高中数学知识点题库 011函数的概念及表示
- 格式:doc
- 大小:66.00 KB
- 文档页数:4
第一节函数的定义一.函数的概念1.前提:A,B是非空的_____.2.对应:集合A中的_____一个数x,在集合B中都有_________的数f(x)和它对应.3.结论:f:A→B称为_______________的一个函数.4.表示:____________.注:①自变量__;②定义域:__的取值范围A;③函数值:与x的值相对应的____;④值域:函数值的集合____________;⑤函数的三要素:定义域、对应关系和_____.二.函数相等由于函数的值域是由_______和_________决定的,所以,如果两个函数的_______相同,并且_________完全一致,就称这两个函数相等.三.区间的概念1.一般区间的表示(其中a,b为实数,且a<b).2.无穷大的概念①实数集R用区间表示为__________.“∞”读作___________,“-∞”读作_____________,“+∞”读作_____________.②无穷区间的表示:考点一 函数概念的简单运用1.下图中能表示函数关系的是 .2.下图中,能表示函数y=f(x)的图象的是( )3.判断下列对应能表示y 是x 的函数的是_________. (1)y=|x| (2)|y|=x (3)y=x 2(4)y 2=x(5)11--=x xy 4.给出下列两个集合A ,B 及A →B 的对应f:①A={−1,0,1},B={−1,0,1},f:A 中的数的平方; ②A={0,1},B={−1,0,1},f:A 中的数的开方; ③A=Z ,B=Q ,f:A 中的数的倒数; ④A=R,B={正实数},f:A 中的数取绝对值; ⑤A={1,2,3,4},B={2,4,6,8,10},f:n=2m ,其中n∈A ,m∈B ; 其中是A 到B 的函数有___个。
5.若集合A={0,1,3,m},B={1,4,a 4,a 2+3a},其中m ∈N ∗,a ∈N ∗,f:x →y=3x+1,x ∈A ,y ∈B 是从定义域A 到值域B 的一个函数,则m+a=___考点二 求具体函数的定义域 解题方法:0,1≠=x xy ; 0,0≠=x x y ; 0,≥=x x y ; 1.求下列函数定义域.(后四个用区间表示)x x x f -+-=11)()1( 11)()2(2-+=x x x f5|1|13)()3(-++-=x x x fxx x x f -+=||)1()()4(0 x x x x f 1)()5(2--= 4923)()6(2+--=x x x x f考点三 求复合函数的定义域(用区间表示)解题方法:1)定义域永远是x 的范围;2)括号内容永远等价。
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
高一数学函数知识点总结及例题函数是高中数学中的重要概念,也是后续学习数学的基础。
本文将对高一数学中的函数知识点进行总结,并提供一些例题帮助读者更好地理解和应用这些知识。
一、函数的定义与性质函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素,可以用来描述两个变量之间的依赖关系。
函数通常记作f(x),其中x为自变量,f(x)为函数值或因变量。
函数的性质包括定义域、值域、单调性、奇偶性等。
定义域是自变量的取值范围,值域是函数值的取值范围。
函数可以是单调递增、单调递减或既不递增也不递减。
奇偶性是指函数的对称性,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
例题1:已知函数f(x)=-2x+3,求函数的定义域和值域。
解:由于函数中的x没有任何限制,所以定义域为全体实数。
对于值域,由于函数是线性函数,可以取到任意的实数值,所以值域也是全体实数。
例题2:已知函数g(x)=x^2-4x,判断函数的单调性和奇偶性。
解:函数g(x)是二次函数,当系数a>0时,函数是开口向上的抛物线,函数是单调递增的;当系数a<0时,函数是开口向下的抛物线,函数是单调递减的。
由于g(x)是二次函数,所以它是偶函数。
二、函数的图像及其性质函数的图像是函数在平面直角坐标系上的几何表示,可以通过绘制函数的图像来更直观地理解函数的性质。
1. 幂函数:幂函数是指形如y=ax^n的函数,其中a和n为常数,且a≠0,n为整数。
幂函数的图像的特点是曲线形状与n的正负和大小有关,其中当n为偶数时,图像关于y轴对称;当n为奇数时,图像关于原点对称。
2. 指数函数:指数函数是以常数e(自然对数的底数)为底数的幂函数,形如y=a*e^x,其中a为常数。
指数函数的图像特点是在右侧逐渐上升,在左侧逐渐下降,且经过点(0,1)。
3. 对数函数:对数函数是指以常数a(a>0且a≠1)为底数的对数函数,形如y=loga(x),其中x为正实数。
函数复习主要知识点一、函数的概念与表示1、映射(1)映射: 设A.B 是两个集合, 如果按照某种映射法则f, 对于集合A 中的任一个元素, 在集合B 中都有唯一的元素和它对应, 则这样的对应(包括集合A.B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射, 记作f: A →B 。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射, 多对一是映射2、函数构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件: 三要素有两个相同例1.下列各对函数中, 相同的是( ) A. B.C. D 、f (x )=x,例2、 给出下列四个图形, 其中能表示从集合M 到集合N 的函数关系的有( ) A. 0个 B 、 1个 C 、 2个 D 、3个二、函数的解析式与定义域1.求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零, 零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1; 例.(05江苏卷)函数y =________________________2求函数定义域的两个难点问题 例3:(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。
(2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域。
例4: 设 , 则 的定义域为__________变式练习: , 求的定义域。
三、函数的值域1求函数值域的方法①直接法: 从自变量x的范围出发, 推出y=f(x)的取值范围, 适合于简单的复合函数;②换元法: 利用换元法将函数转化为二次函数求值域, 适合根式内外皆为一次式;③判别式法: 运用方程思想, 依据二次方程有根, 求出y的取值范围;适合分母为二次且∈R的分式;④分离常数: 适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法: 利用函数的单调性求值域;⑥图象法: 二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法: 由数形结合, 转化距离等求值域。
2.1函数的概念(一)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .(y 就是x 在f 作用下的对应值)其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. (二)构成函数的三要素:定义域、对应关系和值域 (三)区间的概念函数概念1、如下图可作为函数)(x f =的图像的是( )ABCD2. 下列四个图形中,不是..以x 为自变量的函数的图象是求函数定义域(1)|x |x 1)x (f -=(2)x111)x (f +=(3)5x 4x )x (f 2+--=(4)1x x 4)x (f 2--=(5)10x 6x )x (f 2+-=(6)13x x 1)x (f -++-=(7)f ( x ) = (x -1) 0 (8)xx x f -++=211)( (9)xx f -=11)((10)2()1f x x=-(11)()1x f x x =-(12)22111x x y x -+-=-1、函数226y kx kx k =-++的定义域为R ,求k 的取值范围2、函数224(21)x y x m x m -=+++的定义域为R ,求m 的取值范围判断两函数是否为同一函数1、判断两个函数是否为同一函数,说明理由(1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x ; g ( x ) = 2x (3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) = 2x2、判断两个函数是否为同一函数,说明理由(1)(3)(5)3x x y x +-=+; 5y x =- (2)11y x x =-+; (1)(1)y x x =-+x y O xy O xyOxyO xyO xyOxyOOyxA.B.C.D.(3)343y x x =-; 31y x x =- (4)11y x =+; 11u v =+求函数解析式(1)代入法1、 已知函数2()1f x x =-,求()f x -,(1)f x +2、 已知函数)31(12)(≤≤+=x x x f ,则 ( )A .)1(-x f =)20(22≤≤+x xB . )1(-x f =)42(12≤≤-x xC . )1(-x f =)20(22≤≤-x xD . )1(-x f =)42(12≤≤+-x x3、 已知2()f x x m =+,()(())g x f f x =,求()g x 的解析式。
高一数学知识点笔记整理函数高一数学知识点笔记整理函数1. 函数的定义及表示法函数是数学中一种重要的概念,用于描述自变量和因变量之间的关系。
通常表示为f(x),其中x表示自变量,f(x)表示因变量。
2. 函数的定义域和值域函数的定义域是自变量的所有可能取值,而值域是因变量的所有可能取值。
函数的定义域和值域可以是实数集、整数集或其他特定的数集。
3. 函数的性质函数可以具有以下几种性质:a) 奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x);b) 单调性:函数可以是单调递增或单调递减;c) 周期性:函数在一定范围内具有重复的规律性。
4. 基本函数类型常见的基本函数类型包括:a) 幂函数:f(x) = x^a,其中a为实数;b) 指数函数:f(x) = a^x,其中a为正实数,且a≠1;c) 对数函数:f(x) = log_a(x),其中a为正实数,且a≠1。
5. 函数的图像与性质函数的图像是展示函数性质的重要方式。
通过绘制函数的图像,可以观察到函数的增减性、最值、零点等重要特征。
6. 复合函数复合函数是指一个函数作为另一个函数的自变量。
表示为f(g(x)),其中g(x)为内函数,f(x)为外函数。
7. 反函数反函数是指与原函数满足互为对方的自变量和因变量关系的函数。
用f^(-1)(x)表示反函数。
8. 一次函数与二次函数一次函数的表达式为f(x) = ax + b,其中a和b为常数。
一次函数的图像为一条直线。
二次函数的表达式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a≠0。
二次函数的图像为开口向上或向下的抛物线。
9. 函数的运算函数之间可以进行加法、减法、乘法和除法运算。
这种运算通常是指函数之间的点运算,即对应自变量的值进行运算。
以上是高一数学中关于函数的一些基本知识点的笔记整理。
函数在数学中具有重要的作用,在实际问题中也有广泛的应用。
通过深入学习和理解这些知识点,可以帮助我们更好地理解和解决数学问题。
高中数学必修一——函数基本性质引言:函数是高中数学中的重要知识点之一,它不仅在高考中占有一定比重,而且在大学数学、物理等学科中也应用广泛。
因此,学好函数是中学数学的重要任务之一。
本文将介绍函数的基本性质,包括定义域、值域、单调性、奇偶性、周期性等,同时提供20道以上的练习题,供读者参考。
一、函数的定义函数是一种特殊的映射关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数通常用符号f(x)表示,其中x是自变量,f(x)是因变量。
函数可以表示为f:A\rightarrow B,其中A是定义域,B是值域。
二、函数的基本性质1.定义域:函数的定义域是指所有可以输入函数的自变量的值的集合。
函数的定义域可以是实数集、有理数集、整数集等。
在定义函数时,需要指定函数的定义域。
2.值域:函数的值域是指所有函数可能的输出值的集合。
它是由定义域和函数的性质决定的。
3.单调性:函数的单调性指函数在定义域上的单调变化性质,包括单调递增和单调递减。
如果函数的自变量增大,函数值也增大,则称函数在这个区间内是单调递增的;如果函数的自变量增大,函数值减小,则称函数在这个区间内是单调递减的。
4.奇偶性:函数的奇偶性指函数的性质,可以分为偶函数和奇函数。
如果函数在定义域内满足f(-x)=f(x),则称函数为偶函数;如果函数在定义域内满足f(-x)=-f(x),则称函数为奇函数。
5.周期性:函数的周期性指函数在定义域上存在一个最小正周期T,即f(x+T)=f(x),其中T是正实数。
三、练习题1.设函数f(x)=ax+b,其中a,b是实数,且f(2)=3,f(3)=4,求a,b。
2.求函数f(x)=2x^2-3x+1的定义域和值域。
3.若函数f(x)在区间[a,b]上是单调递增的,且f(a)=f(b)=0,证明f(x)=0在区间[a,b]上有且只有一个实根。
4.设函数f(x)=\sin(x+\alpha),其中0<\alpha<\dfrac{\pi}{2},证明f(x)是奇函数。
1.设f(x)=|x-1|-|x|,则f[f(1/2)]=()
A、-1/2
B、0
C、1/ 2
D、1
答案:D
解析:f(1/2)=| 1/2-1|-| 1/2|=0,∴f[f(1/2)]=f(0)=1-0=1.
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
2.若f(x)=x-1/x,则方程f(4x)=x的根是()
A、1/2
B、- 1/2
C、2
D、-2
答案:A
解析:由f(4x)=x建立方程,进行化简配方可得方程的根.
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
3.下列两个变量之间的关系是函数关系的是()
A、光照时间和果树产量
B、降雪量和交通事故发生率
C、人的年龄和身高
D、正方形的边长和面积
答案:D
解析:A中光照时间和果树产量是一种不确定的关系,即相关关系,故A不满足要求;
B中降雪量和交通事故发生率是一种不确定的关系,即相关关系,故B不满足要求;
C人的年龄和身高是一种不确定的关系,即相关关系,故C也不满足要求;
D正方形的边长和面积是一种确定的关系,即函数关系,故D满足要求;
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
4.对于函数y=f(x),以下说法不正确的是()
A、y是x的函数
B、对于不同的x,y的值可以不同
C、f(a)表示当x=a时函数f(x)的值
D、f(x)一定可用一个具体的式子表示出来
答案:D
解析:A、由函数的定义知,y是x的函数,故A正确;
B、如常函数y=f(x)=x,故B正确;
C、由函数值的定义知,f(a)表示当x=a时函数f(x)的值,是一个确定的值,故C正确;
D、函数的表示方法有解析法、表格法和图象法,对于表格法和图象法有的无法用一个具体的式子表示出来,故D不正确.
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
5.如图可作为函数=f(x)的图象的是()
A、B、C、D、
答案:D
解析:由函数的定义.ABC中存在x有两个y与x对应,不能构成函数.
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
6.下列图象中,不是函数图象的是()
A、B、C、D、
答案:C
解析:由函数的概念,C中有的x,存在两个y与x对应,不符合函数的定义,而ABD均符合.
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
7.已知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N∅,x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则a,k的值分别为()
A、2,3
B、3,4
C、3,5
D、2,5
答案:D
解析:按照对应法则:y=3x+1,B={4,7,10,3k+1}={4,7,a4,a2+3a },而a∈N*,a4≠10,∴a2+3a=10,a=2,3k+1=a4=16,k=5,
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
8.对于函数y=f(x),以下说法正确的有()
①y是x的函数;
②对于不同的x,y的值也不同;
③f(a)表示当x=a时函数f(x)的值,是一个常量;
④f(x)一定可以用一个具体的式子表示出来.
A、1个
B、2个
C、3个
D、4个
答案:B
解析:①、由函数的定义知,y是x的函数,故①正确;
②、不一定成立,如常函数y=f(x)=0,故②不正确;
③、由函数值的定义知,f(a)表示当x=a时函数f(x)的值,是一个确定的值,故③正确;
④、函数的表示方法有解析法、表格法和图象法,对于表格法和图象法有的无法用一个具体的式子表示出来,故④不正确.
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
9.一组实验数据如下表:
则下列四个关系式中,最接近实验数据的表达式为()
A、v=log2t
B、t•2v=1
C、v=t2-1/2
D、v+2=2t
答案:C
解析:把t看作自变量,v看作其函数值,从表中数据的变化趋势看,函数递增的速度不断加快
对照四个选项,A选项是对数型函数,其递增速度不断变慢
B选项随着t的增大v变小,故不能选
D选项以一个恒定的幅度变化,其图象是直线型的,符合本题的变化规律
C选项是二次型,对比数据知,其最接近实验数据的变化趋势
题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。
10.函数y=f(x)定义在[-2,3]上,则函数y=f(x)图象与直线x=2的交点个数有()A、0个B、1个C、2个D、不能确定
答案:B
解析:按照函数的定义,自变量在函数的定义域内任取一个值,都有唯一一个确定的函数值与之对应,故函数y=f(x)在定义域[-2,3]上,图象与直线x=2的交点个数有一个,故选B.题干评注:函数的概念及表示
问题评注:函数f中对应输入值的输出值x的标准符号为f(x)。