的个数为0或2),若1BP CQ AR PC QA RB ⋅⋅=,则P 、Q 、R 三点共线.由和分比定理可得R R '∴与重合 ∴P 、Q 、R 三点共线二、典型例题与基本方法1. 恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例1 如图,在四边形ABCD 中,△ABD 、△BCD 、△ABC 的面积之比是3∶4∶1,点M 、N 分别在AC 、CD 上,满足AM ∶AC =CN ∶CD ,且B 、M 、N 三点共线.求证:M 与N 分别是AC 和CD 的中点.A BC DM N1A B C C B A C A Bh h h A B C l h h h BP CQ AR PC QA RB h h h ⋅⋅=⋅⋅=证:设、、分别是、、到直线的垂线的长度,则:BP 1PC CQ AR PQ AB R QA R B ''⋅⋅='证:设直线与直线交于,于是由梅氏定理得:BP 1PC CQ AR AR AR QA RB R B RB '⋅⋅='又,则:=AR AR AB AB'=2. 梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法 例2 点P 位于△ABC 的外接圆上,111A B C 、、是从点P 向BC 、CA 、AB 引的垂线的垂足,证明点111A B C 、、共线.三、解题思维策略分析1. 寻求线段倍分的一座桥梁例3 △ABC 是等腰三角形,AB=AC ,M 是BC 的中点;O 是AM 延长线上的一点,使得OB ⊥AB ; Q 为线段BC 上不同于B 和C 的任意一点,E 、F 分别在直线AB 、AC 上使得E 、Q 、F 是不同的和共线的.求证:(1)若OQ EF ⊥,则QE QF =;(2)若QE QF =,则OQ EF ⊥.111111*********|cos |,|cos ||cos ||cos ||cos ||cos |,,1801BA BP PBC CA CP PCB CB CP PCA AB AP PAC AC AP PAB BC PB PBA PAC PBC PAB PCB PCA PBA BA CB AC CA AB BC A B C ⋅∠=⋅∠⋅∠=⋅∠⋅∠=⋅∠∠=∠∠=∠∠+∠=︒⋅⋅证:易得:将上面三个式子相乘,且可得=依梅涅劳斯定理可知、、三点共线.2. 导出线段比例式的重要途径例4 直角△ABC 中,CK 是斜边上的高,CE 是∠ACK 的平分线,E 点在AK 上,D 是AC的中点,F 是DE 与CK 的交点. 求证://BF CE .3. 论证点共线的重要方法例5 设不等腰△ABC 的内切圆在三边BC CA AB 、、上的切点分别为D E F 、、,证明:EF 与CB ,FD 与AC ,ED 与AB 的交点X Y Z 、、在同一条直线上.X Y Z ABC X Y Z ∆又、、都不在的边上,由梅氏定理的逆定理可得、、三点共线 例6 如图,△ABC 的内切圆分别切三边BC 、CA 、AB 于点D 、E 、F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX 、XB 分别相切于点Y 、 Z. 证明:EFZY 是圆内接四边形.11BX CE AF ABC XFE XC EA FB ∆⋅⋅=证:被直线所截,由定理可得:BX FB AE AF XC CE=又代人上式可得:=CY DC AZ EA YA AF ZB BD同理可得:==1BX CY AZ XC YA ZB⋅⋅=将上面三条式子相乘可得:。
.平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是 1RBARQA CQ PC BP =⋅⋅。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1RBAR QA CQ PC BP =⋅⋅。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)该点落在三角形的外接圆上。
例题:1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F。
求证:FBAF2ED AE =。
【分析】CEF 截△ABD →1FABF CB DC ED AE =⋅⋅(梅氏定理)【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM →1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1 【评注】梅氏定理3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EA CEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △LMN 。
【分析】【评注】梅氏定理4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2+AB ·BC 。
【分析】过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。
梅涅劳斯定理简介梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二:过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
证明三:过ABC三点向三边引垂线AA'BB'CC',所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA'所以(AF/FB)×(BD/DC)×(CE/EA)=1证明四:连接BF。
(AD:DB)〃(BE:EC)〃(CF:FA) =(S△ADF:S△BDF)〃(S △BEF:S△CEF)〃(S△BCF:S△BAF) =(S△ADF:S△BDF)〃(S △BDF:S△CDF)〃(S△CDF:S△ADF) =1此外,用定比分点定义该定理可使其容易理解和记忆:在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
B平面几何中的四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1=⋅⋅RBARQA CQ PC BP 。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1、设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF 2ED AE =。
【分析】CEF 截△ABD→1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2、过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM→1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3、D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △【分析】【评注】梅氏定理4、以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5、已知△ABC 中,∠B=2∠C 。
竞赛专题讲座-平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是。
塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1.设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
平面几何 定理及其证明一、 梅涅劳斯定理1.梅涅劳斯定理及其证明定理:一条直线和∆ABC 的三边AB 、BC 、CA 所在直线分别交于点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,则有.证明:如图,过点C 作AB 的平行线,交EF 于点G . 因为CG // AB ,所以 ————(1) 因为CG // AB ,所以 ————(2)由(1)÷(2)可得,即得. 2.梅涅劳斯定理的逆定理及其证明 定理:在∆ABC 的边AB 、BC 上各有一点D 、E ,在边AC 的延长线上有一点F ,若,那么,D 、E 、F 三点共线. 证明:设直线EF 交AB 于点D /,则据梅涅劳斯定理有.因为 ,所以有.由于点D 、D /都在线段AB 上,所以点D 和D /重合.即得D 、E 、F 三点共线.二、 塞瓦定理3.塞瓦定理及其证明定理:在∆ABC 内一点P ,该点和∆ABC 的三个顶点相连所在的三条直线分别交∆ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是∆ABC 的顶点,则有.证明:运用面积比可得.根据等比定理有 ADC ADC ADP APCADP BDP BDC BDC BDP BPCS S S S S S S S S S ∆∆∆∆∆∆∆∆∆∆-===-, 所以.同理可得,. 三式相乘得.4.塞瓦定理的逆定理及其证明定理:在∆ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,若,那么直线CD 、AE 、BF 三线共点.证明:设直线AE 和直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有.因为 ,所以有.由于点D 、D /都在线段AB 上,所以点D 和D /重合.即得D 、E 、F 三点共线. 三、 西姆松定理5.西姆松定理及其证明 定理:从∆ABC 外接圆上任意一点P 向BC 、CA 、AB 或其延长线引垂线,垂足分别为D 、E 、F ,则D 、E 、F 三点共线.ABCDEFPA B C DEFD / A B CD E F G证明:如图示,连接PC ,连接 EF 交BC 于点D /,连接PD /.因为PE ⊥AE ,PF ⊥AF ,所以A 、F 、P 、E 四点共圆,可得∠FAE =∠FEP .因为A 、B 、P 、C 四点共圆,所以∠BAC =∠BCP ,即∠FAE =∠BCP . 所以,∠FEP =∠BCP ,即∠D /EP =∠D /CP ,可得C 、D /、P 、E 四点共圆.所以,∠CD /P +∠CEP = 1800。
贵州师大附中高中数学奥林匹克班 平面几何的著名定理除了初中几何课本已经介绍的重要定理之外,平面几何还有许多著名的定理,今择其应用较广的几个介绍如下.一、梅涅劳斯定理一直线截△ABC 的边BC ,CA ,AB 或其延长线于D ,E ,F ,求证1=⋅⋅FBAF EA CE DC BD . 说明1 不过顶点的直线与三角形3边的关系有两种情况:(1)若直线与三角形的一边交于内点,则必与第二边交于内点,与第三边交于外点(延长线上的点),(2)直线与三角形的三边均交于外点,因而本题的图形有2个.说明2 结论的结构是,三角形三边上6条被截线段的比,首尾相连,组成一个比值为1的等式.1=⋅⋅截点到端点端点到截点截点到端点端点到截点截点到端点端点到截点. 说明3 这个结论反映了形与数的结合,是几何位置的定量描述:“三点共线”量化为比值等于“1”,反过来,①式成立时,可证“D ,E ,F 共线”(逆定理也成立).这里的“1”,如果考虑到线段的方向,应为“-1”.说明4 此题证明的基本想法是,将6条线段的比转化为3条线段a ,b ,c 的连环比,能使分子分母约ac c b b a ⋅⋅=1.为此,可有多种作平行线的方法.下面,提供一个不作辅助线的三角证法.证明 如图,在△FBD ,△CDE ,△AEF 中,由正弦定理,得.sin sin )180sin(sin ,sin sin ,sin sin αγαγγββα=-︒===AE AF CD CE BF BD 相乘即得.一般地,设D ,E ,F 为△ABC 三边(或其延长线)上三点,且,,21λλ==DCBD FB AF,3λ=EA EF 则有,)1)(1)(1(1321321λλλλλλ++++=∆∆ABC DEF S S 从而10321-=⇔=∆λλλD EF S .二、塞瓦定理设O 是△ABC 内任意一点,AO ,BO ,CO 分别交对边于D ,E ,F ,则1=⋅⋅FBAF EA CE DC BD . 证明1 (用梅涅劳斯定理)△ADC 被直线BOE ,所截,有1=⋅⋅EC AE OA DO BD CB △ABD 被直线COF ,所截,有1=⋅⋅FBAF OA DO CD BC 相除即得证明2 (面积证法)CODBOD ADC ABD S S S S DC DB ∆∆∆∆== .AOCAOB COD ADC BOD ABD S S S S S S ∆∆∆∆∆∆=--= 同理 ,AOBBOC S S EA CE ∆∆= ,BOCAOC S S FB AF ∆∆= 相乘即得.证明3 (物质重心)在A ,B ,C 处各放一重物,让其质量分别为m A ,m B ,m C ,使其重心正好在O 处,则D ,E ,F 分别为BC ,CA ,AB 的重心.有,,CA B C m m EA CE m m DC BD ==,AB m m FB AF =相乘即得. 逆定理 在△ABC 三边(所在直线)BC ,CA ,AB 上各取一点D ,E ,F ,若有,1=⋅⋅FBAF EA CE DC BD 则AD ,BE ,CE 平行或共点. 证明 AD 与BE 或是平行或是相交(1)若AD ∥BE (如图1),则,EAEC BD BC = 代入已知式,可推出 .CBDC FB AF = 有AD ∥CF ,从而AD ∥BE ∥CF.(2)若AD 与BE 相交于O (如图2),则连CO 交AB 于F /,由塞瓦定理,有1//=⋅⋅BF AF EA CE DC BD 与已知式相比较,得 ,//FBAF B F AF = 合比 ,/ABAF AB AF = 有 AF /=AF ,得F /与F 重合三、三角形的重心、内心、垂心、外心.1、三角形的3条中线共点(重心).由塞瓦定理的逆定理即得.2、三角形的3条角平分线共点(内心).将角平分线定理代入塞瓦定理的逆定理即得.3、三角形的3条高线共点(垂心).证明 先证锐角三角形时成立,如图由Rt △ABD∽Rt △BCF 知.BCAB BF BD = 同理,,AB AC AE AF AC BC DC CE == 得.1=⋅⋅=⋅⋅AEAF DC CE BF BD FB AF EA CE DC BD 由塞瓦定理的逆定理知3条高线AD ,BE ,CF 共点.再证钝角三角形,如右图,设高BE ,CF 延长交于G ,则△GBC 为锐角三角形,它的3条高线CE ,BF ,GD 共点.因为CE ,BF 已共点于A ,所以CE ,BF ,GD 也共点于A ,也就是△ABC 的3条高线DA ,BE ,CF 相交于一点G ,最后,直角三角形显然成立,因而,对任意三角形都有3条高线共点.4、三角形3边上的垂直平分线相交于一点(外心).证明 对于△ABC ,作其中位线三角形DEF ,由△DEF 的3条高线共点得,△ABC 的3条垂直平分线共点(也可先证外心定理,再证垂心定理).四、斯特瓦尔特定理在△ABC 中,D 是BC 上一点,且c AB b AC a BC n m DC BD ====,,,,则 22222)(n m mna n m nc mb AD +-++= 证明 如图,在△ABD 与△ABC 中,用余弦定理,AD 2=AB 2+BD 2-2AB·BD·cosB,AC 2=AB 2+BC 2-2AB·BC·cosB.消去cosB ,得DC BD BC DC AB BD AC AD ⋅-⋅+⋅=222.)(2222n m mna n m nc mb +-++= 推论1 三角形的中线长为.2221222a c b m a -+= 推论2 三角形的角平分线长为,)(2a p bcp cb t a -+= 其中).(21c b a p ++= 推论3 三角形的高线长为.))()((2c p b p a p p a h a ---=五、西姆松定理过三角形外接圆上任意一点作3边的垂线,则3垂足共线(称为西姆松线).反之,若一点到三角形3边所在直线的垂足共线,则该点在三角形的外接圆上.证明 如图,连DE ,BF ,由PD ⊥BC ,PE ⊥AC ,PF ⊥AB 知,点P ,B ,F ,D 及P ,D ,C ,E 分别共圆∠PDF+∠PBF=180°, ①∠PDE+∠PCE=180°, ②又由P ,A ,B ,C 共圆,得∠PCE=∠PBF. ③由①,②,③,得∠PDF+∠PDE=180°, ④从而E ,D ,F 共线.反之,由①,②,④可得③式成立,于是P ,A ,B ,C 共圆,即P 在△ABC 的外接圆上.六、托勒密定理若四边形的两对边的乘积之和等于它的对角线的乘积,则该四边形内接于一圆,反之亦真. 证明 (用西姆松定理)如图,四边形ABCD 内接于圆,过D 作△ABC 各边BC ,CA ,AB 的垂线,垂足分别是A 1,B 1,C 1,因为A ,C 1,B 1,D 四点共圆,且AD 是直径,所以在△AB 1C 1中用正弦定理,有RBC AD BAC AD C B 2sin 11⋅=∠=;同理 ,211R AC BD A C ⋅= ,211RAB CD B A ⋅= 由西姆松定理知,A 1,B 1,C 1三点共线,故A 1B 1+B 1C 1=A 1C 1,即,222RAC BD R BC AD R AB CD ⋅=⋅+⋅ 即 .BD AC AD BC CD AB ⋅=⋅+⋅反之,若D 不在△ABC 的外接圆上,由西姆松定理如,A 1,B 1,C 1不共线,得A 1B 1+B 1C 1>A 1C 1,从而 AB·CD+BC·AD >AC·BD.与已知矛盾(上式也是一个重要不等式).七、厄尔多斯——摩德尔定理设P 是△ABC 内或周界上任一点,P 到3边距离分别为x ,y ,z ,则PA+PB+PC ≥2(x +y +z ).等号成立当且仅当△ABC 为正三角形,且P 是△ABC 的中点.证明 如图,过P 作直线MN 交AB 于M ,交 AC 于N ,使∠AMN=∠ACB ,有△AMN ~△ACB ,得.,ac CB AB MN AN a b CB AC MN AM ==== 又AMN S AP MN ∆≥⋅21 ANP AMP S S ∆∆+=,2121y AN z AM ⋅+⋅= 得 ,a c y a b z MN AN y MN AM z PA ⋅+⋅=⋅+⋅≥同理 ,ba zbc x PB ⋅+⋅≥ ,cb xc a y PC ⋅+⋅≥ 相加 PA+PB+PCz b a ab y ac c a x b c c b ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+≥ )(2z y x ++≥.其中 式(4)取等号⇔a +b +c ,式(1)取等号⇔AP ⊥MN.课 后 巩 固一、选择题1、在四边形A 1A 2A 3A 4的对角线A 1A 3的延长线上取一点C ,过C 作两条直线分别与A 1A 2 A 2A 3,A 3A 4,A 4A 1交于B 1,B 2,B 3,B 4,记,1444433332222111A B B A A B B A A B B A A B B A M ⋅⋅⋅=则M 的值适合( ).A 、M >1B 、M=1B 、M <1 D 、不能确定2、如图,在不等腰△ABC 内取一点P (不是内心),连PA ,PB ,PC ,把角A ,B ,C 分为///,,,,,γγββαα.记,2sin 2sin 2sin,sin sin sin ,sin sin sin ///C B A P N M ===γβαγβα则M ,N ,P 的关系适合( ).A 、M=N=PB 、M=N >PC 、M=N <PD 、M <N <P3、如图,若A ,B ,C ,D 为一直线上依次排列的四点,记M=AB·CD+BC·AD ,N=AC·BD ,则M ,N 的关系适合( ).A 、M >NB 、M=NC 、M <ND 、不能确定4、如图,已P 为矩形ABCD 内任一点,记M=PA 2+PC 2,N=PB+PD 2,则M ,N 的关系适合( ).A 、M >NB 、M=NC 、M <ND 、不能确定二、填空题1、(如图1),有ECDE FB DF BC AB 则,2=== .2、△ABC 的三个旁切圆分别与边BC ,CA ,AB 相切于D ,E ,F (如图2)则EA CE DC BD FB AF ⋅⋅= .3、已知三角形3边长的比为9:10:17,它的面积是144㎡,则三角形的最长边为 m.4、在边长为AB=5,BC=4,CA=3的三角形中,角A 平分线的长= .三、设P 是△ABC 内一点,求证∠PAB ,∠PBC ,∠PCA 至少有一个小于或等于30°.(IMO 32-5)四、过△ABC 外接圆上一点P ,向3边所在直线引斜线分别交BC ,CA ,AB 于D ,E ,F ,且∠PDB=∠PEC=∠PFB ,则D 、E 、F 共线.五、△ABC 中,记BC 为a ,BC 上的中线为m a ,现将BC 分成n 等分,分点为D 1,D 2,…,D n -1,求证⎪⎭⎫ ⎝⎛-+-=∑-=22112122)1(a n n m n AD a n i i .六、若在三角形的两条边上各至少存在一个具有下述性质的点:到对角顶点的距离是到该边两端距离的比例中项.求证,在此三角形的第三边上必不存在具有这性质的点.。
一.梅涅劳斯定理Menelaus (公元98年左右),希腊数学家、天文学家,梅涅劳斯定理包含在其几何著作《球论》里。
梅涅劳斯定理 设ABC ∆的三边AB CA BC ,,或它们的延长线与一条不经过其顶点的直线交于R Q P ,,三点(如图6),则1=⋅⋅RB AR QA CQ PC BP 。
梅涅劳斯定理逆定理 设R Q P ,,分别是ABC ∆的三边AB CA BC ,,上或它们延长线上三点,若有1=⋅⋅RBAR QA CQ PC BP , 则R Q P ,,三点在同一直线上。
设P 为三角形ABC 所在平面上一点,过点P 作PA 的垂线交直线BC 于D ,作PB 的垂线交直线CA 于E ,作PC 的垂线交AB 于F 。
求证:D,E,F 共线。
若三角形的三条外角平分线皆与对边所在直线相交,则三交点共线。
3.设ABC ∆的∠A 的外角平分线与BC 的延长线交于P,∠B 的平分线与AC 交于Q,∠C 的平分线和AB 交于R.求证: R Q P ,,三点在同一直线上。
AB C P Q R S AB C S P R Q 6 图A B CPQ R 7 图4.图8,过△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于P 、Q 、R ,求证:P 、Q 、R 三点共线。
注: 直线PQR 叫做△ABC 的莱莫恩(Lemoine )线5.(戴沙格定理)设△ABC 和△C B A '''对应点的连线A A '、B B '、C C 'S ,这时如果对应边BC 和C B ''、CA 和A C ''、AB 和B A ''(或它们的延长线)相交,则它们的交点D 、E 、F 在同一直线上。
注:戴沙格定理是射影几何中的重要定理。
6(牛顿定理)设四边形ABCD 的一组对边AB 和CD 的延长线交于点E ,另一组对边 AD 和BC 的延长线交于点F ,则AC 的中点L 、BD 的中点M 及EF 的中点N ,三点共线。
四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是 1RBARQA CQ PC BP =⋅⋅。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1RBARQA CQ PC BP =⋅⋅。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)该点落在三角形的外接圆上。
例题:1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF2ED AE =。
【分析】CEF 截△ABD →1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM →1DB MDGM AG EA BE =⋅⋅(梅氏定理) DGF 截△ACM →1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △LMN 。
【分析】【评注】梅氏定理4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC 中,∠B=2∠C 。
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q PAB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE//BF CKEFKB KEBK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CEBH 90HCB ACE HCB HBC ACEHBC ACKEBC BHB EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆ C BA1A 1B 1C 三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBAcos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4三点共线、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习Z Y X 2ABC Z Y X 1ZBAZYA CY XC BX BDEAZB AZ AF DC YA CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅平面几何的几个重要定理――――塞瓦定理 塞瓦定理:1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VB UC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆MQRACPB;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1交于一点;成立,即而显然有:我们只须证明,,,的中线证明:记ABC AB CBC A BA B C AC A B CB C A BA B C AC AB CBC A BA B C AC CC BB AA ABC ∆∴=⋅⋅====⋅⋅∆1,,1111111111111111111111分线交于一点;】证明:三角形的角平【练习1 高交于一点;】证明:锐角三角形的【练习2ABCP P BM AN N M BC AC L L AB C ABC ⊥∠∆,证明:的交点是和,设和足分别是的垂线,垂和作边,从于的平分线交于中,角:在锐角例2CB A1A 1B 1C CBA1A 1B 1CABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBK NB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111FDA EDA ANAM BF BD AF CE CD AE FBAFEA CE DC BD P CF BE AD BFBDAFAN CE CD AE AM BF AF BD AN CE AE CD AM BDFANF CDE AME BC MN BCAD ∠=∠∴=∴⋅=⋅∴=⋅⋅⋅=⋅===∴∆≅∆∆≅∆⊥1,,,//,根据塞瓦定理可得:共点于、、于是,可得,故三线共点;、、,证明:,且、、外有三点】已知【练习CR BN AM BCM ACN ABR CBM CAN BAR R N M ABC γβα=∠=∠=∠=∠=∠=∠∆,,3K LNM CBAFDAEDA F E AB AC CP BP AD P BC D ABC AD ∠∠∆=,则和交于、分别与、上任一点,是边上,若在的高,且是设例.3ANAM FDA EDA N M DF DE AD A =∠=∠可以转化为证明,。
四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是 。
塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1. 设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2. 过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4. 以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6. 已知正七边形A1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7. △ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q PAB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆BKKF BEBK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CE BH 90HCB ACE HCB HBC ACEHBC ACKEBC BH B EBC =====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习 注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆共线、、证明点的外接位于点例111C B A ABC P .2∆三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBAcos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-= 直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习EAAZ DC CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆ ==⋅⋅共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅平面几何的几个重要定理――――塞瓦定理塞瓦定理:1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VB UC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1交于一点;成立,即而显然有:我们只须证明,,,的中线证明:记ABC AB CBC A BA B C AC A B CB C A BA B C AC AB CBC A BA B C AC CC BB AA ABC ∆∴=⋅⋅====⋅⋅∆1,,1111111111111111111111分线交于一点;】证明:三角形的角平【练习1ABCP P BM AN N M BC AC L L AB C ABC ⊥∠∆,证明:的交点是和,设和足分别是的垂线,垂和作边,从于的平分线交于中,角:在锐角例2ABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBK NB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111FDAEDA ANAM BF BD AF CE CD AE FBAFEA CE DC BD P CF BE AD BFBD AF AN CE CD AE AM BF AF BD AN CE AE CD AM BDF ANF CDE AME BC MN BCAD ∠=∠∴=∴⋅=⋅∴=⋅⋅⋅=⋅===∴∆≅∆∆≅∆⊥1,,,//,根据塞瓦定理可得:共点于、、于是,可得,故FDAEDA F E AB AC CP BP AD P BC D ABC AD ∠∠∆=,则和交于、分别与、上任一点,是边上,若在的高,且是设例.3ANAM FDA EDA N M DF DE AD A =∠=∠可以转化为证明,。
欲证、交于的延长线分别、的垂线,与作证:过于一点;也相交、、直线分线对称于这些直线的一点,证明,关于角平相交于、、,使、、上取点、、的边】在【练习2221111114CC BB AA CC BB AA C B A AB CA BC ABC ∆三线共点;、、,证明:,且、、外有三点】已知【练习CR BN AM BCM ACN ABR CBM CAN BAR R N M ABC γβα=∠=∠=∠=∠=∠=∠∆,,3BA B CBB AC A BAA CB C ACC A B CB C A BA B C AC C B A AB CA BC ABC 111111111111111sin sin sin sin sin sin .4∠∠⋅∠∠⋅∠∠=⋅⋅∆证明:,、、上取点、、的边在例BAB CBB AC A BAA CB C ACC A B CB C A BA B C AC C ABA B CBB A B CB BC AC A BAA C A BA A B CB C ACC B C AC CBC BB C CC AACC C C AC BCC ACC 11111111111111111111111111111111sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin ∠∠⋅∠∠⋅∠∠=⋅⋅∠∠⋅∠∠=∠∠⋅∠∠=∠∠⋅∠∠=∠∠=∠∠=∆∆从而同理:即:应用正弦定理,可得:和证:如图对一点;三角形的角平分线交于的角平分线分别是证:记答案:练习∴=⋅⋅∴===∆1,,,,,1111111111111111AB CBC A BA B C AC c aA B CB b c C A BA a b B C AC CC BB AA ABC同理可得:则:则:=,那么=设的角平分线分别是证:记锐角答案:练习-+=-+=-+=-+=-+=-+==⇒-==---∆,2,222)(,,,,22221222122212221222122212212211111c a b C A b a c BA c b c a B C c a c b AC ba b c A B bc b a x CB x a BB x b c x b AB x CB CC BB AA ABC)sin(sin )sin(sin )sin(sin )sin(sin )sin(sin )sin(sin 1)sin(1)sin(sin sin ,,3ααγγγγββγγββγβ+∠⋅+∠⋅+∠⋅+∠⋅+∠⋅+∠⋅=⋅+∠⋅⋅⋅+∠⋅⋅=∠∠==∠∠∠∆∆∆A BA C BC ANCN C AC B AB CM BM C AC B AB AMC CM AC AM A BM AB CAM AC BAMAB S S CM BM CB A ABC R AB CR N AC BN M BC AM ACM ABM =同理:=即:、、三个内角分别记为的交于与,交于与交于与证:设的答案:练习‘‘‘‘‘‘‘‘‘‘‘三点共线。