- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高平齐 长对正
宽相等
正方体的三视图
俯 左
长方体的三视图
俯
左
长方体
圆柱的三视图
俯
左
圆柱
圆锥的三视图
俯
左 圆锥
球的三视图
俯
左
球体
俯
练习、画下例几何体的三视图
侧
正
除了会画如正方体、长方体、圆柱、圆锥、球 等基本几何体的三视图外,我们还将学习画出由
一些简单几何体组成的组合体的三视图。
请同学们试试画出立白 洗洁精塑料瓶的三视图
74cm
C
A
三 视 图 欣 赏
从不同的角度看同一物体,视觉的效果可能不同, 要比较真实地反映出物体的特征我们可从多角度观看物体。
1.中心投影:
把光由一点向外散射形成 的投影叫中心投影。
S
特点:
中心投影的投影 投影面
大小与物体和投影面
之间的距离有关。
1
(1)
投射线 C
C1
1
摄影作品
美术作品
2.平行投影: 当把投影中心移到无穷远,在一束平
行光线照射下形成的投影,叫平行投影。
C
C
C1
1 1
(2)
正投影:投影方向垂 直于投影面的投影.
C1
1 1
(3)
斜投影:投影方向与投影 面倾斜的投影。
特点:
与投影面平行的平面图形留下 的影子, 与物体的形状大小完全相 同,与物体和投影面之间的距离无 关。
正视图
侧视图
俯 视 图
小结:
1、 三视图之间的投影规律:
正视图与俯视图------长对正。 正视图与侧视图------高平齐。 俯视图与侧视图------宽相等。
2、画几何体的三视图时,能看得见的轮廓线
或棱用实线表示,不能看得见的轮廓线 或棱用虚线表示。
3 空间想象能力,逆向思维能力
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
——苏轼
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
——苏轼
那怎样画一个空间几何体的三 视图呢?请同学们看底下图的三视图.
V
1. 在主视图、俯 视图中都体现形体的长 度,且长度在竖直方向 上是对正的,我们称之 为长对正。
2. 在主视图、侧视图上都体现形体的高 度,且高度在水平方向上是平齐的,我们称之 为高平齐。
侧
圆锥
正
正视图
侧视图
· 俯视图
例2 请同学们画下面这两个圆台的三视图, 如果你认为这两个圆台的三视图一样,画一 个就可以;如果你认为不一样,请分别画出 来。
正视图
侧视图
正视图
侧视图
俯视图
俯视图
注意:
(1)画几何体的三视图时,
能看见的轮廓和棱用实线表示, 不能看见的轮廓和棱用虚线表示。
(2)三视图的特点
一些螺母、带盖螺母又是有什么主要的几何结构特 征呢?
简单组合体
蒙古大草原上遍布蒙古包,那么蒙古包的主要几 何结构特征是什么?
Βιβλιοθήκη Baidu 简单组合体
居民的住宅又有什么主要几何结构特征?
简单组合体
下图是著名的中央电视塔和天坛,你能说说它们的 主要几何结构特征吗?
你能从旋转体的概念说说它们是由什么图形旋转而 成的吗?
3. 在侧视图、俯视图上都体现形体的宽 度,且是同一形体的宽度,是相等的,我们称 之为宽相等。
俯
四
正 视 图
侧
视 图
侧
棱 柱
正
三
俯视图
棱
柱
探究(1): 在例3中,若只给出正,侧视图, 那么它除了是圆台外,还可能是什么几何体?
正视图 俯 视 图
俯
正
侧视图
侧
四 棱
台
正
不同的几何体可能有某一两个视图相同 所以我们只有通过全部三个视图才能 全面准确的反映一个几何体的特征。
探究(2):如图是一个简单组合体的三视图, 想象它表示的组合体的结构特征,尝试画出它 的示意图。
正视图 侧视图 俯视图
练习:
(1)
(2)
圆柱
俯
正
侧
视
视
图
图
侧
正
俯视图
正视图
侧视图
侧视图
还原成实物图:
刚才所作的三视图, 你能将其还原成实物模型吗?
例3 根据三视图判断几圆台何体
正视图
侧视图
俯
俯视图
侧
圆台 正
例4 根据三视图判断几何体
正视图 侧视图 俯视图
正视图 侧视图
俯
俯视图
例5
根据三视图判断几何体
B
C
D
正方体的表面展开图
6、下图不是棱柱的展开图的是( C )
A
B
7、正方体的六个面分别涂有红,蓝,黄,绿,黑,白六种颜色, 根据下图所示,绿色面的相对面是_______色 蓝色
红
绿
黄
黄
黑
蓝
8、一个长,宽,高分别为5cm,4cm,3cm的长方体木 块,有一只蚂蚁经木快表面从顶点A爬行到C,最短的路 程是多少?
旋转体
你能想象这条曲线绕轴旋转而成的几何图形吗?
这顶可爱的草帽又是由什么样的曲线旋转而成的 呢?这个轮胎呢?
生活与数学
数学在生活中无处不在,培养在生活中不断的用 数学的眼光看问题,会逐渐激发学数学的兴趣,增强 数学地分析问题、解决问题的能力.
5、下列图中,不是正方体的表面展开图的是( C )
A
1.1.2简单组合体的结构特征
简单组合体
日常生活中我们常用到的日用品,比如:消毒液、 暖瓶、洗洁精等的主要几何结构特征是什么?
由柱、锥、台、球组成了一些简单的组合体.认 识它们的结构特征要注意整体与部分的关系.
圆柱
圆台
圆柱
简单组合体
走在街上会看到一些物体,它们的主要几何结构特 征是什么?
简单组合体
c(高)
b(宽)
a(长)
那什么是空间图形的三视图呢?
概念:视图是指将物体按正投影向投影面 投射所得到的图形.
1.光线自物体的前面向后投射所得
三 视 图
到的投影称为主视图或正视图. 2.自上向下的称为俯视图. 3. 自左向右的称为左视图.
例1 (1)圆柱的三视图
正视图
俯
侧视图
俯视图
侧
圆柱 正
例2 (2)圆锥的三视图 俯
正视图
c(高)
b(宽)
a(长)
俯视图
长
方
体
的
三
视
侧 视
图
图
三视图能反映物体真实的形状和长、宽、高.
三视图之间的投影规律
正
视 图
c(高)
俯 视 图
a(长)
高
长对正
平 齐
a(长)
b(宽)
侧
c(高)
视 图
b(宽)
宽相等
正侧俯 视视视 图图图 反反反 映映映 了了了 物物物 体体体 的的的 高高长 度度度 和和和 长宽宽 度度度