现代控制理论试卷和答案解析总结

  • 格式:doc
  • 大小:2.15 MB
  • 文档页数:35

下载文档原格式

  / 35
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年现代控制理论考试试卷

一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,

( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( √ )2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现。

( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。

( √ )4. 对线性定常系统x Ax =,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。

( √ )5.一个不稳定的系统,若其状态完全能控,则一定可以通过状态反馈使其稳定。

( × )6. 对一个系统,只能选取一组状态变量;

( √ )7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;

( × )8. 若传递函数1()()G s C sI A B -=-存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;

( × )9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;

( × )10. 状态反馈不改变系统的能控性和能观性。

二、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R2上的电压为输出量的输出方程。(10分)

解:(1)由电路原理得:

112

212

1111

222

11

111L L c L L c c L L di R i u u dt L L L di R i u dt L L du i i dt c c

=-

-+=-+=-

222R L u R i =

11221111

2221011000110L L L L c c R i i L L L R i i u L L u u c

c

⎡⎤

--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥

⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢

⎥⎣⎦

[]1222

00L R L c i u R i u ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦

二.(10分)图为R-L-C 电路,设u 为控制量,电感L 上的支路电流和电容C 上的电压2x 为状态变量,电容C 上的电压2x 为输出量,试求:网络的状态方程和输出方程,并绘制状态变量图。

解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。

以电感L 上的电流和电容两端的电压为状态变量,即令:

12

,L c i x u x ==,由基尔霍夫电压定律可得电压方程为:

22210R C x x L x ∙

+-=

1121()0R x C x L x u ∙∙

++-=

从上述两式可解出1x ∙

,2x ∙

,即可得到状态空间表达式如下:

121121212()()R R x R R L R x R R C

∙⎡-⎡⎤⎢

+⎢⎥⎢=⎢⎥⎢-⎣⎦⎢

+⎣

121121221212()()11

()()R R x R R L R R L u x R R C R R C ⎤⎡⎤⎥⎢⎥

++⎡⎤⎥⎢⎥+⎢⎥⎥⎢⎥⎣⎦-⎥⎢⎥++⎦⎣⎦

⎥⎦⎤⎢⎣⎡21y y =⎥⎥⎦

⎢⎢⎣⎡

++-2112

12110R R R R R R R ⎥⎦⎤⎢⎣⎡21x x +u R R R ⎥

⎥⎦⎤

⎢⎢⎣⎡+21

20

三、(每小题10分共40分)基础题

(1)试求32y y y u u --=+的一个对角规范型的最小实现。(10分)

23232

2()(1)(1)11111()21

32(1)(2)2Y s s s s s s s U s s s s s s s s s s +-++-+-====++-+--+----…………4分 不妨令

1()1()2X s U s s =-,2()

1()1

X s U s s -=+…………2分 于是有

11222x x u x x u =+=--

12()()()

1()()()

X s X s Y s U s U s U s =++,所以12()()()()Y s U s X s X s =++,即有 12y u x x =++…………2分

最终的对角规范型实现为

1122122x x u x x u y x x u

=+=--=++ 则系统的一个最小实现为:

[]201, 11011u y ⎡⎤⎡⎤=+=⎢⎥⎢⎥

--⎣⎦⎣⎦

x x x +u …………2分

(2)已知系统[]011, 12232u y ⎡⎤⎡⎤

=+=-⎢

⎥⎢⎥

-⎣⎦⎣⎦

x x x ,写出其对偶系统,判断

该系统的能控性及其对偶系统的能观性。(10分) 解答:

021132u -⎡⎤⎡⎤

=+⎢⎥⎢⎥-⎣⎦⎣⎦x x …………………………2分 []12y =x

……………………………………2分

[]562,323C rankU rank b

Ab rank -⎡⎤===⎢⎥

-⎣⎦

系统状态完全能控分

3则对偶系统能观

(3)设系统为

()()()1011, (0)0211t t u t x -⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥

-⎣⎦⎣⎦⎣⎦x x

试求系统输入为单位阶跃信号时的状态响应(10分)。 解

()200

t

t e t e --⎡⎤=⎢

⎣⎦Φ……………………………..…….……..3分

()()0

()(0)()d τ

t t t t u τ=+⎰x x B ΦΦ……….….……….……..3分

(

)

()22010

10d τ110

t t t t t e

e e e ττ------⎡⎤⎡⎤⎡⎤⎡⎤

=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎣⎦⎰….……..2分 ()()220d τ

t t t t t e e e e τ

τ------⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎰.……….…………………..…..1分

()()()22211==111122t t t t t e e e e e -----⎡⎤+-⎡⎤

⎢⎥⎢⎥⎢⎥⎢⎥++-⎢⎥⎣⎦⎣⎦………………..1分