当前位置:文档之家› 利用角平分线构造全等三角形(可编辑修改word版)

利用角平分线构造全等三角形(可编辑修改word版)

利用角平分线构造全等三角形(可编辑修改word版)
利用角平分线构造全等三角形(可编辑修改word版)

H

G

E

I

善于构造活用性质

安徽张雷

几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线

的特性来解决问题.

1.显“距离”, 用性质

很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质

的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一

点向角的两边作垂线段)

例:三角形的三条角平分线交于一点,你知道这是为什么吗?

分析:我们知道两条直线是交于一点的,因此可以想办法证

明第三条角平分线通过前两条角平分线的交点.

已知:如图,△ABC 的角平分线AD 与BE 交于点I,求证:

点I 在∠ACB 的平分线上.

证明:过点I 作IH⊥AB、IG⊥AC、IF⊥BC,垂足分别是点H、

G、F.B

∵点I 在∠BAC 的角平分线AD 上,且IH⊥AB、IG⊥AC

∴IH=IG(角平分线上的点到角的两边距离相等)

同理IH=IF ∴IG=IF(等量代换)

又IG⊥AC、IF⊥BC

A

D F C

∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.

【例2】已知:如图,PA、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于

点P,PD⊥BM 于D,PF⊥BN 于F.

求证:BP 为∠MBN 的平分线.

【分析】要证BP 为∠MBN 的平分线,只需证PD=PF,而PA、PC 为外角平分线,?故

可过P 作PE⊥AC 于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问

题得证.

【证明】过P 作PE⊥AC 于E.

∵PA、PC 分别为∠MAC 与∠NCA 的平分线.且PD⊥BM,PF⊥BN

∴PD=PE,PF=PE,∴PD=PF

又∵PD⊥BM,PF⊥BN,∴点P 在∠MBN 的平分线上,

即 BP 是∠MBN 的平分线.

2. 构距离,造全等

有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.

例 3.△ABC 中,∠C=90°,AC=BC ,DA 平分∠CAB 交 BC 于 D 点,问能否在 AB 上确 定一点 E 使△BDE 的周长等于 AB 的长.请说明理由.

解:过 D 作 DE⊥AB,交 AB 于 E 点,则 E 点即可满足要求. 因为∠C=90°,AC=BC , 又 DE⊥AB,∴DE=EB.

∵AD 平分∠CAB 且 CD⊥AC、ED⊥AB, ∴CD=DE. 由“HL”可证

Rt△ACD≌Rt△AED. ∴AC=AE.

∴L △BDE =BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB .

例 4.如图,∠B=∠C=90°,M 是 BC 上一点,且 DM 平分∠ADC,AM 平分

∠DAB. 求证:AD=CD+AB .

证明:过 M 作 ME⊥AD,交 AD 于 E . ∵DM 平分∠ADC,∠C=90°.

MC=ME . 根据“HL”可以证得 Rt△MCD≌Rt△MED,∴CD=ED. 同理可得 AB=AE .∴CD+AB=ED+AE=AD. 即 AD=CD+AB .

3. 巧翻折, 造全等

以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.

例 5.如图,已知△ABC 中∠BAC=90°,AB=AC ,CD?垂直于∠ABC?的平分线 BD 于 D ,BD 交 AC 于 E ,求证:BE=2CD .

分析:要证 BE=2CD ,想到要构造等于 2CD 的线段,结合角平分线,?利用翻折的方法把△CBD 沿BD 翻折,使 BC 重叠到BA 所在的直线上,即构造全等三角形(△BCD ≌ △BFD ),然后证明 BE 和 CF (2CD )所在的三角形全等.

F

证明:延长 BA 、CD 交于点 F

A 5

4

D E

1

3

B C

?

?

? ?

∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90° ∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中

?∠2 = ∠1( 公 公 ) ?

BD = BD ( 公 公 公 ) ?∠BDC = ∠BDF ( 公 公 ) ∴△BCD ≌△BFD (ASA ) ∴CD=FD , 即 CF=2CD

∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。∴∠1=∠3。在△ABE 和△ACF 中

?∠4 = ∠5 ?

AB = AC ?∠1 = ∠3( 公 公 ) ∴△ABE ≌△ACF (ASA )∴BE=CF , ∴BE=2CD 。 例 6.如图,已知AC∥BD、EA 、EB 分别平分∠CAB 和△DBA, C

E

CD 过点 E ,则 AB 与 AC+BD 相等吗?请说明理由.

D

【分析】要证明两条线段的和与一条线段相等时常用的两种方法.

1. 可在长线段上截取与两条线段中一条相等的一

A

B

段, 然后证明剩余的线段与另一条线段相等.(割)

2. 把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等.(补)

F

C

D

2

5 6

3 4

F B

(1)

A

(2)

证法一:如图(1)在 AB 上截取 AF=AC ,连结 EF .在△ACE 和△AFE 中

C

5 E

6 D

1

2

3

4 E

1 B

?

?

∠ ?

3 = ∠4

?

?

?

?

?

?

? AC = AF ?

∠1 = ∠2 ? AE = AE ∴△ACE≌△AFE(SAS )

∵ ,∴ ,又 ,∴∠6=∠D

在△EFB 和△BDE 中

?∠6 = ∠D ?

∠3 = ∠4 ?BE = BE ∴△EFB≌△EDB(AAS ) ∴FB=DB ∴AC+BD=AF+FB=AB 证法二:如图(2),延长 BE ,与 AC 的延长线相交于点 F

AC BD ? ∠F = ∠4? ? ∠F=∠3

? 在△AEF 和△AEB 中

?∠F = ∠3

?

∠1 = ∠2 ? AE = AE ∴△AEF≌△AEB(AAS ), ∴AB=AF,BE=FE 在△BED 和△FEC 中

?∠5 = ∠6 ?

BE = FE ?∠4 = ∠F

∴△BED≌△FEC(ASA ) ∴BD=FC, ∴AB=AF=AC+CF=AC+BD.

_利用角平分线_构造全等三角形教学设计

课题名称:利用角平分线--构造全等三角形 教师姓名:史月华学校:延庆县张山营学校编号: 教师年龄:45 教龄: 21 职称:中学一级 教学背景分析 (一)教学内容的功能和地位 是在八年级学习了全等判定及性质,角平分线的概念和直角三角形全等的基础上进行教学的。同时角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美;四边形的学习奠定了基础。教材安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认识规律。 (二)学生情况分析 本节课在学生已探索过的全等三角形判定及性质,角平分线判定及性质基础上,,通过让学生添加辅助性,构造全等三角形,来证明线段相等的方法。本节课对于学生来说添加辅助线是比较困难的,通过小组合作共同解决问题。同时也为后续学习四边形,相似奠定基础。教学目标 3、教学目的要求: 1.熟练掌握全等三角形判定定理; 2.熟悉角分线的性质及与角分线相关的辅助线模型 3. 通过本节课,培养学生独立思考意识,合作交流意识,让同学们友好相处,树立远大志向,共同度过快乐时光。 4.节约粮食,学会感恩,懂得珍惜,一饭一汤当思来之不易,培养学生弘扬中华美德。 教学重点和难点分析 (一)教学重点:全等三角形判定定理及角分线相关的模型; (二)教学难点:从具体题境中发现与角分线辅助线的相关模型。 教学过程 教学 环节 教师活动学生活动设计意图 环节一:情景引入问题1:见到这幅图片你有什么想法? 问题2:见到角平分线你有什么想法? 问题3 如图,E是∠AOB的平分线OP上一点,分别在OA,OB 上确定一点F、G,使△OEF≌△OEG你有几种确定的方 法,并说明理由。 回答老师的问题 运用类比进行传统 美德教育 积极回答老师的提 问畅所欲言 培养学生联 想能力,同时 进行传统教 育,节约粮 食,懂得感恩 为问题3作铺 垫

构造全等三角形种常用方法

名师堂 校区地址: 南充 市顺庆区吉隆街 咨询电话: 2244028优学小班——提分更快、针对更强、时效更高 构造全等三角形种常用方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS ”,“SAS ”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角的另一组对应边用“SAS ”;若是判定两个直角三角形全等则优先考虑“HL ”。上述可归纳为: () ()() ()S SSS S A SAS S S SAS A A AAS ASA ??? ????????? ?用用用用或 搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法 例1.如图(1)已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . 解法(一)(补短法或补全法)延长AB 至F 使AF=AC , 由已知△AEF ≌△AEC ,∴∠F=∠ACE=45o, ∴BF=BE ,∴AB+BE=AB+BF=AF=AC . 解法(二)(截长法或分割法)在AC 上截取AG=AB ,由已知 △ ABE ≌△AGE ,∴EG=BE, ∠AGE=∠ABE,∵∠ACE=45o, ∴CG=EG, ∴AB+BE=AG+CG=AC . 2.平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ . 证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC =180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP , ∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB , ∴BD=OD ,∴AB+BP=AD+DB+BP =AQ+OQ+BO=AQ+BQ . A B C P Q D O D

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

全等三角形辅助线经典做法习题

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

利用角平分线构造全等三角形

善于构造 活用性质 安徽张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线得特性,灵活利用角平分线 得特性来解决问题、 1、显"距离”,用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质得运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上得一点向角得两边作垂线段) 例:三角形得三条角平分线交于一点,您知道这就就是为什么吗? 分析:我们知道两条直线就就是交于一点得,因此可以想办法证明第三条角平分线通过前两条角平分线得交点、 已知:如图.AABC得角平分线AD与BE交于点I,求证:点I在ZACB得平分线上、证明:过点I作IH丄AB、IG丄AC、IF丄BC,垂足分別就就是点H、G、F、 T点I在ZBAC得角平分线A D±,K 1 H丄AB、IG丄AC .?.III=IG(角平分线上得点到角得两边距离相等) 同理IH=1F 「.IGhlF (等量代换) 又IG丄AC、! F丄BC 二点1在ZACB得平分线上(到一个角得两边得距离相等得点,在这个角得平分线上)、即:三角形得三条角平分线交于一点、 【例2】已知:如图,PA、PC分别就就是△ABC外角ZMAC与ZNCA得平分线,?它们交于点R P D丄BM于D. PF亠BN于F、 求证:BP为ZMBN得平分线、 【分析】要证BP为ZMBN得平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE丄AC于E、根据角平分线性质楚理有PD=PE.PF=PE,则有PD=PF,故问题得证、【证明】过P作PE丄AC于E、 TPA、PC分别为ZMAC与ZNCA得平分线、且PD丄BM.PF丄B N PD=PE.PF=PE J.PD=PF 又TPD丄BM-PF丄BN-A点P在ZMBN得平分线上, 即BP就就是ZMBN得平分线、 2、构距离,造全等 有角平分线时常过角平分线上得点向角两边引垂线,根据角平分线上得点到角两边距离

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

角平分线、倍长中线、构造全等提高

角平分线、倍长中线、构造全等提高 1.如图所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2cm ,则点D 到BC 的距离为________cm . 2.如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是. 3.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、 AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是. 4.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是 A .DE =DF B .AE =AF C .B D =CD D .∠AD E =∠ADF 5.如图,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE =2,则两平行线间AB 、CD 的距离等于. 6.到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点 B .三条高的交点 C .三条边的垂直平分线的交点 D .三条角平分线的交点 【例题】 1. 如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC +BD ?相等 吗.请说明理由. 2.在△ABC 中,∠B =60°,∠A ,∠C 的角平分线AE ,CF 相交于点O , (1)如图1,若AB =BC ,求证:OE =OF ; (2)如图2,若AB ≠BC ,试判断线段OE 与OF 是否相等,并说明理由 D C A B E 3题图 D C B A

构造全等三角形的方法

全等三角形的构造方法 全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 构造方法有: 1.截长补短法。 2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。 3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。 4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。 5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法. “补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成 的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长 的一段,然后证明加长的那部分与另一较短的线段相等.

例1.如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC 交BC于D,求证:AB=AC+CD. 例2 已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF 交BC于点D.求证:DE=DF. (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC 于点D,且D为EF的中点. 求证:BE=CF.

巧作辅助线构造全等三角形求解角度

巧作辅助线构造全等三角形求解角度 【例1】如图1-1,四边形ABCD中,△ABD为等边三角形,∠CAD=45°,∠BDC =30°,求∠ACB的度数。 此题看上去挺简单,但想不到思路就不容易做出来。 【解析】以AC为边向AC左侧作等边三角形ACF(如图1-1-1)。 则∠CDA=90°,∵∠CAD=45°, ∴∠ACD=45o,∴AD=DC; ∵△ACF为等边三角形, ∴∠BAF=60o-(60o-45o)=45o, 又∵AF=AC,AB=AD, ∴△AFB≌△ACD, ∴BF=CD,∵AD=CD, ∴BF=BA; 在△ABC和△FBC中: BA=BF,AC=FC,BC=BC, ∴△ABC≌△FBC, ∴∠ACB=∠FCB=30o。

【例2】如图2-1,四边形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BDC=30°,求∠ACB的度数。 【思路】依据【例1】的思路,构造等边三角形和全等三角形。 【解析】以AC为边向AC左侧作等边三角形ACF,在CD上取一点E,使得∠ADE=∠AED(如图2-1-1)。 则∠CDA=∠AED=88°, ∴AD=AE=AB; ∠DAE=4o, ∴∠CAE=48o-4 o=44 o, ∴∠ACE=44 o, ∴AE=CE; ∵△ACF为等边三角形, ∴∠BAF=60o-(64o-48o)=44o, ∴∠BAF=∠CAE, 又∵AF=AC,AB=AE, ∴△AFB≌△ACE,∴BF=CE, ∵AE=CE,∴BF=BA; 在△ABC和△FBC中: BA=BF,AC=FC,BC=BC,

∴△ABC≌△FBC, ∴∠ACB=∠FCB=30o。 【猜想】通过以上两个例子我们发现,在等腰三角形ABD中,顶角∠BAD的四等分线AC与底边绕点D逆时针旋转30 o后的直线交于点C,所构成的∠ACB角度为30 o,那么对于顶角∠BAD小于60 o时,【猜想】是否成立呢? 【例3】如图3-1,四边形ABCD中,∠ABC=∠ACB=64°,∠CAD=39°,∠BCD=30°,求∠ACB的度数。 【解析】以AC为边向AC左侧作等边三角形ACF,在CD延长线上取一点E,使得∠ADE=∠AED(如图3-1-1)。 则∠CDA=94°, ∠ADE=∠AED =180o-94o=86°, ∴AD=AE=AB; ∠DAE=8o,∠CAE=39o+8o=47o, ∴∠ACE=180o-47o-86o=47o, ∴AE=CE; ∵△ACF为等边三角形,

(完整版)利用角平分线构造全等三角形

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点 H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,?故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C A E H I F G

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

构造全等三角形的基本方法

构造全等三角形的基本方法 第一种:倍长中线法(利用中点、中线构造) 例题1、如图,△ABC中,AD是中线,AB=4,AC=6,AD的范围是.2】

第二种:利用角平分线 角平分线常见的辅助线作法: 例题2、已知在△ABC中,∠B=2∠C,∠A的平分线AD交BC边于点D.求证:AC=AB+BD. 3】 【例1】

例题3、BE是角平分线,AD垂直BE于D,求证:∠2=∠1+∠C 第三种:截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等. 例题5:如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 例题6、AB//CD,BE,CE是角平分线,求证:BC=AB+CD

第四种:旋转 对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形 例3、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求∠BPC的度数. 例4、如图,正方形ABCD中,DE=3,BF=1,∠EAF=45°,则EF= .

例5、如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为 第五种:平行线法 例7、如图,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

角平分线的四大模型(Word版)

角平分线四大模型 模型一:角平分线上的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点 B,则PB=PA. 模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm (2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC. 练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC. 求证:∠BAD+∠C=180° 练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()

模型二:截取构造对称全等 如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上 截取OB=OA,连接PB,则△OPB△OPA. 模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由. (2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由. 练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。 练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD. 练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.

全等三角形中做辅助线总结(供参考)

全等三角形中做辅助线技巧要点大汇总 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。 例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 例2.已知:如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC B 图1-2 D B C 1文档来源为:从网络收集整理.word版本可编辑.

2文档来源为:从网络收集整理.word 版本可编辑. 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B= 2∠C ,求证:AB+BD=AC 2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC , 求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。 求证:BM-CM>AB-AC 4. 已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、 DC 。求证:BD+CD>AB+AC 。 (二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180 分析:可由C 向∠BAD 的两边作垂线。近而证∠ADC 与∠B 之和为平角。 例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。 求证:BC=AB+AD 图1-4 A B C 图2-1 B C 图 2-2 B C

添加辅助线构造全等三角形

添加辅助线构造全等三角形 一.内容: 在证明几何题目的过程中,常常需要通过全等三角形,研究两条线段(角)的相等关系,或者转移线段或角。而有些时候,这样的全等三角形在问题中,并不是十分明显。因此,我 们需要通过添加辅助线,构造全等三角形,进而证明所需的结论。 在这里,我们试图通过几个典型例题让大家初步了解添加辅助线构造全等三角形的基本 方法。当然这些方法体现的了添加辅助线的方法从简单到复杂,研究线段的长短关系体现了 从相等到不等的递进关系。 二.例题详解 1.通过添加辅助线构造全等三角形直接证明线段(角)相等 1.已知:如图AB=AD,CB=CD, (1)求证:∠B=∠D. (2)若AE=AF 试猜想CE与CF的大小关系并证明. 分析: (1)在没有学习等腰三角形的知识的时候,要证明两个角相等,经常需要证明它们所在 的两个三角形全等。本题中要证明∠B=∠D.在已知条件中缺少明显全等的三角形。而连结AC以后,AC作为公共边,根据题目的已知条件可以看到三角形ABC全等于三角形ADC,进而证明了∠B=∠D。 如果在学习了等腰三角形的知识以后还可以连结BD,通过等边对等角,再用角等量减 等量得到∠B=∠D更为简单 (2)猜想CE=CF,在连结AC证明了三角形ABC全等于三角形ADC以后,得到∠EAC=∠FAC,再去证明三角形EAC全等于三角形FAC,进而证明CE=CF。 证明:(1)方法1、连结AC,证明△ABC≌△ADC,进而∠B=∠D。 方法2、连接BD,因为AB=AD,所以,∠ABD=∠ADB.同理,∠CBD=∠CDB. 所以,∠ABD-∠CBD=∠ADB-∠CDB,即∠B=∠D。 (2)由(1)得∠B=∠D,又因为BE=DF,CB=CD,故△BCE≌△CDF,进而CE=CF。 通过例1我们应该初步体会添加辅助线的必要性,例1(1)(2)两个小问,从添加辅助线 证明一次全等得角相等,到添加辅助线证明二次全等线段等,我们感觉到了问题层次的递进。 特别是例1(1)中如果B、C、D共线的时候我们可以得到等边对等角的结论。为例2使用做铺垫。 练习: (1)已知:如图AB=CD,AD=BC,求证:∠A=∠C. 分析:根据已知条件AB=CD,AD=BC,连结公共边BD(AC),可以发现三角形ABD

利用三角形角平分线构造基本图形

第 1 页 共 2 页 利用三角形角平分线构造基本图形 三角形的角平分线是三角形的重要线段之一,它在几何的计算或证明中,起着“桥梁”的作用.利用三角形的角平分线构造基本图形给解题带来极大方便.下 面举例说明: 一、“以角平分线为轴翻折”构造全等三角形 此情形可构造两种基本图形如图1,图2所示: 如图1,以AD 为轴翻折,使点C 落在AB 上(即在AE 上截取AE AC =),得ACD △AED ≌△.如图2,以AD 为轴翻折,使点B 落在AC 的延长线上(即延长AC 到E ,使AE AB =),得ABD AED △≌△. 例1 如图3,在ABC △中,AD 平分BAC ∠,AB BD AC +=, 求:B C ∠:∠的值. 解法1:在AC 上截取AE 使AE AB =,连结AE . ∵BAD DAE ∠=∠,AD AD =, ∴ABD AED △≌△, ∴B AED =∠∠,BD DE =. 又∵AB BD AC +=, ∴CE BD DE ==, ∴C EDC =∠∠, ∴2 B AED C ∠=∠=∠, ∴21B C :=:∠∠. 解法2:延长AB 到F ,使AF AC =,连结DF .请读者一试. 二、“角平分线 + 垂线”构造全等三角形或等腰三角形 1.根据角平分线的性质作垂线:自角的平分线上任意一点向角的两边作垂线,得到两个全等的直角三角形; 2.根据等腰三角形的“三线合一”性质作垂线:自角的一边上任意一点作角平分线的垂线,使之与另一边相交,则截的一个等腰三角形. 例2 如图4,在四边形ABCD 中,BC BA >,AD DC =,BD 平分ABC ∠. 求证:180A C ?+=∠∠. 证明:过点D 作DE AB ⊥,交BA 延长线于点E ,作DF BC ⊥,交BC 于点 F . ∵BD 平分ABC ∠, ∴DE DF =.又∵AD CD =, ∴Rt Rt EAD FCD △≌△, ∴EAD C =∠∠. ∵180EAD BAD ?+=∠∠, ∴180C BAD ?∠+∠=. 例3 如图5,已知等腰三角形ABC △中,90A ?∠=,B ∠的平分线交AC 于点D ,过点C 作BD 的垂线交BD 的延长线于点E .求证:2BD CE = . 证明:延长CE 交BA 的延长线于点F , ∵BE 是ABC ∠的平分线,BE CF ⊥, ∴ BCF F =∠∠, ∴FBC △是等腰三角形. ∴CE FE =. ∴2CF CE =. B A C D E (图1) A B C D E (图2) C A B D E (图3) A B C D E F (图4)

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 图1-1 B

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BC D ,C E 平分∠BCD ,点E 在AD 上,求证:BC =AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB -AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC 图1-2 D B C 图 1-4 A B C

专题01 角平分线模型知识精讲-冲刺中考几何压轴题专项复习

专题01 角平分线模型知识精讲-冲刺中考数学几何压轴题专项复习 1.过角平分线上一点向角的两边作垂线段,利用角平分线上的点到角两边的距离相等的性质来解决问题,例: 已知:P是平分线上的一点,过点P于点M,过点P 点N,则. 2.若题目中已经有了角平分线和角平分线上一点到一边的垂线段(距离),则作另一边的垂线段,例: 已知:AD是,过点D于点E,则. 3.在角的两边上取相等的线段,结合角平分线构造全等三角形(角边等,造全等),例: 已知:点D是平分线上的一点,在OA、OB上分别取点E、F,且,连

接DE、DF. 4.过角平分线上一点作角的一边的平行线,构造等腰三角形,例: 已知:点D平分线上的一点,过点D作 即. 证明:是的平分线,, 又. 5.有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边所在直线于一点,也可构造等腰三角形,例: 已知:OC平分,点D是OA上一点,过点D作交OB的反向延长线于点E,则. 6.有角平分线时,可将等角放到直角三角形中,构造相似三角形,也可以另加一对相等的角构造相似三角形,例: (1)已知:OC平分,点E、F分别在OA、OB上,过点E M, 过点F N

(2)已知:OC,点E、F在OC于点M于点N (3)已知:OC平分,点E、F在OC上,作, 如图所示: 7.D,则.

证明: 平分, 平分 , ① ② , 由 得, 即 8. 的一个内角平分线和一个外角平分线交于点D ,则. 证明: 平分, 平分 , ① M

② 由 得 ,即. 9. D ,则.证明: 平分 平分 , , ① , ② 由①=②,得 中,, ,

相关主题
文本预览
相关文档 最新文档