三年级速算与巧算
- 格式:doc
- 大小:171.00 KB
- 文档页数:4
小学三年级数学乘、除法的速算与巧算知识点+练习题,孩子学习必看!要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题。
一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b)×c=a×(b×c)乘法分配率:(a+b)×c=a×c+b×c积不变规律:a×b=(a×c)×(b÷c)=(a÷c)×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。
⑵在连除时,可以交换除数的位置,商不变。
⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。
⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。
②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。
添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。
三年级数学《乘与除》练习题一、填一填。
(1题3分,其余每空1分,共22分)1.口算23×3,想( )×( )=( ),( )×( )=( ),( )+( )=( )。
2.口算180÷2,想( )个十除以2是( )个十,也就是( ),所以180÷2=( )。
3.500里面有( )个十,( )里面有35个百。
三年级名校第一讲速算与巧算教学目标:1.学会“化零为整”的思想。
2.加法交换律:两个数相加,交换加数的位置,它们的和不变。
3.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
教学重点:加法、减法和乘法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
教学难点:有些题目直观上凑整不明显,这时可以“借数”。
教学过程:导入:T:同学们来看一看老师这里有2个算式你们喜欢算哪一个?①57689+29273=②100+1000=T:为什么你们都喜欢算算式②呢?因为算式②是整百和整千的数,那么我们如果能将我们在平时计算时变成算式②这样,我们就可以让计算变的更简单,今天我们就来学一学怎么样让我们平时的计算变成像算式②一样。
(出示课题)新授例1计算(原例2)(1)658-93-58=658-58-93=600=507分析:在做题时先观察算式,看看哪两个数可以凑整?发现658跟58可以凑整,但是这2个数不在一起,我们先要带符号将2个数搬在一起,也就是带符号搬家,然后再将2个数计算。
(2)347-78+53=347+53-78 分析:发现没有2个数相减可以凑成整数,而通过观察发现347+53 =400-78 这2个数相见可以凑成400,所以先带符号搬家,然后在计算。
=322练习:例2(2)演练二(2)总结:我们在计算时不仅有2个数相减可以凑成整数,还有2个数相加可以凑成整数。
而我们会在计算时将可以凑整的数放在一起。
而放在一起的时候要带符号搬家。
例2计算(原例3)(1)875-364-236 分析:在观察式子的时候发现364跟236在一起可以凑整,但=875-(364+236)按照计算顺序不能先计算后面的2个数,如果我们要先=875-600 算着2个数应该怎么办呢?就必须要加上一个括号。
在添=275 括号要注意,在添括号时,如果括号前面是“+”号,那么加上括号后,括号内的运算符号不变;如果括号前面是“-”号,那么加上括号后,括号内的运算符号“+”变“-”,“-”变“+”。
三年级数学速算和巧算在小学三年级的数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?店铺在此整理了三年级数学速算和巧算,供大家参阅,希望大家在阅读过程中有所收获!三年级数学速算和巧算方法在熟练掌握计算法则和运算顺序的前提下,可以根据题目本身的特点,运用速算和巧算,化繁为简,化难为易,算得又快又准确。
“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36 =(53+47)+36=100+36=136因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69=(21+31)+69 =21+(31+69)=21+100=121因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84因为28+2=30可凑整,但最后要把多加的三个2减去。
改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44加18减19的结果就等于减1。
1.快速计算乘法口诀表在小学三年级,学生已经开始学习乘法口诀表。
熟练掌握乘法口诀表是进行速算和巧算的基础。
学生应该掌握1乘以任意数等于该数本身,以及0乘以任意数等于0的原则。
另外,在计算乘法的过程中,还可以利用一些巧妙的方法,如利用乘法交换律和结合律,简化计算的步骤。
2.快速计算除法在小学三年级,学生已经开始学习除法运算。
为了进行快速计算除法,学生需要熟悉乘法和除法之间的关系。
例如,学生可以通过将除法问题转化为乘法问题来进行计算。
另外,学生还需要熟悉常见的除法口诀,如9除以任意数的口诀。
3.快速计算加法与减法在小学三年级,学生已经开始学习加法和减法运算。
为了进行速算和巧算,学生可以借助一些技巧。
例如,学生可以利用补数进行计算,将加法问题转化为减法问题或将减法问题转化为加法问题。
另外,在计算的过程中,学生还可以利用进位和借位的方法简化计算的步骤。
4.快速计算小数在小学三年级,学生已经开始学习小数的运算。
为了进行快速计算小数,学生需要熟悉小数的基本概念,如小数点的意义和小数的大小比较。
另外,在计算小数的过程中,学生还可以利用近似计算和适当舍入的方法简化计算的步骤。
5.快速计算整数问题在小学三年级,学生已经开始学习整数的运算。
为了进行速算和巧算,学生需要熟悉整数的基本概念,如正数、负数和零的概念。
另外,在计算整数的过程中,学生还可以利用相反数的概念简化计算的步骤。
6.快速计算组合问题在小学三年级,学生已经开始学习组合的概念。
为了进行快速计算组合问题,学生需要熟悉排列组合的基本原理,如乘法原理和加法原理。
另外,在计算组合的过程中,学生还可以利用化简问题和分类讨论的方法简化计算的步骤。
7.快速计算面积和周长问题在小学三年级,学生已经开始学习面积和周长的计算。
为了进行速算和巧算,学生需要熟悉面积和周长的基本公式,如长方形的面积和周长的计算公式。
另外,在计算面积和周长的过程中,学生还可以利用化简问题和近似计算的方法简化计算的步骤。
速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。
相反,一个数减去几个数的和,等于连续减去这几个数。
即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。
如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。
如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。
例如:1+9=10,1叫做9的补数。
判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。
三年级奥数速算巧算经典题目一、加法中的速算巧算1. 凑整法题目:计算199 + 298+397 + 496。
解析:把199看作200 1,298看作300 2,397看作400 3,496看作500 4。
原式=(200 1)+(300 2)+(400 3)+(500 4)去括号得:200 1+300 2 + 400 3+500 4重新组合:(200+300 + 400+500)-(1 + 2+3+4)先计算括号里的数,200+300+400 + 500 = 1400,1+2+3+4 = 10。
所以结果为1400 10 = 1390。
2. 带符号搬家题目:计算134 + 297 34。
解析:根据带符号搬家的原则,把+297和 34的位置交换。
原式=134 34+297先计算134 34 = 100,再计算100+297 = 397。
二、减法中的速算巧算1. 凑整法题目:计算472 97。
解析:把97看作100 3。
原式=472-(100 3)去括号得:472 100+3先计算472 100 = 372,再计算372+3 = 375。
2. 一个数连续减去几个数题目:计算568 123 77。
解析:根据一个数连续减去几个数等于这个数减去这几个数的和。
原式=568-(123 + 77)先计算123+77 = 200,再计算568 200 = 368。
三、乘法中的速算巧算1. 乘法分配律题目:计算25×(40 + 4)。
解析:根据乘法分配律a×(b + c)=a×b+a×c。
这里a = 25,b = 40,c = 4。
原式=25×40+25×425×40 = 1000,25×4 = 100。
所以结果为1000+100 = 1100。
2. 乘法结合律题目:计算25×125×4×8。
解析:根据乘法结合律(a×b)×(c×d)=(a×c)×(b×d)。
第一讲速算与巧算一、"凑整"先算1.计算:〔1〕24+44+56〔2〕53+36+472.计算:〔1〕96+15〔2〕52+693.计算:〔1〕63+18+19〔2〕28+28+28二、改变运算顺序:在只有"+"、"-"号的混合算式中,运算顺序可改变计算:〔1〕45-18+19〔2〕45+18-19三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:〔1〕计算:1+2+3+4+5+6+7+8+9〔2〕计算:1+3+5+7+9〔3〕计算:2+4+6+8+101 / 6〔4〕计算:3+6+9+12+15〔5〕计算:4+8+12+16+202. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:〔1〕计算:1+2+3+4+5+6+7+8+9+10〔2〕计算:3+5+7+9+11+13+15+17〔3〕计算:2+4+6+8+10+12+14+16+18+20四、基准数法〔1〕计算:23+20+19+22+18+21〔2〕计算:102+100+99+101+981.计算:〔1〕18+28+72〔2〕87+15+132 / 6〔3〕43+56+17+24〔4〕28+44+39+62+56+212.计算:〔1〕98+67〔2〕43+28〔3〕75+263.计算:〔1〕82-49+18〔2〕82-50+49〔3〕41-64+294.计算:〔1〕99+98+97+96+95〔2〕9+99+9995.计算:〔1〕5+6+7+8+9〔2〕5+10+15+20+25+30+35〔3〕9+18+27+36+45+54〔4〕12+14+16+18+20+22+24+266.计算:53+49+51+48+52+50第一讲速算与巧算一、"凑整"先算1.计算:〔1〕24+44+56〔2〕53+36+47=24+〔44+56〕=〔53+47〕+36=24+100=100+36=124=1362.计算:〔1〕96+15〔2〕52+693 / 6=96+〔4+11〕=〔21+31〕+69=〔96+4〕+11=21+〔31+69〕=100+11=21+100=111=1213.计算:〔1〕63+18+19〔2〕28+28+28=60+2+1+18+19=〔28+2〕+〔28+2〕+〔28+2〕-6=60+〔2+18〕+〔1+19〕=30+30+30-6=60+20+20=90-6=100=84二、改变运算顺序:在只有"+"、"-"号的混合算式中,运算顺序可改变计算:〔1〕45-18+19〔2〕45+18-19=45+〔19-18〕=45+〔18-19〕=45+1=45-1=46=44三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:〔1〕计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数〔2〕计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数〔3〕计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数〔4〕计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数〔5〕计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数4 / 62. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:〔1〕计算:1+2+3+4+5+6+7+8+9+10=〔1+10〕×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.〔2〕计算:3+5+7+9+11+13+15+17=〔3+17〕×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.〔3〕计算:2+4+6+8+10+12+14+16+18+20=〔2+20〕×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法〔1〕计算:23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=123〔2〕计算:102+100+99+101+98方法1:102+100+99+101+98=100×5+2+0-1+1-2=500方法2:102+100+99+101+98=98+99+100+101+102=100×5=5001.计算:〔1〕18+28+72〔2〕87+15+13=18+〔28+72〕 =〔87+13〕+15=18+100 =100+15=118 =115〔3〕43+56+17+24〔4〕28+44+39+62+56+21=〔43+17〕+〔56+24〕 =〔28+62〕+〔44+56〕+〔39+21〕 =60+80 =90+100+60=140 =2502.计算:〔1〕98+67 〔2〕43+28 〔3〕75+26=98+2+65 =43+7+21 =75+5+21 =100+65 =50+21 =80+215 / 6=165 =71 =1013.计算:〔1〕82-49+18〔2〕82-50+49〔3〕41-64+29=82+18-49 =82+<49-50> =41+29-64 =100-49 =82-1 =70-64=51 =81 =64.计算:〔1〕99+98+97+96+95 〔2〕9+99+999=100×5-<1+2+3+4+5> =10+100+1000-3=500-15 =1110-3=485 =11075.计算:〔1〕5+6+7+8+9 〔2〕5+10+15+20+25+30+35=7×5 =20×7=35 =140〔3〕9+18+27+36+45+54 〔4〕12+14+16+18+20+22+24+26 = <9+54>×3 =<12+26>×4=63×3 =38×4 =129 =152 6.计算:〔1〕53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=3036 / 6。
第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。
而计算的方法的好坏直接决定我们的解题速度。
一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。
在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。
〖经典例题〗例1.计算768674232++=。
解析:本题数字比较大,如果我们按顺序计算的话,会发现非常的麻烦,但可以发现768和232的个位数字的和为10,我们考虑先将这两个数进行运算。
768674232(768232)6741674++=++=。
例2.计算39655+=。
解析:和上个例题不一样的是,本题就有两个数相加,而且这两个数的个位数字和并不是10,这时我们要发展进攻方略,将396拆成400-4,从而得到我们想要的东西。
39655400554451+=+-=.例3.计算9999+999+99+9= 。
解析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。
不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。
9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。
〖方法总结〗上面各题我们用到的是凑整法。
在这里要引入“补数”的概念:互为补数的两个数个位数之和是10,其他对应位上的数字之和是9。
这样,我们在计算加法时,尾数互补先相加,如例1;当没有尾数互补的数时,我们也可以拆将接近整十、整百的凑成整十、整百相加后再减去补数。
,如例2和例3。
〖巩固练习〗第 1 页共 11 页1.计算858683767882+++++2.计算188+8733.计算9898+2034.计算100000-85426〖经典例题〗例4.计算6324555--= 。
解析:观察本题,算式的两个减数的个位数字的和为10,因此我们想让这两个数先运算。
三年级速算与巧算对于三年级的小朋友们来说,数学学习中的速算与巧算可是一项非常有趣且实用的技能。
掌握了速算与巧算的方法,不仅能让计算变得更加轻松快捷,还能提高解题的效率和准确性,培养良好的数学思维。
一、加法的速算与巧算1、凑整法这是加法速算中最常用的方法。
比如:28 + 72 = 100,36 + 64 =100 等等。
在计算时,如果能把相加能凑成整十、整百、整千的数先加起来,会让计算变得简单许多。
例如:34 + 57 + 66我们可以先把 34 和 66 相加,得到 100,再加上 57,结果就是 157。
2、加法交换律和结合律加法交换律:两个数相加,交换加数的位置,和不变。
比如:3 +5 = 5 + 3。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
比如:(2 + 3) + 4 = 2 +(3 + 4)。
在计算中,灵活运用这两个定律,可以使计算更简便。
例如:25 + 18 + 75可以先交换 18 和 75 的位置,变成 25 + 75 + 18,然后先计算 25+ 75 = 100,再加上 18 得到 118。
3、基准数法当相加的数都比较接近某一个数时,可以把这个数作为基准数,然后把每个数都看作基准数加上或减去一个数,最后再进行计算。
比如:92 + 95 + 88 + 91 + 87观察这些数,都接近 90,可以把 90 作为基准数。
原式=(90 + 2) +(90 + 5) +(90 2) +(90 + 1) +(90 3)= 90×5 +(2 + 5 2 + 1 3)= 450 + 3= 453二、减法的速算与巧算1、凑整法与加法类似,在减法中,如果减数可以凑成整十、整百、整千的数,先把它们相加,再进行计算。
例如:100 38 22可以先把 38 和 22 相加,得到 60,然后用 100 减去 60,结果是 40。
2、减法的性质一个数连续减去两个数,等于这个数减去这两个数的和。