当前位置:文档之家› 利用角平分线构造全等三角形 练习题

利用角平分线构造全等三角形 练习题

利用角平分线构造全等三角形 练习题
利用角平分线构造全等三角形 练习题

「利用角平分线构造全等三角形」

如图,P是∠MON的角平分线上一点,点A是射

线OM上任意一点,在ON上截取OB = OA ,连接

PB ,则△OPB ≌△OPA 。

1.如图,已知在△ABC中,∠C = 2∠B ,∠1 = ∠2 ,求证: AB = AC + CD 。

2.已知在△ABC中,∠A =

60, BD、CE分别平分∠ABC和∠ACD ,BD、CE交于O点,求证: BC = BE + CD 。

3.如图,CA = CB ,CD = CE ,∠ACB = ∠DCE ,AD、BE交于点H ,连接CH ,

求证:CH平分∠AHE 。

4.如图,在△ABC中,AB = AC ,∠A = ?

90, BD是∠ABC的平分线,求证: BC = AB + AD 。

5.如图,在△ABC中,AB = AC ,∠A = ?

100, BD平分∠ABC交AC于D点,求证: BC = AD + BD 。

108, BD平分∠ABC交AC于D点,6.如图,在△ABC中,AB = AC ,∠A = ?

求证: BC = AC + CD 。

7. 如图,在△ABC 中,∠B = ?90, AD 是∠BAC 的平分线 ,DF ⊥ AC 于F ,DE = DC , 求证: BE = CF 。

8. 如图,在△ABC 中,∠BAC = ?60,∠C = ?40, AP 平分∠BAC 交BC 于P 点 ,BQ 平分∠ABC 交AC 于Q 点 ,

求证: AB + BP = BQ + AQ 。

9. 如图,在△ABC 中,AB = AC ,BD 平分∠ABC ,DE ⊥ BD 于D 点 ,交BC 于点E , 求证: CD = 2

1BE 。

10. (1) 如图1 ,在△ABC中,∠ACB是直角,∠B = ?

60,AD、CE分别是∠BAC ,∠BCA的平分线,AD、CE相交于点F, 求证:FE = FD 。

(2) 如图2,在△ABC中,若∠ACB不是直角,而(1)中的其它条件不变求证:FE = FD 。

11.已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A ,将射线PA绕点P 逆时针旋转交射线ON于点B ,且使∠APB + ∠MON = ?

180。 (1) 利用图1,求证:PA = PB 。

(2) 若∠MON = ?

60,OB = 2 ,射线AP交ON于点D ,且满足∠PBD = ∠ABO ,请借助图2补全图形,并求OP的长。

_利用角平分线_构造全等三角形教学设计

课题名称:利用角平分线--构造全等三角形 教师姓名:史月华学校:延庆县张山营学校编号: 教师年龄:45 教龄: 21 职称:中学一级 教学背景分析 (一)教学内容的功能和地位 是在八年级学习了全等判定及性质,角平分线的概念和直角三角形全等的基础上进行教学的。同时角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美;四边形的学习奠定了基础。教材安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认识规律。 (二)学生情况分析 本节课在学生已探索过的全等三角形判定及性质,角平分线判定及性质基础上,,通过让学生添加辅助性,构造全等三角形,来证明线段相等的方法。本节课对于学生来说添加辅助线是比较困难的,通过小组合作共同解决问题。同时也为后续学习四边形,相似奠定基础。教学目标 3、教学目的要求: 1.熟练掌握全等三角形判定定理; 2.熟悉角分线的性质及与角分线相关的辅助线模型 3. 通过本节课,培养学生独立思考意识,合作交流意识,让同学们友好相处,树立远大志向,共同度过快乐时光。 4.节约粮食,学会感恩,懂得珍惜,一饭一汤当思来之不易,培养学生弘扬中华美德。 教学重点和难点分析 (一)教学重点:全等三角形判定定理及角分线相关的模型; (二)教学难点:从具体题境中发现与角分线辅助线的相关模型。 教学过程 教学 环节 教师活动学生活动设计意图 环节一:情景引入问题1:见到这幅图片你有什么想法? 问题2:见到角平分线你有什么想法? 问题3 如图,E是∠AOB的平分线OP上一点,分别在OA,OB 上确定一点F、G,使△OEF≌△OEG你有几种确定的方 法,并说明理由。 回答老师的问题 运用类比进行传统 美德教育 积极回答老师的提 问畅所欲言 培养学生联 想能力,同时 进行传统教 育,节约粮 食,懂得感恩 为问题3作铺 垫

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

利用角平分线构造全等三角形

善于构造 活用性质 安徽张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线得特性,灵活利用角平分线 得特性来解决问题、 1、显"距离”,用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质得运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上得一点向角得两边作垂线段) 例:三角形得三条角平分线交于一点,您知道这就就是为什么吗? 分析:我们知道两条直线就就是交于一点得,因此可以想办法证明第三条角平分线通过前两条角平分线得交点、 已知:如图.AABC得角平分线AD与BE交于点I,求证:点I在ZACB得平分线上、证明:过点I作IH丄AB、IG丄AC、IF丄BC,垂足分別就就是点H、G、F、 T点I在ZBAC得角平分线A D±,K 1 H丄AB、IG丄AC .?.III=IG(角平分线上得点到角得两边距离相等) 同理IH=1F 「.IGhlF (等量代换) 又IG丄AC、! F丄BC 二点1在ZACB得平分线上(到一个角得两边得距离相等得点,在这个角得平分线上)、即:三角形得三条角平分线交于一点、 【例2】已知:如图,PA、PC分别就就是△ABC外角ZMAC与ZNCA得平分线,?它们交于点R P D丄BM于D. PF亠BN于F、 求证:BP为ZMBN得平分线、 【分析】要证BP为ZMBN得平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE丄AC于E、根据角平分线性质楚理有PD=PE.PF=PE,则有PD=PF,故问题得证、【证明】过P作PE丄AC于E、 TPA、PC分别为ZMAC与ZNCA得平分线、且PD丄BM.PF丄B N PD=PE.PF=PE J.PD=PF 又TPD丄BM-PF丄BN-A点P在ZMBN得平分线上, 即BP就就是ZMBN得平分线、 2、构距离,造全等 有角平分线时常过角平分线上得点向角两边引垂线,根据角平分线上得点到角两边距离

角平分线和全等三角形证明分类

精锐教育学科教师辅导讲义 学员编号:年级:初二课时数:3 学员姓名:辅导科目:数学学科教师: 授课类型T 角平分线C专题精讲 授课日期时段 教学内容 1. 角平分线的作法(尺规作图) ①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点; ②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P; ③过点P作射线OP,射线OP即为所求. 2. 角平分线的性质及判定 (1)角平分线的性质:角的平分线上的点到角的两边的距离相等. 几何表达:(角的平分线上的点到角的两边的距离相等) 如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB。 (2)角平分线的判定:到角的两边的距离相等的点在角的平分线上. 几何表达:(到角的两边的距离相等的点在角的平分线上.) 如图所示,∵PA⊥OM,PB⊥ON,PA=PB,∴∠1=∠2(OP平分∠MON) (3)三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。 3. 角平分线性质及判定的应用

①为推导线段相等、角相等提供依据和思路; ②实际生活中的应用. 例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由. 【例题讲解】 1.在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长。 2.如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB 3.如图,P 为∠AOB 内一点,OA=OB ,且△OPA 与△OPB 面积相等,求证∠AOP=∠BOP . 4.如图,AB=AC ,AD=AE ,BD 、CE 交于O ,求证AO 平分∠BAC. E D C B A E A B C D F

角平分线、倍长中线、构造全等提高

角平分线、倍长中线、构造全等提高 1.如图所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2cm ,则点D 到BC 的距离为________cm . 2.如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是. 3.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、 AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是. 4.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是 A .DE =DF B .AE =AF C .B D =CD D .∠AD E =∠ADF 5.如图,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE =2,则两平行线间AB 、CD 的距离等于. 6.到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点 B .三条高的交点 C .三条边的垂直平分线的交点 D .三条角平分线的交点 【例题】 1. 如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC +BD ?相等 吗.请说明理由. 2.在△ABC 中,∠B =60°,∠A ,∠C 的角平分线AE ,CF 相交于点O , (1)如图1,若AB =BC ,求证:OE =OF ; (2)如图2,若AB ≠BC ,试判断线段OE 与OF 是否相等,并说明理由 D C A B E 3题图 D C B A

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

(完整版)利用角平分线构造全等三角形

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点 H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,?故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C A E H I F G

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

角平分线的四大模型(Word版)

角平分线四大模型 模型一:角平分线上的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点 B,则PB=PA. 模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm (2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC. 练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC. 求证:∠BAD+∠C=180° 练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()

模型二:截取构造对称全等 如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上 截取OB=OA,连接PB,则△OPB△OPA. 模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由. (2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由. 练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。 练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD. 练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.

第5讲.几何问题之角平分线题型Ⅰ(教师)

第五讲.几何问题之角平分线题型Ⅰ 【教学目标】 1.掌握角平分线的性质和判定; 2.综合应用角的平分线的性质和判定解决相关问题; 3.综合应用垂直平分线、等腰三角形、四边形等知识解决相关问题; 4.学习分析问题、解决问题的能力。 【知识、方法梳理】: 一.知识要点详解: 1.角平分线的性质定理: (1)角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。 (2)定理的数学表示:如图1,已知OE 是AOB ∠的平分线,F 是OE 上一点,若 CF OA ⊥于点C ,DF OB ⊥于点D ,则CF DF =。 (3)定理的作用:①证明两条线段相等;②用于几何作图问题; (4)角是一个轴对称图形,它的对称轴是角平分线所在的直线。 图1C 图2C E 2.角平分线性质定理的逆定理: (1)角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上。 (2)定理的数学表示:如图2,已知点F 在AOB ∠的内部,且FC OA ⊥于C ,FD OB ⊥于D ,若FD FC =,则点F 在AOB ∠的平分线上。 (3)定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线。 (4)注意角平分线的性质定理与逆定理的区别和联系。

3.关于三角形三条角平分线的定理: (1)关于三角形三条角平分线交点的定理: 三角形三条角平分线相交于一点,并且这一点到三边的距离相等。 定理的数学表示:如图3,如果AP 、BQ 、CR 分别是ABC ?的内角BAC ∠、ABC ∠、 ACB ∠的平分线,那么: ① AP 、BQ 、CR 相交于一点I ; ② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI EI FI ==。 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题。 (2)三角形三条角平分线的交点位置与三角形形状的关系: 三角形三个内角角平分线的交点一定在三角形的内部。 4.关于线段的垂直平分线和角平分线的作图: (1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形. 二.角平分线定理使用中的几种辅助线作法:(如下图示) 1.已知角平分线,构造全等三角形; 2.已知一个点到角的一边的距离,过这个点作另一边的垂线段; 3.已知角平分线和其上面的一点,过这一点作角的两边的垂线段。 D B N P E D C B A 三.角平分线性质定理之联想:

20全等三角形中的角平分线-学生版

全等三角形中的角平 分线 中考要求 知识点睛 板块 考试要求 A 级要求 B 级要求 C级要求 全等三角形的性质及判定 会识别全等三角形 掌握全等三角形的概念、判定和 性质,会用全等三角形的性质和判定解决简单问题 会运用全等三角形的性质和判定解决有关问题 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(A SA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(S SS ):三边对应相等的两个三角形全等. (4) 角角边定理(A AS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 第十讲

例题精讲 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 与角平分线相关的问题 角平分线的两个性质: ⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性. 角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线, 2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍, A B O P P O B A A B O P 【例1】 如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于 D ,且3OD =,求ABC ?的面积. 【例2】 在ABC ?中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =. 【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠. A D O C B D C B A

专题复习:全等三角形与角平分线

专题全等三角形与角平分线?解读考点 知识点名师点晴 全等 三角 形 全等图形理解全等图形的定义,会识别全等图形 全等三角形的判定 理解并掌握全等三角形的判定方法:SSS、SAS、 ASA、AAS,并会判定两个三角形全等直角三角形的判定会利用HL判定两个三角形全等 角平 分线 角平分线的性质理解并掌握角平分线的性质 角平分线的判定利用角平分线的判定解决有关的实际问题 ?2年中考 【2015年题组】 1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证 明△ABC≌△DCB的是() A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC =BD 【答案】D.

【解析】 试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意; B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意; C.利用ASA判定△ABC≌△DCB,故此选项不符合题意; D.SSA不能判定△ABC≌△DCB,故此选项符合题意; 故选D. 考点:全等三角形的判定. 2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是() A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 【答案】B. 考点:全等三角形的判定与性质. 3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得

角平分线辅助线专题练习

D A B C 角平分线专题 1、 轴对称性: 内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。 思路和方法:边角等 造全等,也就是在角的两边上取相等的线段 构造全等三角形 基本结构:如图, 2、 角平分线的性质定理:注意两点(1)距离相等 (2)一对全等三角形 3、 定义:带来角相等。 4、 补充性质:如图,在△AB C中,AD 平分∠BAC ,则有AB:AC=BD:DC 针对性例题: 例题1:如图,AB=2AC ,∠BAD=∠DAC ,DA =DB 求证:DC ⊥AC

B 例题2:如图,在△AB C中,∠A等于60°,BE 平分∠ABC,C D平分∠ACB 求证:DH=E H 例题3:如图1,B C>A B,BD 平分∠A BC,且∠A+∠C=1800, 求证:AD=D C.: 思路一:利用“角平分线的对称性”来构造 因为角是轴对称图形,角平分线是其对称轴,因此,题中若有 角平分线,一般可以利用其对称性来构成全等三角形. 证法1:如图1,在BC 上取B E=AB,连结DE ,∵BD 平分 ∠A BC,∴∠A BD=∠D BE ,又BD=BD,∴△ABD ≌△EBD (S AS), ∴∠A =∠DB E,AD=D E,又∠A+∠C=1800,∠D EB+∠DE C=1800,∴∠C=∠D EC,D E=DC , 则AD =DC . 证法2:如图2,过A 作BD 的垂线分别交BC 、B D于E 、F , 连结DE,由BD 平分∠ABC ,易得△ABF ≌△EBF,则AB=B E, BD 平分∠A BC,BD =BD ,∴△ABD ≌△E BD(SA S), ∴AD =ED ,∠BAD =∠DEB,又∠BA D+∠C=1800, ∠BED+∠CE D=1800 ,∴∠C=∠DEC ,则DE=DC,∴AD=DC . 说明:证法1,2,都可以看作将△AB D沿角平分线BD 折向B C而构成 全等三角形的. 证法3:如图3,延长BA 至E ,使BE=B C,连结D E, ∵BD 平分∠A BC,∴∠CBD =∠DBE ,又BD=BD ,∴△CB D≌△EBD (SAS), ∴∠C=∠E ,CD=DE,又∠BA D+∠C=1800,∠DA B+∠D AE=1800, ∴∠E=∠D AE,DE =DA ,则AD=DC . 说明:证法3是△CBD 沿角平分线B D折向B A而构成全等三角形的. B A C D E 图1 B A C D E F 图2 B A C D E 图3

全等三角形辅助线系列之一---角平分线类辅助线作法大全说课讲解

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全 一、角平分线类辅助线作法 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等?对于有角平分线的 辅助线的作法,一般有以下四种. 1、 角分线上点向角两边作垂线构全等: 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、 截取构全等 利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、 延长垂线段 题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、 做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形 有角平分线时,常过角平分线上的一点作角的一边的平行线, 从而构造等腰三角形.或通过一边上 的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形. 通常情况下,出现了直角或是垂直等条件时, 一般考虑作垂线;其它情况下考虑构造对称图形. 至 于选取哪种方法,要结合题目图形和已知条件 . 图四 M B 图一 M 图 M B 图三

典型例题精讲 【例1】如图所示,BN平分/ ABC, P为BN上的一点,并且PD丄BC于D, AB+ BC 2BD . 求证:BAP+ BCP 180 . 【解析】过点P作PE丄AB于点E. VPE± AB, PD 丄BC, BN 平分/ABC,:PE PD . 在Rt APBE 和Rt APBC 中, BP BP PE PD ???Rt z2PBE 细t ^BC ( HL), BE BD . T AB BC 2BD , BC CD BD , AB BE AE , ? AE CD . ??PE丄AB, PD 丄BC ,? PEB PDB 90 . 在AFAE 和Rt APCD 中, PE PD PEB PDC , AE DC ? △AE织t A^CD , ? PCB EAP . ?/ BAP EAP 180 , ? BAP BCP 180 . 【答案】见解析.

利用三角形角平分线构造基本图形

第 1 页 共 2 页 利用三角形角平分线构造基本图形 三角形的角平分线是三角形的重要线段之一,它在几何的计算或证明中,起着“桥梁”的作用.利用三角形的角平分线构造基本图形给解题带来极大方便.下 面举例说明: 一、“以角平分线为轴翻折”构造全等三角形 此情形可构造两种基本图形如图1,图2所示: 如图1,以AD 为轴翻折,使点C 落在AB 上(即在AE 上截取AE AC =),得ACD △AED ≌△.如图2,以AD 为轴翻折,使点B 落在AC 的延长线上(即延长AC 到E ,使AE AB =),得ABD AED △≌△. 例1 如图3,在ABC △中,AD 平分BAC ∠,AB BD AC +=, 求:B C ∠:∠的值. 解法1:在AC 上截取AE 使AE AB =,连结AE . ∵BAD DAE ∠=∠,AD AD =, ∴ABD AED △≌△, ∴B AED =∠∠,BD DE =. 又∵AB BD AC +=, ∴CE BD DE ==, ∴C EDC =∠∠, ∴2 B AED C ∠=∠=∠, ∴21B C :=:∠∠. 解法2:延长AB 到F ,使AF AC =,连结DF .请读者一试. 二、“角平分线 + 垂线”构造全等三角形或等腰三角形 1.根据角平分线的性质作垂线:自角的平分线上任意一点向角的两边作垂线,得到两个全等的直角三角形; 2.根据等腰三角形的“三线合一”性质作垂线:自角的一边上任意一点作角平分线的垂线,使之与另一边相交,则截的一个等腰三角形. 例2 如图4,在四边形ABCD 中,BC BA >,AD DC =,BD 平分ABC ∠. 求证:180A C ?+=∠∠. 证明:过点D 作DE AB ⊥,交BA 延长线于点E ,作DF BC ⊥,交BC 于点 F . ∵BD 平分ABC ∠, ∴DE DF =.又∵AD CD =, ∴Rt Rt EAD FCD △≌△, ∴EAD C =∠∠. ∵180EAD BAD ?+=∠∠, ∴180C BAD ?∠+∠=. 例3 如图5,已知等腰三角形ABC △中,90A ?∠=,B ∠的平分线交AC 于点D ,过点C 作BD 的垂线交BD 的延长线于点E .求证:2BD CE = . 证明:延长CE 交BA 的延长线于点F , ∵BE 是ABC ∠的平分线,BE CF ⊥, ∴ BCF F =∠∠, ∴FBC △是等腰三角形. ∴CE FE =. ∴2CF CE =. B A C D E (图1) A B C D E (图2) C A B D E (图3) A B C D E F (图4)

第五讲-全等三角形与角平分线

第五讲全等三角形与角平分线 (综合与拔高) 一.选择题(共10小题) 1.如图四边形中,∥,∠90°,,∠45°,E为上一点,且∠45°.若4,则△的面积为() A.B.C.D. 2.如图,点P为定角∠的平分线上的一个定点,且∠与∠互补,若∠在绕点P旋转的过程中,其两边分别与、相交于M、N两点,则以下结论:(1)恒成立;(2)的值不变;(3)四边形的面积不变;(4)的长不变,其中正确的个数为() A.4 B.3 C.2 D.1 3.如图,在△中,∠90°,以顶点A为圆心,适当长为半径画弧,分别交,于点M,N,再分别以点M,N为圆心,大于的长为半径画弧,两弧交于点P,作射线交边于点D,若4,15,则△的面积是()

A.15 B.30 C.45 D.60 4.如图,是△中∠的角平分线,⊥于点E,S△7,2,4,则长是() A.3 B.4 C.6 D.5 5.如图,在△中,∠50°,∠60°,点E在的延长线上,∠的平分线与∠的平分线相交于点D,连接,下列结论中不正确的是() A.∠70°B.∠90°C.∠35°D.∠55° 6.如图,在△中,∠90°,4,D是的中点,点E、F分别在、边上运动(点E不与点A、C重合),且保持,连接、、.在此运动变化的过程中,有下列结论: ①△是等腰直角三角形; ②四边形不可能为正方形; ③四边形的面积随点E位置的改变而发生变化;

④点C到线段的最大距离为. 其中正确结论的个数是() A.1个B.2个C.3个D.4个 7.如图,平分∠,⊥,⊥,垂足分别为A,B.下列结论中不一定成立的是() A.B.平分∠C.D.垂直平分 8.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有() A.1处B.2处C.3处D.4处 9.如图,在△中,,,⊥于R,⊥于S,则三个结论①;②∥;③△≌△中()

专题01 角平分线模型知识精讲-冲刺中考几何压轴题专项复习

专题01 角平分线模型知识精讲-冲刺中考数学几何压轴题专项复习 1.过角平分线上一点向角的两边作垂线段,利用角平分线上的点到角两边的距离相等的性质来解决问题,例: 已知:P是平分线上的一点,过点P于点M,过点P 点N,则. 2.若题目中已经有了角平分线和角平分线上一点到一边的垂线段(距离),则作另一边的垂线段,例: 已知:AD是,过点D于点E,则. 3.在角的两边上取相等的线段,结合角平分线构造全等三角形(角边等,造全等),例: 已知:点D是平分线上的一点,在OA、OB上分别取点E、F,且,连

接DE、DF. 4.过角平分线上一点作角的一边的平行线,构造等腰三角形,例: 已知:点D平分线上的一点,过点D作 即. 证明:是的平分线,, 又. 5.有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边所在直线于一点,也可构造等腰三角形,例: 已知:OC平分,点D是OA上一点,过点D作交OB的反向延长线于点E,则. 6.有角平分线时,可将等角放到直角三角形中,构造相似三角形,也可以另加一对相等的角构造相似三角形,例: (1)已知:OC平分,点E、F分别在OA、OB上,过点E M, 过点F N

(2)已知:OC,点E、F在OC于点M于点N (3)已知:OC平分,点E、F在OC上,作, 如图所示: 7.D,则.

证明: 平分, 平分 , ① ② , 由 得, 即 8. 的一个内角平分线和一个外角平分线交于点D ,则. 证明: 平分, 平分 , ① M

② 由 得 ,即. 9. D ,则.证明: 平分 平分 , , ① , ② 由①=②,得 中,, ,

角平分线和全等三角形证明 分类

精锐教育学科教师辅导讲义 学员编号: 年 级:初二 数:3 学员姓名: 辅导科目:数学 师: 授课类型T 角平分线C专题精讲 授课日期时段 教学内容 1. 角平分线的作法(尺规作图) ①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点; ②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P; ③过点P作射线OP,射线OP即为所求.

2. 角平分线的性质及判定 (1)角平分线的性质:角的平分线上的点到角的两边的距离相等. 几何表达:(角的平分线上的点到角的两边的距离相等) 如图所示,∵OP平分∠MON(∠1=∠2), PA⊥OM, PB⊥ON, (2)角平分线的判定:到角的两边的距离相等的点在角的平分线上. 几何表达:(到角的两边的距离相等的点在角的平分线上.) 如图所示,∵PA⊥OM,PB⊥ON,PA=PB,∴∠1=∠2(OP平分∠ (3)三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点角形三边的距离相等。 3. 角平分线性质及判定的应用 ①为推导线段相等、角相等提供依据和思路;

3.如图,P为∠AOB内一点,OA=OB,且△OPA与△OPB面积相等,求证∠AOP=∠BOP. 4.如图,AB=AC,AD=AE,BD、CE交于O,求证AO平分∠BAC.

【同步练习】 1.在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则: ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE相等?为什么? ⑶若AB=10,BC=8,AC=6, 求BE,AE的长和△AED的周长

2.已知,如图DABC中,AB=AC,D是BC的中点。求证:D到AB、AC的距离相等。3.△ABC中,∠C=90°,AD为角平分线,BC=64,BD∶DC=9∶7,求D到AB的距离.

(完整版)第五讲全等三角形与角平分线(综合、拔高)

第五讲 全等三角形与角平分线(综合与拔高) .选择题(共10小题) 1. 如图四边形 ABCD 中,AD// BC, / BCD=90, AB=BGAD ,/ DAC=45, E 为 CD 若CD=4则厶ABE 的面积为( ) D.- T 2. 如图,点P 为定角/AOB 的平分线上的一个定点,且/ MPN 与/AOB 互补, 若/ MPN 在绕点P 旋转的过程中,其两边分别与 OA 、OB 相交于M 、N 两点, 则以下 结论:(1) PM=PN 恒成立;(2) OM+ON 的值不变;(3)四边形PMON 的面积不变;(4) MN 的长不变,其中正确的个数为( 3. 如图,在Rt A ABC 中,/ C=90°,以顶点A 为圆心,适当长为半径画弧,分别 交 AC, AB 于点M ,N ,再分别以点M ,N 为圆心,大于[MN 的长为半径画弧, 两弧 交于点P ,作射线AP 交边BC 于点D ,若CD=4, AB=15,则厶ABD 的面积是 ( ) A . 15 B. 30 C. 45 D . 60 D . 1

第五讲全等三角形与角平分线(综合与拔高) 4 .如图,AD是厶ABC中/BAC的角平分线,DE± AB于点E, S A ABC=7, DE=2 第1页(共47页)

AB=4,贝U AC 长是() A. 3 B. 4 C. 6 D. 5 5. 如图,在△ ABC中,/ ABC=50, / ACB=60,点E在BC的延长线上,/ ABC 的平分线BD与/ACE的平分线CD相交于点D,连接AD,下列结论中不正确的 A.Z BAC=70 B.Z DOC=90 C.Z BDC=35 D.Z DAC=55 6. 如图,在△ ABC中,/ C=90°, AC=BC=4 D是AB的中点,点E、F分别在AC BC边上运动(点E不与点A、C重合),且保持AE=CF连接DE、DF、EF.在此运动变化的过程中,有下列结论: ①厶DFE是等腰直角三角形; ②四边形CEDF不可能为正方形; ③四边形CEDF的面积随点E位置的改变而发生变化; ④点C到线段EF的最大距离为样^. 其中正确结论的个数是() A. 1个 B. 2个 C. 3个 D. 4个 7. 如图,0P平分/ AOB, PAIOA,PB丄0B,垂足分别为A,B.下列结论中不—定成立的是()

全等三角形与角平分线专题讲解

全等三角形专题讲解 专题一全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC.那么图中全等的三角形有___对. 分析:由CE⊥AB,BD⊥AC,得∠AEO=∠ADO=90o.由AO平分∠BAC,得∠EAO=∠DAO.又AO为公共边,所以△AEO≌△ADO.所以EO=DO,AE=AD.又∠BEO=∠CDO=90o, ∠BOE=∠COD,所以△BOE≌△COD.由 AE=AD,∠AEO=∠ADO=90o,∠BAC为公 共角,所以△EAC≌DAO.所以AB=AC.又 ∠EAO=∠DAO,AO为公共边,所以△ABO≌△ACO. 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)_____.分析:要使△ABC≌△ADE,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC,即∠BAC=∠EAC. 要使△ABC≌△ADE,根据SAS可知只需AC=AE 即可; 根据ASA可知只需∠B=∠D;根据AAS可知只需∠C=∠E. 故可添加的条件是AC=AE或∠B=∠D或∠C=∠E. (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC,∠1=∠2. 求证:AO平分∠BAC. 分析:要证AO平分∠BAC,即证∠BAO=∠BCO,

相关主题
文本预览
相关文档 最新文档