M
Fl
F 解:1.画梁的剪力图和弯矩图
按正应力计算
max
M max Wz
6F1l bh2
F1
bh2
6l
107 100 1502 109 6
3750N
3.75kN
按切应力计算
max 3FS / 2A 3F2 / 2bh
F2 2 bh / 3 2106 100150106 / 3 10000N 10kN 35
截面为bh=30 60mm2 的矩形
求:1截面竖放时距离中性层20mm 处的正应力和最大正应力max; (2) 截面横放时的最大正应力max
b
解: M Fa 5103 0.18 900Nm
竖放时
横放时
IZ
bh3 12
30 603 12
54cm 4
y 20mm : M y 33.3MPa
主要公式:
变形几何关系 y
物理关系 E
E y
静力学关系
1 M
EIZ
My
IZ
为曲率半径
1
为梁弯曲变形后的曲率
11
§5.2 纯弯曲时的正应力
弯曲正应力公式适用范围
弯曲正应力
My
IZ
•横截面惯性积 Iyz =0
•弹性变形阶段 ( p )
•细长梁的纯弯曲或横力弯曲近似使用
12
试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面
要同时满足 t,max t , c,max c
25
例题
解:(1)求截面形心
52
z1 z
yc
80 2010 120 2080 80 20 120 20