立体几何空间角
- 格式:ppt
- 大小:757.00 KB
- 文档页数:19
第六讲:空间中的角(二)二面角 一,知识点 1,基本概念1)半平面:当两个平面相交时,我们往往只画起一部分,就像一本翻开的书,我们把其中一部分叫做半平面。
2)二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小指的是二面角的平面角的大小。
即分别在两个半平面内做交线的垂线,两条射线所成的角为二面角的平面角。
2,范围:],0[π特别:重合为0,共面为π,即相当于把一张纸折叠后的两种极限情况。
3,步骤:一找,二证,三计算4,用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个?而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。
二,典型例题与解读求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题.总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事.1 定义法即在二面角的棱上找一点(特殊点),在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!用定义法时,要认真观察图形的特性。
例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA B CDP H2、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。
3、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例3 在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求B-PC-D的大小。
专题一:空间角一、基础梳理1.两条异面直线所成的角(1)异面直线所成的角的范围:(0,]2π。
(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。
两条异面直线,a b 垂直,记作a b ⊥。
(3)求异面直线所成的角的方法:(1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。
平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。
2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。
一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0︒角。
直线和平面所成角范围:[0,2π]。
(2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。
(3)公式:已知平面α的斜线a 与α内一直线b 相交成θ且a 上的射影c 与b 相交成ϕ2角,。
内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角。
3.二面角(1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。
若棱为l ,两个面分别为,αβ的二面角记为l αβ--。
(2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角。
说明:①二面角的平面角范围是[]0,π,因此二面角有锐二面角、直二面角与钝二面角之分。
②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。
(3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。
第26练“空间角”攻略[题型分析·高考展望]空间角包括异面直线所成的角, 线面角以及二面角, 在高考中频繁出现, 也是高考立体几何题目中的难点所在. 掌握好本节内容, 首先要理解这些角的概念, 其次要弄清这些角的范围, 最后再求解这些角. 在未来的高考中, 空间角将是高考考查的重点, 借助向量求空间角, 将是解决这类题目的主要方法.体验高考1. (2015·浙江)如图, 已知△ABC, D是AB的中点, 沿直线CD将△ACD翻折成△A′CD, 所成二面角A′—CD—B的平面角为α, 则()A. ∠A′DB≤αB. ∠A′DB≥αC. ∠A′CB≤αD. ∠A′CB≥α2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1的顶点A, α∥平面CB1D1, α∩平面ABCD=m, α∩平面ABB1A1=n, 则m, n所成角的正弦值为()A.32 B.22 C.33 D.133. (2016·课标全国丙)如图, 四棱锥P-ABCD中, PA⊥底面ABCD, AD∥BC, AB=AD=AC=3, PA=BC=4, M为线段AD上一点, AM=2MD, N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.高考必会题型题型一异面直线所成的角例1在棱长为a的正方体ABCD-A1B1C1D1中, 求异面直线BA1与AC所成的角.变式训练1(2015·浙江)如图, 三棱锥A—BCD中, AB=AC=BD=CD=3, AD=BC=2, 点M, N分别是AD, BC的中点, 则异面直线AN, CM所成的角的余弦值是________.题型二直线与平面所成的角例2如图, 已知四棱锥P-ABCD的底面为等腰梯形, AB∥CD, AC⊥BD, 垂足为H, PH是四棱锥的高, E为AD的中点. (1)证明: PE⊥BC;(2)若∠APB=∠ADB=60°, 求直线PA与平面PEH所成角的正弦值.变式训练2如图, 平面ABDE⊥平面ABC, △ABC是等腰直角三角形, AB=BC=4, 四边形ABDE是直角梯形, BD∥AE, BD⊥BA, BD=AE=2, 点O、M分别为CE、AB的中点. (1)求证: OD∥平面ABC;(2)求直线CD和平面ODM所成角的正弦值;(3)能否在EM上找到一点N, 使得ON⊥平面ABDE?若能, 请指出点N的位置并加以证明;若不能, 请说明理由.题型三二面角例3(2016·浙江.如图, 在三棱台ABC—DEF中, 平面BCFE⊥平面ABC, ∠ACB=90°, BE =EF=FC=1, BC=2, AC=3..(1)求证: BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.变式训练3如图, 长方体ABCD-A1B1C1D1中, AA1=AD=1, AB=2, 点E是C1D1的中点.(1)求证: DE⊥平面BCE;(2)求二面角A-EB-C的大小.高考题型精练1. 在正方体ABCD-A1B1C1D1中, A1B与B1C所在直线所成角的大小是()A. 30°B. 45°C. 60°D. 90°2. 在正方体ABCD-A1B1C1D1中, A1B与平面BB1D1D所成的角的大小是()A. 90°B. 30°C. 45°D. 60°3. 如图所示, 将等腰直角△ABC沿斜边BC上的高AD折成一个二面角, 此时∠B′AC=60°, 那么这个二面角大小是()A. 90°B. 60°C. 45°D. 30°4.已知正三棱锥S-ABC中, E是侧棱SC的中点, 且SA⊥BE, 则SB与底面ABC所成角的余弦值为()A.63 B.33 C.23 D.365. 如图所示, 在正方体ABCD-A1B1C1D1中, E、F、G、H分别为AA1.AB.BB1.B1C1的中点, 则异面直线EF与GH所成的角等于()A. 45°B. 60°C. 90°D. 120°(5题)(6题)(8题)6如图, △ABC是等腰直角三角形, AB=AC, ∠BCD=90°, 且BC=CD=3, 将△ABC沿BC的边翻折, 设点A在平面BCD上的射影为点M, 若点M在△BCD内部(含边界), 则点M 的轨迹的最大长度等于______;在翻折过程中, 当点M位于线段BD上时, 直线AB和CD 所成角的余弦值等于______.7. 直三棱柱ABC-A1B1C1中, 若∠BAC=90°, 2AB=2AC=AA1, 则异面直线BA1与B1C 所成角的余弦值等于________.8.如图所示, 在四棱锥P-ABCD中, 已知PA⊥底面ABCD, PA=1, 底面ABCD是正方形, PC 与底面ABCD所成角的大小为, 则该四棱锥的体积是________.9. 以等腰直角三角形ABC斜边BC上的高AD为折痕, 使△AB′D和△ACD折成互相垂直的两个平面, 则∠B′AC=________.10. 如图, 在直三棱柱ABC-A1B1C1中, AB=1, AC=2, BC=, D.E分别是AC1和BB1的中点, 则直线DE与平面BB1C1C所成的角为________.(10题)(11题)11. (2016·四川)如图, 在四棱锥PABCD中, AD∥BC, ∠ADC=∠PAB=90°, BC=CD=AD.E为棱AD的中点, 异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M, 使得直线CM∥平面PBE, 并说明理由;(2)若二面角P—CD—A的大小为45°, 求直线PA与平面PCE所成角的正弦值.如图, 在四棱锥P-ABCD中, 底面ABCD为菱形, ∠BAD=60°, Q为AD的中点.(1)若PA=PD, 求证: 平面PQB⊥平面PAD;(2)点M在线段PC上, PM=PC, 若平面PAD⊥平面ABCD, 且PA=PD=AD=2, 求平面MBQ与平面CBQ夹角的大小.。
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
空间几何的立体角计算在空间几何中,立体角是指球心所在的立体角。
它是一个以球心为顶点,包含在球面上的一个锐角空间图形。
计算立体角的方法有很多种,下面将介绍几种常见的计算方法。
一、球体的立体角计算对于球体而言,可以通过球的半径和球心与球面上两点之间的弧长计算立体角。
假设球心为O,球面上两点为A和B,对应的单位法向量为a和b。
则球体的立体角可以用以下公式表示:Ω = acos(a·b)其中,·表示向量的点积运算,acos表示反余弦函数。
上述公式表示了向量a和向量b的夹角。
二、多面体的立体角计算对于多面体,可以将其分解为若干个共有顶点的面组成的角。
然后根据面的法向量来计算每个面对应的立体角,并将其相加得到总的立体角。
比如,假设有一个四面体,顶点分别为A、B、C和D,面分别为ABC、ACD、ADB和BDC。
其中,每个面都可以计算对应的立体角。
假设面ABC与面ACD的夹角为α,面ABC与面ADB的夹角为β,面ABC与面BDC的夹角为γ,则四面体的立体角Ω可以用以下公式表示:Ω = α + β + γ而计算每个面对应的立体角,可以使用球体的立体角计算方法进行计算。
三、棱锥的立体角计算对于棱锥而言,可以通过棱锥的顶角和侧面法向量计算立体角。
假设棱锥的顶点为O,底面上一点为A,底面上的两条棱为OB和OC,顶角为∠BOC,底面上的法向量为n,则棱锥的立体角可以用以下公式表示:Ω = 2π - ∠BOC其中,∠BOC可以通过向量OB和向量OC的点积计算得到。
四、扇形的立体角计算对于扇形而言,可以通过确定扇形对应的圆锥的顶角和底面法向量计算立体角。
圆锥的底面是扇形的圆心O、半径r和夹角θ所在的圆。
假设圆锥的顶点为O,扇形上的两点为A和B,顶角为α,则扇形的立体角可以用以下公式表示:Ω = α - sinα其中,α可以通过扇形的半径r和夹角θ计算得到:α = rθ。
以上是几种常见的空间几何中立体角的计算方法,可以根据不同的几何形状选择合适的方法进行计算。
如何求解立体几何形的平面角和空间角在立体几何的学习中,求解平面角和空间角是十分重要的一部分。
平面角是指在平面上的角,而空间角则是在三维空间中的角。
它们的求解方法有一些区别,下面将详细介绍如何求解这两种角。
一、求解平面角平面角是指在平面上的两条射线之间的夹角。
常见的平面角有直角、锐角和钝角。
1. 直角的求解直角是指夹角为90°的角。
求解直角的方法很简单,只需使用直角尺或直角工具即可。
2. 锐角和钝角的求解锐角是夹角小于90°的角,而钝角则是夹角大于90°的角。
求解锐角和钝角的方法一般有以下几种:(1)使用量角器量角器是一种测量角度的工具,通过将量角器的一边对齐于一条射线上,然后读取量角器上的刻度,即可知道夹角的大小。
(2)使用三角函数三角函数是角的函数,其中最常用的是正弦函数、余弦函数和正切函数。
通过查表或使用计算器,可根据已知角度的三角函数值来求解夹角的大小。
二、求解空间角空间角是指在三维空间中的两条直线或两条直线与平面之间的夹角。
常见的空间角有直线角和向量角。
1. 直线角的求解直线角是指两条直线之间的夹角。
求解直线角的方法一般有以下几种:(1)使用三角函数与求解平面角类似,可以使用三角函数来求解直线角。
通过已知直线的方向向量,可以计算出它们之间的夹角。
(2)使用向量运算向量运算是求解直线角的常用方法之一。
通过计算两条直线的方向向量的点积或叉积,可以求得它们之间的夹角。
2. 向量角的求解向量角是指两个非零向量之间的夹角。
求解向量角的方法一般有以下几种:(1)使用向量的点积和模长通过求解两个向量的点积和它们的模长,可以利用三角函数来求解向量角的大小。
(2)使用向量的夹角公式向量的夹角公式是求解向量角的一种常用方法。
根据向量的定义和性质,可以得到夹角的公式,并通过计算得出夹角的大小。
总结起来,求解立体几何形的平面角和空间角需要运用几何知识、三角函数以及向量运算等方法。
通过合理选用这些方法,我们可以准确计算出所需的角度值,从而更好地理解和解决立体几何问题。