二次函数图像平移与求解析式

  • 格式:docx
  • 大小:621.47 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师姓名 学生姓名 填写时间 学科

年级

教材版本

课题名称

二次函数平移与求解析式 本人课时统计

第( 、 )课时 共( )课时

上课时间

教学目标

同步教学知识内容

掌握二次函数的平移法则 个性化学习问题解决

解决二次函数解析式的三种求法 教学重点 平移口诀的记忆

教学难点

如何理解“左加右减”与如何选择合理的解析式

学 过 程 、 课 堂 设 计

知识点一:二次函数的平移

二次函数的平移大致分为两类,即为上下平移和左右平移。 (1) 上下平移 若原函数为c bx ax y ++=2

⎩⎨

⎧-++=+++=m

c bx ax y m m c bx ax y m 22

为个单位,则平移后函数

向下平移为个单位,则平移后函数向上平移

注:①其中m 均为正数,若m 为负数则将对应的加(减)号改为(减)加号即可。

②通常上述变换称为上加下减,或者上正下负。 (2) 左右平移

若原函数为c bx ax y ++=2

,左右平移一般第一步先将函数的一般式化为顶点式k

h x a y +-=2)(然后再进行相应的变形

⎩⎨

⎧+--=++-=k

n h x a y n k n h x a y n 22

)()(数为个单位,则平移后的函

若向右平移了

数为个单位,则平移后的函若向左平移了

注:①其中n 均为正数,若n 为负数则将对应的加(减)号改为(减)加号即可。

②通常上述变换称为左加右减,或者左正右负。

例1 把抛物线2

y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( ) A. 2

(1)3y x =--+ B. 2

(1)3y x =-++ C. 2

(1)3y x =--- D. 2

(1)3y x =-+-

例2将函数2

y x x =+的图像向右平移(0)a a >个单位,得到函数2

32y x x =-+的图像,则a 的值为( ) A. 1 B. 2 C. 3 D. 4

【举一反三】抛物线2

y x bx c =++的图像向右平移2个单位长度,再向下平移3个单位长度,所得图像的函数解析式为2

23y x x =-+,则b 、c 的值为( )

A.b=2,c=3

B.b=2,c=0

C.b=-2.,c=-1

D.b=-3,c=2

例3 已知二次函数21(11)y x bx b =-+-≤≤,当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( ) A. 先往左上方移动,再往右下方移动 B.先往左下方移动,再往左上方移动 B.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动

例4已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x=1对称,则下列平移方法在,正确的是( ) A. 将抛物线C 向右平移

52

个单位 B.将抛物线C 向右平移3个单位

C.将抛物线C 向右平移5个单位

D.将抛物线C 向右平移6个单位 练习

1. 把抛物线2y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( )A. 2

(1)3y x =--+ B. 2

(1)3y x =-++

C. 2(1)3y x =---

D. 2(1)3y x =-+-

2.抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b 、c 的值为 ( )

A . b=2,c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3,c=2

3.将函数2

y x x =+的图像向右平移(0)a a >个单位,得到函数2

32y x x =-+的图像,则a 的值为( )A. 1 B. 2 C. 3 D. 4

4. 已知二次函数2

1(11)y x bx b =-+-≤≤,当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( )

A. 先往左上方移动,再往右下方移动

B.先往左下方移动,再往左上方移动 B.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动

5.已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x=1对称,则下列平移方法正确的是( ) A. 将抛物线C 向右平移

52

个单位 B.将抛物线C 向右平移3个单位

C.将抛物线C 向右平移5个单位

D.将抛物线C 向右平移6个单位

c bx x y ++=2

322

--=x x y

6.已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 。

7.已知0=++c b a ,a ≠0,把抛物线c bx ax y ++=2向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式。

8.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).

A .2(1)2y x =-++

B .2(1)4y x =--+

C .2(1)2y x =--+

D .2(1)4y x =-++ 课后巩固

1.要从抛物线y=-2x 2

的图象得到y=-2x 2

-1的图象,则抛物线y=-2x 2

必须 [ ]

A .向上平移1个单位;

B .向下平移1个单位;

C .向左平移1个单位;

D .向右平移1个单位.

2.将抛物线y=-3x 2

的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为 [ ]

A .y=-3(x-1)2

-2; B .y=-3(x-1)2

+2; C .y=-3(x+1)2

-2; D .y=-3(x+1)2

+2.

3.要从抛物线y=2x 2

得到y=2(x-1)2

+3的图象,则抛物线y=2x 2

必须 [ ]

A .向左平移1个单位,再向下平移3个单位;

B .向左平移1个单位,再向上平移3个单位;

C .向右平移1个单位,再向下平移3个单位;

D .向右平移1个单位,再向上平移3个单位.

4.抛物线2

32

y x =-向左平移1个单位得到抛物线( )

A .2

312

y x =-

-B.2

312

y x =-

+C.2

3(1)2

y x =-

+D.