当前位置:文档之家› 巴氏合金的摩擦耐腐蚀性能分析

巴氏合金的摩擦耐腐蚀性能分析

巴氏合金的摩擦耐腐蚀性能分析
巴氏合金的摩擦耐腐蚀性能分析

巴氏合金分为锡基巴氏合金和铅基巴氏合金两大类,常用于工业轴承、电梯钢丝绳封口、汽轮机、轮船尾轴等机械设备的核心部件。一般而言,巴氏合金的摩擦系数与含锡量有关,锡基合金的耐磨性是铅基合金的3倍。

对于锡基轴承合金和铅基轴承合金的总称巴氏合金来说,它的特殊特性可以分为很多种,其中最为明显的特点,则是有关于它的熔点问题,在最高的熔点温度不能超过多少,与不能低于多少,这些问题,都是在使用巴氏合金这种源料时,所予以注意的。

巴氏合金是最广为人知的轴承材料,具有减摩特性的锡基和铅基轴承合金。由美国人巴比特发明而得名,因其呈白色,又称白合金,其应用可以追溯到工业革命时代。具有减摩特性的锡基巴氏合金和铅基巴氏合金是唯一适合相对于低硬度轴转动的材料,与其它轴承材料

相比,具有更好的适应性和压入性,广泛用于大型船用柴油机、涡轮机、交流发电机,以及其它矿山机械和大型旋转机械等。

因此,对于巴氏合金这种轴承材料来说,它在工业领域有所使用时,就一定要关切它的熔点问题,铸造锡基巴氏合ZSnSb11Cu6固相点温度为240℃,液相点温度为370℃,其最高使用温度不得超过100℃,摩擦系数在有油时为0.005,无油时为0.28。

那么按国家标准,巴氏合金可以分为锡基合金和铅基合金两种。铅基合金的强度和硬度比锡基合金低,耐蚀性也差。所以客户在使用巴氏合金的时候,通常选用锡基合金,尽管铅基合金的性能没有锡基合金好,但是有许多客户仍然选择使用,因为它使用起来比较经济。

结合以上分析,当且仅当巴氏合金用于大型滑动轴承时,摩擦系

数越小越好,锡基轴承合金由于结构致密均匀的特性,所以是铅基合金性功的3倍。此外,对于港口、船舶重工以及电梯钢丝绳而言,由于更注重“三防”技术要求,因此,对巴氏合金的耐腐蚀特性要求更严格一些,产品研发工程师一般倾向于选用ZChSnSb8-8牌号的锡基巴氏合金。

镁合金防腐蚀方案汇总

镁合金防腐蚀方案汇总 化学转化处理 镁合金的化学转化膜按溶液可分为:铬酸盐系、有机酸系、磷酸盐系、KMnO4系、稀土元素系和锡酸盐系等。 传统的铬酸盐膜以Cr为骨架的结构很致密,含结构水的Cr则具有很好的自修复功能,耐蚀性很强。但Cr具有较大的毒性,废水处理成本较高,开发无铬转化处理势在必行。镁合金在KMnO4溶液中处理可得到无定型组织的化学转化膜,耐蚀性与铬酸盐膜相当。碱性锡酸盐的化学转化处理可作为镁合金化学镀镍的前处理,取代传统的含Cr、F或CN等有害离子的工艺。化学转化膜多孔的结构在镀前的活化中表现出很好的吸附性,并能改镀镍层的结合力与耐蚀性。 有机酸系处理所获得的转化膜能同时具备腐蚀保护和光学、电子学等综合性能,在化学转化处理的新发展中占有很重要的地位。 化学转化膜较薄、软,防护能力弱,一般只用作装饰或防护层中间层。 阳极氧化 阳极氧化可得到比化学转化更好的耐磨损、耐腐蚀的涂料基底涂层,并兼有良好的结合力、电绝缘性和耐热冲击等性能,是镁合金常用的表面处理技术之一。 传统镁合金阳极氧化的电解液一般都含铬、氟、磷等元素,不仅污染环境,也损害人类健康。近年来研究开发的环保型工艺所获得的氧化膜耐腐蚀等性能较经典工艺Dow17和HAE有大程度的提高。优良

的耐蚀性来源于阳极氧化后Al、Si等元素在其表面均匀分布,使形成的氧化膜有很好的致密性和完整性。 一般认为氧化膜中存在的孔隙是影响镁合金耐蚀性能的主要因素。研究发现通过向阳极氧化溶液中加入适量的硅-铝溶胶成分,一定程度上能改善氧化膜层厚度、致密度,降低孔隙率。而且溶胶成分会使成膜速度出现阶段性快速和缓慢增长,但基本上不影响膜层的X 射线衍射相结构。 但阳极氧化膜的脆性较大、多孔,在复杂工件上难以得到均匀的氧化膜层。 金属涂层 镁及镁合金是最难镀的金属,其原因如下: (1)镁合金表面极易形成的氧化镁,不易清除干净,严重影响镀层结合力; (2)镁的电化学活性太高,所有酸性镀液都会造成镁基体的迅速腐蚀,或与其它金属离子的置换反应十分强烈,置换后的镀层结合十分松散; (3)第二相(如稀土相、γ相等)具有不同的电化学特性,可能导致沉积不均匀; (4)镀层标准电位远高于镁合金基体,任何一处通孔都会增大腐蚀电流,引起严重的电化学腐蚀,而镁的电极电位很负,施镀时造成针孔的析氢很难避免; (5)镁合金铸件的致密性都不是很高,表面存在杂质,可能成为

锌合金电镀工艺

锌合金电镀工艺 锌合金本身的基体特性及特殊的加工形式对电镀产生很大影响。1.锌合金的材料为锌-铝合金,均为活泼的两性金属。而两种金属中以铝在前处理最为困难,所以必须控制铝的含量,一般需电 镀的锌合金材料,铝的含量不应超过4%,铝含量过高,将使电 镀难以进行。 2.工业上常见的应用锌合金材料含Al 4%左右、Cu 0.75%~1.25%、Mg 0.03%~0.08%,其余为主要成分Zn,Zn是两性金属,电极电 位较负,对酸碱都比较敏感,且容易发生化学反应导致腐蚀。 而且,锌合金材料在压铸成型过程中,往往由于工件表面温度 差异,会产生成分偏析现象,表面局部出现富锌或富铝相,在 前处理除油腐蚀活化过程中稍微疏忽,就会造成富铝相或富锌 相部分优先溶解,表面不均匀腐蚀导致产生气孔麻点甚至气泡 等而影响表面质量。 3.锌合金压铸材料的组织结构有其特殊性,就是其压铸表面组织致密光滑,孔隙率较低,硬度也比较低且表面致密层厚度较薄,一般只有0.05~0.2 mm。内层则是多孔疏松结构。假如在前处 理加工工序中掌握不当,损伤表面致密层,将会给后续工序增 加更多的困难,也会使锌合金抗蚀防护质量降低。 锌合金电镀工艺过程:抛光→冷脱除蜡→超声波除蜡→超声波除油→阴极电解除油→阳极电解除油→活化→预镀→碱铜→酸铜 1)抛光——锌合金压铸件成品不可避免的有飞边、毛刺、压痕等现 象,在电镀前需经过磨抛光处理,才能获得良好的外观。

2)冷脱除蜡——锌合金抛光后残留的抛光蜡比较多,在除蜡水中清 洗时间过长容易造成腐蚀,所以在超声波之前最好能有一道冷脱工艺,先将蜡、油污部分溶解和软化。 3)超声波除蜡——除蜡水的PH和温度不宜太高,否则易对锌合金 表面形成孔状腐蚀。温度高,除蜡效果肯定好。如果能掌握好材料性能,可以采用高温——短时间的工艺来处理。 4)超声波除油——锌合金表面如果油污不是太重,可以直接电解除 油。如果油污比较多或形状复杂、有凹槽、盲孔的零件利用超声波除油效果好。除油粉的PH不能太高,因为强碱对铝的溶解快,零件表面会溶出缩孔,这些缩孔在电镀过程中清洗不干净将影响结合力。 5)阴极电解除油——锌合金阴极电解除油一定要在工艺的范围内使 用,PH高、温度高、电流高、浓度高都会对锌合金表面产生腐蚀,影响后续工艺的结合力。阴极电解时,阴极发生还原反应析氢,有利于对油膜的溶解,但电流不能太高一般在3~~5A/dm2,电流高析氢严重会造成零件渗氢现象,影响后续电镀工艺的结合力。 阳极发生氧化反应,如果阳极不耐腐蚀会造成阳极溶解,所以阳极应使用不锈钢板或不锈钢网(304#、316#)。如果阳极选择不当,阳极腐蚀后部分金属溶解,这些金属离子在阴极上沉积析出,会形成疏松的浮灰现象,严重影响电镀结合力。(用手指摸零件表面,如果手指上有灰黑色,说明零件有浮灰产生) 6)阳极电解除油——为了使阴极脱脂后减少浮灰、黑膜现象和减少 阴极电解的渗氢现象,在阴极电解除油后建议做短时间(30~~60秒)的阳极电解除油。阳极电解除油的目的,在于增加镀层的附

镁合金使用寿命以及性能特点

如何提高镁合金的耐高温性能? 镁合金在汽车制造、航空工业等方面的应用要求具有一定的高温性能和抗蠕变性能,稀土镁合金(AE系列)能提高合金的高温强度和蠕变强度。研究表明,加入一定量的锡可改善合金的高温强度;加人硅可改善合金的蟠变强度;加人鳃可提高合金的高温(超过300℃)性能;加入银可提高合金的高温强度和蠕变强度。 在Mg-5Al-1 Zn-1 Si合金中加人0.5%(质量分数)的锑,使合金在150℃时的强度从168 MPa上升到178MPa,屈服强度也从81 MP。上升到90MPa,抗冲击韧性值从21J上升到30J。 稀土会使镁合金的室温性能变差,为此,加人一些短纤维、晶须、颗粒等复合材料,以改善合金的室温和高温性能。在Mg-/Li合金中加人一定的Mg0/Mg 2 Si颗粒,使合金的高温抗蠕变。性能在温度达210℃前得到显著改善,而且随着温度的升高,改善效果更为明显。 笔记本电脑和手机外壳等在一定的工作温度范围内,要求其尺寸稳定性(抗蠕变性能)要好。与现有的工程塑料相比,不会因环境改变而改变的镁基耐高温复合材料的性能优势可得到充分施展。镁基复合材料的制备方法主要有真空(或保护性气氛)浸渗法、粉末冶金法、薄膜冶金法、搅拌铸造法。 提高镁合金材料使用寿命有何技术措施? 镁是活泼的金属元素,标准电极电位为负值,且绝对值很大,导致镁及镁合金的耐腐蚀性很差,这阻碍了镁合金产品在应用中发挥优势,限制了其应用范围。 镁合金腐蚀的直接原因是合金元素及杂质元素的引入导致镁合金中出现第二相。镁合金的腐蚀形态有:电偶腐蚀、点蚀、应力腐蚀开裂、晶间腐蚀和丝状腐蚀以及高温氧化。镁合金发生电化学腐蚀与溶液的pH值、溶液的性质、合金的成分及所处的环境有关。 为提高镁合金材料的使用寿命,应控制冶金因素以提高镁合金的耐腐蚀性,具体包括合金元素、杂质元素、相组成和微结构。表面处理技术的研究,如镁合金的化学转化处理、阳极氧化、等离子微弧阳极氧化、金属镀层和物理气相沉积涂层技术等,为等离子技术提高镁合金的耐腐蚀性带来了新的生机。为改善镁合金的耐腐蚀性能,有人采用离子注人、激光退火和快速凝固新工艺,特点是使金属表面形成一层成分均匀的、无定形的表面结构膜。 采用高频感应对镁合金进行表面合金化处理的研究结果令人满意,通过对ZM5镁合金样品在4OkHz的高频感应炉加热处理后空冷到室温,与未经感应处理的样品相比,其耐腐蚀性能大幅度提高,表层组织相结构的变化可有效地抑制镁合金的整体腐蚀。 微弧氧化技术是另一种新型的金属表面处理技术,其原理是将材料置于电解质溶液中,利用高电流高电压的作用,在基体金属表面上生成一层基体金属氧化物陶瓷层,且致密无缺陷,以提高金属的防腐蚀性能。MB8镁合金的实验表明,微弧氧化陶瓷层厚度与提高耐腐蚀性能的关系不大,非晶态氧化镁陶瓷层的耐腐蚀性能优于晶态氧化镁陶瓷层。 镁基大块非晶合金有何特点? 非晶态合金具有良好的性能。传统的非晶态合金是高速急冷(冷速大于105K/s)条件下形成的,呈粉状、(纤维)丝状、薄带或薄膜(最大厚度不超过50μm)形态,使其应用受到限制。大块非晶是指在三维尺寸都大于1mm的合金块体。镁基大块非晶合金具有较好的力学性能和低密度,被认为是一种极具应用潜力的轻质高强度材料。有报道称,用水淬法能制备出直径 为12 mm的镁基大块非晶合金—Mg 65Y 10 Cr 15 Pd 5 。镁基大块非晶合金在373K的温度下,屈服应 力为550MPa;在室温下为822MPa,硬度为HV220。对镁基大块非晶合金Mg 80Y 10 Cu 10 。的试验发 现,其伸长率为7%。

镁合金力学性能的研究

Mg-Zn-RE-Zr合金的拉伸力学性能和微观结构的发展文章中将成分为Mg-5.3Zn-1.13Nd-0.51La-0.28Pr-0.79Zr的铸件进行热挤压,并且对挤压比和温度对显微组织和力学性能的影响进行了研究。结果表明当挤压比从0提高到9的时候铸态合金晶粒变粗大,共晶成分沿着挤出方向拉长。然而,进一步提高挤压比率对晶粒细化和改善合金的力学性能的影响不大。动态再结晶是热挤压过程中晶粒细化的主要机制,提高挤压温度导致出现等轴晶粒。与此同时,力学性能随挤压温度的升高而降低。

目录 第1章介绍 (3) 第2章试验方法 (4) 第3章实验结果 (5) 3.1铸态合金显微组织 (5) 3.2挤压合金的微观组织演变 (9) 3.2.1改变挤压比和温度对微观组织的影响 (9) 3.2.2挤压比和挤压温度对力学性能的影响 (12) 第4章讨论 (16) 第5章.结论 (18) 第6章致谢 (20)

第1章介绍 镁合金因其低密度、高特定的刚度和良好的阻尼能力在汽车和航空工业上吸引了人们的注意[1]。镁合金可以大致分为含铝合金和无铝合金[2]。广泛使用镁合金属于Mg-Al系列,比如AZ91和AM60,它们具有良好的铸造性能和较低的成本[3]。然而,因为他们的机械性能和热稳定性差,这些合金的应用受到了限制[4]。与Mg-Al系列相比,Mg-Zn系列的合金,比如ZK60系列合金,是具有很大发展潜力的低成本高强度镁合金[5]。 在所有的镁合金中,AZ60具有较好的机械性能,比如室温下或者高温下具有高强度[6]。然而,它的强度在室温或者高温时候还是低于铝合金。最近,据报道,添加稀土可以改善ZK60合金的力学性能[7]。周教授等人研究了稀土元素钕和钇对于ZK60合金的微观结构和力学性能的影响。钕和钇的结合在动态再结晶过程中对细化晶粒产生了很大的影响。此外,钕和钇的结合还提高了屈服强度和抗拉强度。何教授等人的确定了钆元素对ZK60合金显微组织和力学性能的影响。钆的增加大大减少了时效硬化效果和少量的降低了屈服强度和抗拉强度。然而,添加钆造成的晶粒细化补偿了部分屈服强度和抗拉强度的损失。张教授等人[9]指出ZK60合金与铒结合之后改善变形性能,细化了晶粒和显微组织,具有良好的机械性能。 在这项研究中,镁合金准备直接进行冷铸造。此外,挤压比和温度对合金影响也表现了体现出来。

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

镁及镁合金的主要物化性能

镁及镁合金的主要物化性能铸造镁合金比变形镁合金使用的更多。铸造镁合金是航空工业中应用最广泛的一种轻合金。用镁合金铸件代替铝合金铸件,在强度相等的条件下,可以使工件重量减轻百分之二十五到百分之三十。镁合金和铝合金一样,根据加工方法可以分为变形(压力加工)镁合金和铸造镁合金两大类。这些年来,随着压铸技术的发展,压铸镁合金已成为镁合金应用的主要领域。此外,镁合金作为牺牲阳极其用途也有了很大的发展。 镁属于轻金属,纯金属镁为银白色,在空气中极易被氧化,形成一层薄氧化膜,可以防止其进一步氧化。 镁化学活性很高,在自然界中很难遇到纯镁矿。在海水中以氯化物存在,约含百分之零点一四,在地壳中以光卤石、菱镁矿、白云石和一些其他化合物形式存在,含量达到百分之二点三五。 制取镁的方法方法有:第一种,熔融氯化镁电解法,它是主要的制镁法;第二种,用硅铁还原氧化镁的硅热法;第三种,用碳还原氧化镁的碳热法。 镁及镁合金的主要物化性能:(1)密度,20摄氏度金属镁的密度是1.738g/cm3,650摄氏度熔化温度下密度约为1.65g/cm3,液态镁密度为1.58g/cm3;(2)凝固体积收缩率为4.2%,相应线收缩率为1.5%;原子叙述12,原子价+2,相对原子质量24.30。热性能:熔点,在标准大气压下,金属镁的熔点是650℃±1℃。沸点在标准大气压下,金属镁的沸点是1107℃±3℃。再结晶温度金属镁的再结晶温

度最低位150℃。再膨胀金属镁固体体积膨胀系数二十摄氏度到一百摄氏度之间为26.1*10-6,液体体积膨胀系数温度在六百五十一摄氏度到八百摄氏度之间为380*10-6。热导率镁在二十摄氏度的热导率为154.5W/(mk)。比热容(C)温度在二十摄氏度的时候镁的比热容是1.025kj。气化潜热金属镁的汽化潜热是5150到5400kJ。熔化潜热金属镁的熔化潜热是360~377KJ。升华潜热金属镁的升华潜热是6113到6238KJ。燃点空气中加热时,金属镁在632摄氏度到635摄氏度开始燃烧。燃烧热金属镁的燃烧热是24900到25200kJ。

镁合金力学性能强化的几种途径

镁合金力学性能强化的几种途径 摘要对近几年镁合金力学性能强化的研究进行了总结,主要途径归纳为三个方面,一是热处理,二是合金化,三是加工工艺。 关键词:镁合金力学性能热处理合金化加工工艺 镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高的特点,而且还具有优良的阻尼性能、较好的尺寸稳定性和机械加工性能及较低的铸造成本。广泛应用于航空航天、汽车和电子等行业。但是,镁合金密排六方的晶体结构及较少的滑移系决定了其塑性变形能力较差,所以应该用一些方法来提高其力学性能,本文就近几年镁合金力学性能方面的研究进行总结,并提出建议。 1 镁及其合金的力学性能 镁是一种二价的碱金属元素,属于密排六方晶系,这种密排六方结构使之在力学和物理性能方面表现出强烈的各向异性。纯镁象其他纯金属一样,表现出相对低的强度。其弹性模量E=45GPa,切变模量K=17GPa,比弹性模量E/ρ=25GPa。因此必须用其他元素进行合金化以获得所需要的性能。目前主合金元素是Al、Zn 和Re等,这些合金元素使镁合金得到不同程度的强化。变形镁合金主要通过热变形和冷变形来提高强度。热处理是提高镁合金力学性能的重要途径。另外其他一些工艺或处理也能有效提高镁合金的力学性能,如颗粒增强复合材料、半固态铸造和熔体热速处理、表面处理等。 2强化途径 2.1 热处理 2.1.1铸造镁合金的热处理 铸造镁合金的室温和高温力学性能强化途径有固溶处理和失效处理[1]。对某高锌镁合金Mg-Zn-Al-RE进行热处理[2],固溶处理温度340℃,保护剂为硫铁矿石,保温时间20 h,热水淬火,淬火介质采用70~75℃热水;时效处理温度180℃,保温时间10 h,出炉空冷。经固溶及时效处理后,合金的相成分主要为α-Mg,还有含微量稀土的其它固溶强化三元相。其中比较典型的固溶强化相有Ф相

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。(2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC50)或经口、经皮半数致死量(LD50)的资料为准,选择其中LC50或LD50最低值作为急性毒性指标。 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。 《职业性接触毒物危害程度分级》GB5044分哪几级? 答:按《职业性接触毒物危害程度分级》规定,接触性毒物危害程度共分为四级

PVDF耐腐蚀性能表--实用.doc

PVDF耐腐蚀数据表 耐腐蚀数据表一 浓 浓度最高使用温度 介质度 介质 PVDF % % 最高使用温度 PVDF 硫酸<10 120 氢氰酸- 120 - <60 120 亚硫酸- 100 - 80-93 80 亚硝酸- 70 - 98 65 碳酸- 120 发烟硫酸- x 铬酸- 80 硝酸<10 120 - - 50 - <50 50 次氯酸- 60 - 70-90 25 高氯酸- 50 发烟硝酸- x 溴酸- 50 盐酸- 120 氯磺酸- x 磷酸<85 120 氟硅酸- 120 - >85 100 硼酸- 120 氢氟酸40 120 氟硼酸- 120 - 41-100 80 王水- 20 氢溴酸- 120 混酸- 50 氢碘酸含 12%上120 - - - 甲酸- 110 烟酸- 120 乙酸 (醋酸 ) <50 90 苦味酸- 50 - 80 65 甲烷磺酸- 100 冰- 50 苯磺酸- 40 醋酐- x 蒽醌磺酸- 110 丙酸 (乳酸 ) - 120 氨基磺酸- 110 丁酸 (月桂酸 ) - 100 甲基磺酸- 40 草酸 (乙二酸 ) - 50 三氟醋酸- 50 辛酸- 70 2,2-氯丙酸-- 50 软脂酸- 120 甲苯基酸50 60 硬脂酸- 120 甲磺酸- 80 油酸- 110 1-苯酚- -- 亚油酸- 110 2-磺酚- 40 乙醇酸- 20 丁烯酸- 40 双乙醇酸- 20 砷酸- 120

氯醋酸- x 丙二酸一二- --- 二氯醋酸- 40 乙酸- x 三氯醋酸10-49 80 二已醇酸- 25 - 50上40 甘氨酸- 25 丁二酸 (琥珀酸 ) - 90 乙醇酸 (羟基 - 25 酸 ) 马来酸- 110 异丙酸- 60 苹果酸- 110 羟基了二酸- 110 酒石酸- 110 羟基基酸- 50 乙二酸- 60 苄酸- 50 柠檬酸- 120 硒酸- 60 苯甲酸- 100 氢硫基酸- 80 苯甲基酸 (烷基 - 50 聚乙二酸- 90 酚 ) 邻苯二酸 (酞酚 ) - 90 五倍子酸- 25 酸- 60 谷氨酸- 90 单宁酸- 100 棕榈酸- 120 焦焙酸- 50 脂肪酸- 120 水扬酸- 90 - - - 氢氧化钠<50 75 氢氧化镁- 120 - >50 x 氢氧化铝- 120 氢氧化铵- 120 氢氧化锂- 120 氢氧化钙- 120 四甲基氢- 120 氢氧化钡- 120 氧化铵- 120 氟氢化铵100 氯化钙120 硫酸铵120 溴化钙120 硝酸铵120 亚硫酸钙120 碳酸铵120 亚硫酸氢钙120 氯化铵120 次氯酸钙90 溴化铵120 硫酸氢钙120 耐腐蚀数据表二 浓度最高使用温度 介质浓度最高使用温度 介质 PVDF % PVDF % 氟化铵100 硫氢化钙120 硫化铵120 硫酸铝120 硫氰酸铵120 氯化铝120 过硫酸铵120 硝酸铝120 醋酸铵80 氢氧化铝120 过硫酸铵25 醋酸铝120 硫化酸铵50 铝铵矾120 铵铝矾120 铝钾矾 (明矾 ) 120 重铬酸铵110 硝化铝120

镁合金阳极氧化膜的制备及其耐腐蚀性能研究【开题报告】

毕业论文开题报告 化学工程与工艺 镁合金阳极氧化膜的制备及其耐腐蚀性能研究 一、选题的背景、意义 镁是地球上储量最丰富的元素之一,除地壳表层金属矿所含的质量分数为1.93%外,在盐湖及海洋中也存在着十分可观的镁储存量。镁合金是以镁为基加入其他元素组成的合金,镁及其合金具有许多优良的特性。它的密度小(1.8g/cm3镁合金左右),约为铝的2/3、铁的1/4;比强度很高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能好,具有良好的导电、导热性、电磁屏蔽性、尺寸稳定性、机加工性能以及再循环利用的性能。 镁合金过去主要应用于航空航天领域,进10年来,随着汽车工业的发展,镁合金的应用最得到了很大的发展。由于环境保护和节省燃料的要求,通常以降低汽车重量来节省能耗,其中一项重要措施就是采用镁合金零件来取代原先的铝合金或钢制零件,由于各种数码产品的飞速跟新换代,对其外观和质量都提出了更高要求。用量轻、刚性好、金属光泽好、电磁屏蔽性好的镁合金取代塑料用在外壳上可获得很好的效果。 随着人们对环境保护意识的日益增强,镁合金无铬表面转化处理技术取得了很大的发展,对环境影响已经大大减小。国内的镁合金阳极氧化处理工艺与国外相比差距较大,大部分无铬电解液配方仅停留在实验阶段,无法投入到实际生产中。因此,对镁合金进行适当的表面处理来提高其耐蚀性能具有非常重要的意义。 二、相关研究的最新成果及动态 2.1 传统工艺 有关镁合金阳极氧化技术产生于20世纪,直到1951年以后,HAE和DOW l7工艺的相继出现才使阳极氧化技术在镁合金防护处理中应用成为可能。HAE工艺是碱性电解液的代表,而Dow Chemical company研发的DOW l7是酸性电解液的代表,在镁合金阳极氧化发展进程中两者起了重要的作用。后来又开发了Anomag 工艺、Magoxid-Coat工艺和Tagnite工艺等。其具体工艺如表1所示。

锌合金生产的注意事项及缺陷原因分析

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/786481093.html,)锌合金生产的注意事项及缺陷原因分析 锌合金是以锌为基础加入其他元素组成的合金。常加的合金元素有铝、铜、镁、镉、铅、钛等低温锌合金。锌合金熔点低,流动性好,易熔焊,钎焊和塑性加工,在大气中耐腐蚀,残废料便于回收和重熔;但蠕变强度低,易发生自然时效引起尺寸变化。熔融法制备,压铸或压力加工成材。按制造工艺可分为铸造锌合金和变形锌合金。 在生产锌合金的过程中应注意以下五方面的事项: 1、控制合金成分从采购合金锭开始,合金锭必须是以特高纯度锌为基础,加上特高纯度铝、镁、铜配制成的合金锭,供应厂有严格的成分标准。优质的锌合金料是生产优质铸件的保证。 2、采购回来合金锭要保证有清洁、干燥的堆放区,以避免长时间暴露在潮湿中而出现白锈,或被工厂脏物污染而增加渣的产生,也增加金属损耗。清洁的工厂环境对合金成分的有效控制是很有作用的。 3、新料与水口等回炉料配比,回炉料不要超过50%,一般新料:旧料=70:30。连续的重熔合金中铝和镁逐渐减少。 4、水口料重熔时,一定要严格控制重熔温度不要超过420℃,以避免铝和镁的损耗。 5、有条件的压铸厂最好采用集中熔炉熔化锌合金,使合金锭与回炉料均匀配比,熔剂可更有效使用,使合金成分及温度保持均匀稳定。电镀废品、细屑应单独熔炉。

锌合金常应用于各种装饰方面,如家具配件、建筑装饰、浴室配件、灯饰零件、玩具、领带夹、皮带扣、各种金属饰扣等都广泛用到锌合金压铸件,这也就要求其铸件表面的质量要高,并需具有良好的表面处理性能。而锌合金压铸件最常见的缺陷是表面起泡。 缺陷表征:压铸件表面有突起小泡。主要表现为:压铸出来就发现,抛光或加工后显露出来,还有喷油或电镀后会出现。 产生原因: 1、孔洞引起:主要是气孔和收缩机制,气孔往往是圆形,而收缩多数是不规则形。 (1)气孔产生原因: ①金属液在充型、凝固过程中,由于气体侵入,导致铸件表面或内部产生孔洞。 ②涂料挥发出来的气体侵入。 ③合金液含气量过高,凝固时析出。当型腔中的气体、涂料挥发出的气体、合金凝固析出的气体,在模具排气不良时,最终留在铸件中形成的气孔。 (2)缩孔产生原因: ①金属液凝固过程中,由于体积缩小或最后凝固部位得不到金属液补缩,而产生缩孔。 ②厚薄不均的铸件或铸件局部过热,造成某一部位凝固慢,体积收缩时表面形成凹位。由于气孔和缩孔的存在,使压铸件在进行表面处理时,孔洞可能会进入水,当喷漆和电镀后进行烘烤时,孔洞内气体受热膨胀;或孔洞内水会变蒸气,体积膨胀,因而导致铸件表面起泡。

镁合金表面防腐蚀处理研究

镁合金表面防腐蚀处理研究 王芬,康志新,李元元 (华南理工大学金属新材料制备与成型重点实验室,广东广州510640) 摘要:综述了近年来镁合金表面防腐蚀处理的方法,主要有化学转化膜、阳极氧化、金属涂层、有机涂层、有机镀膜、气相沉积、快速凝固等,并对镁合金表面处理的发展方向进行了探讨。关键词:镁合金;腐蚀;金属涂层;阳极氧化;有机镀膜 1前言 镁合金优异的物理和机械性能[1]使其近年来得到广泛关注。镁合金具有较高的比强度和比刚度,较强的电磁屏蔽和抗辐射能力,以及良好的减震性、切削加工性能等特点,在汽车、摩托车等交通工具,3C产品、航空航天、兵器工业等领域的应用日趋广泛。但是镁是一种电负性极强的金属,标准电极电位为 -2.37V,在潮湿,CO2,SO2,Cl- 的环境里极易发生腐蚀。除此之外,镁合金由于杂质元素和合金元素的存在,还容易产生电偶腐蚀、应力腐蚀开裂以及腐蚀疲劳[2],大大限制了镁合金在工业、军工等领域的广泛应用。 目前国内外都加大了对镁合金腐蚀问题的研究,以期通过有效的表面处理方法来提高镁合金表面的抗腐蚀能力,使其能够在不同的领域得到更为广泛的应用。本文综述了镁合金表面处理的方法,并对各种表面处理方法的优缺点及今后的发展方向进行了分析。 2镁合金表面处理的方法 2.1化学转化膜处理 镁合金化学转化膜[3]的防腐蚀效果优于自然氧化膜,并且化学转化膜可提供较好的涂装基底。传统的化学转化法是铬化处理,其机理是金属表面的原子溶于溶液后,引起金属表面的pH值上升,在金属表面沉积铬酸盐与金属胶状物的混合物的过程,这种混合物在未失去结晶水时具有自修复功能,因而耐蚀性好。 但由于铬酸盐处理工艺中含Cr6+离子,对环境造成污染且废液的处理成本高,现已被其它的化学转化膜法所取代,如磷酸-高锰酸钾转化膜、稀土转化膜等。 磷酸-高锰酸钾转化膜处理方法主要是在镁合金表面形成以Mg3(PO4)2为主的组成物,同时含有铝、锰等化合物的磷化膜。经过该处理所得的膜层为微孔结构且与基体结合牢固,并具有良好的吸附性、耐蚀性,因而可作为镁合金涂装中的底漆层使用。赵明[4]等人对镁合金磷酸盐-高锰酸盐化学转化处理工艺进行了研究,发现pH值为4,K2HPO4的质量浓度为150g/L,KMnO4的质量浓度为40g/L的处理液能显著提高镁合金表面的耐腐蚀性能。在盐雾试验温度为30℃,盐雾沉积率为0.0138mL/(cm2·h)的条件下,连续喷雾24h后,镁合金表面所得膜的腐蚀率为8%,而铬酸盐处理工件表面腐蚀率为21%[5]。这说明镁合金磷酸盐-高锰酸盐化学转化处理能提高镁合金表面抗蚀能力。 Rudd[6]等研究发现镁及镁合金在经过pH值为8.5的铈、镧和镨等稀土盐溶液浸泡处理后,可以显著提高镁及其合金的表面耐腐蚀性能。但随着浸泡时间过长,涂层的保护性能开始恶化,导致镁合金表面的耐腐蚀性能也随之降低。因此,为了得到较好的表面处理效果,在形成稀土转化膜后应立即进行封孔处理。2.2阳极氧化处理 阳极氧化处理[7~9]是镁合金现今应用较广的一种表面处理方法。阳极氧化不同于化学氧化,它是通过电化学反应,在金属表面得到具有一定厚度、稳定的氧化膜层,从而提高金属表面耐腐蚀性能。 DOW17法和HAE法是20世纪50年代开发的阳极氧化技术。DOW17法生成的氧化膜是由Cr2O3,MgCr2O3及Mg2FPO4构成,该氧化膜的耐蚀性和耐磨性好,但脆性较大。用HAE法制成的氧

镁合金研究现状及发展趋势

镁合金研究现状及发展趋势 摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。 关键词:镁合金;高强高韧;成型技术;应用 1.引言 镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。 目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。

图1 镁合金的研发方向[5] Fig. 1 Directions of Mg alloy development 2.镁合金的特点及分类 通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。 2.1镁合金的优点[6 ~ 8] 1)密度小、质量轻。镁合金是目前工业应用中最轻的金属结构材料,根据合金成分的不同,其密度通常在1.75-2.10g/cm3范围内,约为铝的2/3,钢的1/4。 2)比强度、比刚度高。镁合金的比强度高于铝合金和钢铁,但略低于比强度最高的纤维增强塑料。其比刚度与铝合金和钢铁相当,但却远高于纤维增强塑料。镁合金材料与其他相关材料的物理性能和力学性能分析比较如表1所示。 表1 镁合金和相关材料的物理和力学性能比较 Tab. 1 The comparison of physical and mechanical properties between magnesium alloy and other materials [9] 材料抗拉强度/Mpa 屈服强度/Mpa 延伸率/% 弹性模量/Gpa 比强度镁合金AZ31 251 154 13.8 45 141 镁合金AZ91 275 145 13.8 45 151 镁合金AM60 240 140 15 45 134 铝合金380 315 160 3 71 106 碳钢517 140 22 200 80 塑料ABS 35 - 40 2.1 41 塑料PC 104 - 3 6.7 102 3)吸震阻尼性能好。镁合金与铝合金、钢、铁相比具有较低的弹性模量,在同样受力条件下,可消耗更大的变形功,具有降噪、减振功能,可承受较大的冲击震动负荷。镁合金具有极好的滞弹吸震能力,其抗冲击性是铝合金的10倍,塑料的20倍。 4)良好的铸造性能。镁与铁的反应低,熔炼时可用铁坩埚,熔融镁对坩埚的侵蚀小,压铸时对压铸模的侵蚀小,与铝合金压铸相比,压铸模使用寿命可提高2-3倍,通常可维持20万次以上。镁合金的比热和结晶潜热小,所以流动性

锌合金材料

锌合金材料,国内外牌号对照表

锌合金的压铸性能:机械性能、电镀性能都非常好,是目前本厂所生产的铝、镁、锌中压铸性能最好一种压铸合金。压铸件的表面粗糙度、强度、延伸性都很好。由于锌的流动性很好所以可以做较薄的产品(壁厚可做到),锌最大的缺陷是比重太大,故产品的重量及成本较高,较适合做小件产品。同时,锌合金尺寸稳定性较差。 比重:纯锌:cm3;压铸锌合金:; 熔点:纯锌:419℃;锌合金:387-390℃;压铸温度:390-410℃ 锌合金的种类: 通常锌合金可分为三类: 纯锌:纯度%以上,用于电镀 加工锌:纯度、98%以上,用于照相制版、胶印制版、电镀等 铸造锌合金:合金锌通常有两种; 翻砂锌合金:含有的锌合金,用于砂型铸造。 压铸锌合金:目前用于压铸的锌合金型号比较少,最常用的是3#锌合金(ZAMAK 3)。 压铸锌合金型号: ZAMAK 3对应的各国标准及型号如下: 英国BS:1004-1972 Alloy A 美国ASTM:B240-74Alloy AG40A;SAE:903 日本JIS:H2201 Na 2(ZDC2)

德国DIN 1743:1978 GB ZN A14 澳洲AS 1881-1977 Zn A14 台湾CNS:ZAC1 中国GB:Z ZnAl4 压铸锌合金成分: 常用的几种锌合金的化学成份如下: ZAMAK 2 ZAMAK 3 ZAMAK 5 铝Al 铜Cu ≤ 镁Mg 铅Pb ≤ ≤≤ 铁Fe ≤ ≤≤ 镉Cd ≤ ≤≤ 锡Sn ≤ ≤≤ 硅Si ≤ ≤≤

镍Ni ≤ ≤≤ 锌合金的尺寸稳定性 锌合金产品在成型后将会持续的收缩,在6个月后,将基本稳定。锌压铸件之收缩量如下: 铸件处理时间合金3号 mm/m 合金5号mm/m 正常时效变化5周后6月后5年后8年后 经过稳定化处理5周后3月后2年后 由于锌合金有明显的持续收缩现象,对尺寸要求较严格的产品,建议做稳定后处理,100-120℃、2-4H 锌合金中化学成份的作用: 铝(Al) 压铸用锌合金中,通常含有的铝。铝能改善铸件的强度,但只有在%及%两个点时铸件的强度最好,同时,铝的加入会影响锌合金的流动性。锌合金中铝的含量在0%及5%时流动性最好。由于铝的含量对锌合金铸件的影响有相对的矛盾性,所以锌合金中铝的含量控制较严格,通过以下两个图表可以明显的看出:

镁合金

镁合金是以镁为基加入其他元素组成的合金。其特点是:密度小(1.8g/cm3镁合金左右),比强度高,弹性模量大,散热好,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能好。主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。主要用于航空、航天、运输、化工、火箭等工业部门。在实用金属中是最轻的金属,镁的比重大约是铝的2/3,是铁的1/4。它是实用金属中的最轻的金属,高强度、高刚性。 特点 其加工过程及腐蚀和力学性能有许多特点:散热快、质量轻、刚性好、具有一定的耐蚀性和尺寸稳定性、抗冲击、耐磨、衰减性能好及易于回收;另外还有高的导热和导电性能、无磁性、屏蔽性好和无毒的特点。 应用范围:镁合金广泛用于携带式的器械和汽车行业中,达到轻量化的目的 镁合金铸件1 。 镁合金(英文:Magnesium alloy)的比重虽然比塑料重,但是,单位重量的强度和弹性率比塑料高,所以,在同样的强度零部件的情况下,镁合金的零部件能做得比塑料的薄而且轻。另外,由于镁合金的比强度也比铝合金和铁高,因此,在不减少零部件的强度下,可减轻铝或铁的零部件的重量。 镁合金相对比强度(强度与质量之比)最高。比刚度(刚度与质量之比)接近铝合金和钢,远高于工程塑料。 在弹性范围内,镁合金受到冲击载荷时,吸收的能量比铝合金件大一半,所以镁合金具有良好的抗震减噪性能。

镁合金熔点比铝合金熔点低,压铸成型性能好。镁合金铸件抗拉强度与铝合金铸件相当,一般可达250MPA,最高可达600多Mpa。屈服强度,延伸率与铝合金也相差不大。 镁合金还个有良好的耐腐蚀性能,电磁屏蔽性能,防辐射性能,可做到100% 镁合金铸件2 回收再利用。 镁合金件稳定性较高压铸件的铸造行加工尺寸精度高,可进行高精度机械加工。 镁合金具有良好的压铸成型性能,压铸件壁厚最小可达0.5mm。适应制造汽车各类压铸件。 但镁合金线膨胀系数很大,达到25~26 μm/m℃,而铝合金则为23 μm/m℃,黄铜约20 μm/m℃,结构钢12 μm/m℃,铸铁约10μm/m℃,岩石(花岗岩、大理石等)仅为5~9 μm/m℃,玻璃5~11 μm/m℃。 镁合金是以镁为基础加入其他元素组成的合金。其特点是:密度小,比强度高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐腐蚀性能好。主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。 镁合金比重在所有结构用合金中属于最轻者,因此,在不减少零部件的强度下,可减轻铝或铁的零部件的重量。镁合金的比强度明显高于铝合金和钢,比刚度与铝合金和钢相当。在弹性范围内,镁合金受到冲击载荷时,吸收的能量比铝合金件大,所以镁合金具有良好的抗震减噪性能。在相同载荷下,减振性是铝的100倍,钛合金的300~500倍。电磁屏蔽性佳,3C产品的外壳(手机及电脑)要能够提供优越的抗电磁保护作用,而镁合金外壳能够完全吸收频率超过100db的电磁干扰。质感佳,镁合金的外观及触摸质感极佳,使产品更具豪华感,而且,在空气中更不容易腐蚀。 镁合金的散热相对与合金来说有绝对的优势:根据公式:Q=dvC△t 其中Q—热量;d=比重;V=体积;C=比热容;△t =(t1-t2)变化的温度;当

相关主题
文本预览
相关文档 最新文档