高中数学立体几何复习专题(空间角)
- 格式:doc
- 大小:1.20 MB
- 文档页数:10
立体几何专题:空间角第一节:异面直线所成的角 一、基础知识1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ΄//a ,b ΄//b ,相交直线a ΄b ΄所成的锐角(或直角)叫做 。
2.范围: ⎥⎦⎤ ⎝⎛∈2,0πθ3.方法: 平移法、问量法、三线角公式(1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。
(2)向量法:可适当选取异面直线上的方向向量,利用公式b a =><=,cos cos θ求出来方法1:利用向量计算。
选取一组基向量,分别算出b a ⋅代入上式方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量),,(111z y x a = ),,(222z y x b =222222212121212121cos z y x z y x z z y y x x ++++++=∴θ(3)三线角公式 用于求线面角和线线角斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 21=二、例题讲练例1、(2007年全国高考)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b ab >,AA 1=c ,求异面直线D 1B 和AC 所成的角的余弦值。
方法一:过B 点作 AC 的平行线(补形平移法)AB1B 1A 1D 1C CD方法二:过AC 的中点作BD1平行线 方法三:(向量法)例3、 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90 底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故例4、 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点 求直线AC 与PB 所成角的余弦值;解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、CD(3,0,0)B 、(3,1,0)C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-==PB AC设PB AC 与的夹角为θ,则,1473723||||cos ==⋅⋅=PB AC PB AC θ ∴AC 与PB 所成角的余弦值为14731. 正方体的12条棱和12条 面对角线中,互相异面的两条线成的角大小构成的集合是{}οοο60,45,90。
第九节 利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a·b||a||b|, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n||a||n|.3.二面角(1)若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理cos θ=cos θ1cos θ2.如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,其中θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒]注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.。
解答题1. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o .(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.2. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,︒=∠45CDA .(I )求证:平面P AB ⊥平面P AD ;(II )设AB =AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由。
3. 如图5.在椎体P -ABCD 中,ABCD 是边长为1的棱形,且∠DAB =60︒,2PA PD ==,PB =2, E ,F 分别是BC ,PC 的中点.(1) 证明:AD ⊥平面DEF ;(2) 求二面角P -AD -B 的余弦值.4. 如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当CF =1时,求证:EF ⊥1A C ;(Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值.A B DC FPE5. 如图,在圆锥PO中,已知PO=2,⊙O的直径2AB=,C是»AB的中点,D为AC 的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B PA C--的余弦值。
6. 如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12 PD.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.8. 如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )若PD =AD ,求二面角A -PB -C 的余弦值.9. 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB =90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.10. 如图,在ABC ∆中,60,90,ABC BAC AD ∠=∠=o o 是BC 上的高,沿AD 把ABC ∆折起,使90BCD ∠=o 。
第六节 空间角考点一 异面直线所成的角 [典例] (1)(2018·全国卷Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A.22 B.32C.52D.72(2)(2019·成都检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A.12 B .-12C.32 D .-32[题组训练]1.在正三棱柱ABC -A 1B 1C 1中,AB =2BB 1,则AB 1与BC 1所成角的大小为( )A .30°B .60°C .75°D .90°2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,(1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小.考点二 直线与平面所成的角[典例] (1)(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3 (2)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为________.[题组训练]1.在正三棱柱ABC -A 1B 1C 1中,AB =1,点D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为( )A.104B.64C.105D.652.(2019·青海模拟)如图,正四棱锥P -ABCD 的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面P AC 所成的角为( )A .60°B .30°C .45°D .90°考点三 二面角[典例] (1)已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角的平面角为________.(2)已知△ABC 中,∠C =90°,tan A =2,M 为AB 的中点,现将△ACM 沿CM 折起,得到三棱锥P -CBM ,如图所示.则当二面角P -CM -B 的大小为60°时,AB PB=________.[题组训练] 1.已知二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( ) A .150°B .45°C .120°D .60°2.如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在平面,C 是圆周上不同于A ,B 两点的任意一点,且AB =2,P A =BC =3,则二面角A -BC -P 的大小为________.[课时跟踪检测]1.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB ,C 1D 1的中点,则A 1B 1与平面A 1EF 所成角的正切值为( )A .2B. 2 C .1 D. 32.在矩形ABCD 中,AB =3,AD =4,P A ⊥平面ABCD ,P A =435,那么二面角A -BD -P 的大小为( ) A .30°B .45°C .60°D .75°3.如图,空间四边形ABCD 的对角线AC =8,BD =6,M ,N 分别为AB ,CD 的中点,且异面直线AC 与BD 所成的角为90°,则MN 的长度为( )A .5B .6C .8D .104.已知AB ∥平面α,AC ⊥平面α于点C ,BD 是平面α的斜线,D 是斜足,若AC =9,BD =63,则BD 与平面α所成的角的大小为________.5.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.6.已知边长为2的正方形ABCD 的四个顶点在球O 的球面上,球O 的体积V 球=1605π3,则OA 与平面ABCD 所成的角的余弦值为________.7.(2018·天津高考)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB 的中点,AB=2,AD=23,∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.8.(2019·湖北八校联考)如图,在Rt△ABC中,AB=BC=3,点E,F分别在线段AB,AC上,且EF∥BC,将△AEF沿EF折起到△PEF的位置,使得二面角P-EF-B的大小为60°.(1)求证:EF⊥PB;(2)当点E为线段AB的靠近B点的三等分点时,求四棱锥P-EBCF的侧面积.。
考点08 空间角的求解问题立体几何是历年高考的必考题,其考查形式主要为空间几何体的有关计算(主要是体积计算),空间线面的位置关系以及空间角和距离的求解。
例如:2022年全国乙卷(理)[18],2022年全国甲卷(理)[18],2022年浙江高考[19],2022年新高考Ⅰ卷[19],2022年新高考Ⅱ卷[20],2022年天津高考[17],2022年北京高考[17]等都对空间几何体的体积进行了考查。
〔1〕平移法求异面直线所成的角求异面直线所成的角的方法为平移法,平移法一般有3种 (1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移; (3)补形平移.〔2〕线面角、二面角1.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,把线面角转化到一个三角形中求解.2.二面角的求法:二面角的大小用它的平面角来度量. 平面角的作法常见的有①定义法;①垂面法。
〔3〕利用空间向量求空间中的角与距离 1.异面直线所成角若异面直线1l ,2l 所成的角为θ,则|||||cos |cos b a b a b a ==θ(注意:两异面直线所成的角为锐角或直角,而不共线的两向量的夹角的取值范围为(0,π),所以公式中要加绝对值),其中a ,b 分别是直线1l ,2l 的方向向量。
2.直线与平面所成角已知直线l 与平面α,A l =α ,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则|||||cos |sin n a n a n a ==θ。
(注意:直线与平面所成角的范围为⎥⎦⎤⎢⎣⎡2,0π,而向量的夹角的取值范围为[]π,0,所以公式中要加绝对值)。
3.二面角设1n 为平面α的法向量,2n 为平面β的法向量,1n ,2n 的夹角为θ,l =βα ,则二面角βα--l 的大小为θ或θπ-。
设二面角βα--l 的大小为ϕ,则|||||cos ||cos |2121n n ==θϕ①①所示。
向量法求空间角考试要求 能用向量法解决异面直线、直线与平面、平面与平面的夹角问题,并能描述解决这一类问题的程序,体会向量法在研究空间角问题中的作用.知识梳理1.异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v ||u||v |.2.直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|=⎪⎪⎪⎪⎪⎪u ·n |u ||n |=|u·n||u||n|.3.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.常用结论1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角的范围是[0,π],两个平面夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两条异面直线所成的角与两直线的方向向量所成的角相等.( × )(2)直线l 的方向向量与平面α的法向量的夹角的余角就是直线l 与平面α所成的角.( × )(3)二面角的平面角为θ,则两个面的法向量的夹角也是θ.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2.( √ )教材改编题1.已知直线l 1的方向向量s 1=(1,0,1)与直线l 2的方向向量s 2=(-1,2,-2),则l 1和l 2夹角的余弦值为( ) A.24B.12C.22D.32答案 C解析 因为s 1=(1,0,1),s 2=(-1,2,-2),所以cos 〈s 1,s 2〉=s 1·s 2|s 1||s 2|=-1-22×3=-22.所以l 1和l 2夹角的余弦值为22. 2.已知向量m ,n 分别是直线l 的方向向量、平面α的法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.答案 30°解析 设直线l 与α所成角为θ, sin θ=||cos 〈m ,n 〉=12,又∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=30°.3.已知两平面的法向量分别为(0,-1,3),(2,2,4),则这两个平面夹角的余弦值为______. 答案156解析|0,-1,3·2,2,4|1+9×4+4+16=156.题型一 异面直线所成的角例1 (1)(2022·大庆模拟)如图,已知棱长为2的正方体ABCD -A 1B 1C 1D 1,E ,F ,G 分别为AB ,CD 1,AD 的中点,则异面直线A 1G 与EF 所成角的余弦值为( )A .0 B.1010C.22D .1答案 A解析 如图,分别以DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(2,0,2),G (1,0,0),E (2,1,0),F (0,1,1),所以A 1G —→=(-1,0,-2),EF →=(-2,0,1), 设异面直线A 1G 与EF 所成的角为θ, 则cos θ=|A 1G —→·EF →||A 1G —→||EF →|=|-1×-2-2×1|5×5=0.(2)(2022·杭州模拟)如图,已知圆锥CO 的截面△ABC 是正三角形,AB 是底面圆O 的直径,点D 在AB ︵上,且∠AOD =2∠BOD ,则异面直线AD 与BC 所成角的余弦值为( )A.34B.12C.14D.34答案 A解析 因为∠AOD =2∠BOD ,且∠AOD +∠BOD =π, 所以∠BOD =π3,连接CO ,则CO ⊥平面ABD ,以点O 为坐标原点,OB ,OC 所在直线分别为y 轴、z 轴建立如图所示的空间直角坐标系,设圆O 的半径为2,则A (0,-2,0),B (0,2,0),C (0,0,23),D (3,1,0), AD →=(3,3,0),BC →=(0,-2,23),设异面直线AD 与BC 所成的角为θ,则cos θ=|cos 〈AD →,BC →〉|=|AD →·BC →||AD →||BC →|=|-6|23×4=34,因此,异面直线AD 与BC 所成角的余弦值为34. 教师备选如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2B.π3C.π4D.π6 答案 B解析 以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),∴D ⎝⎛⎭⎪⎫22,22,0, ∴AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C —→=(0,2,-2),∴cos〈AD →,A 1C —→〉=AD →·A 1C —→|AD →||A 1C —→|=12,∴即异面直线AD ,A 1C 所成角为π3.思维升华用向量法求异面直线所成的角的一般步骤 (1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.跟踪训练1 (1)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是棱CC 1的中点,AF →=λAD →,若异面直线D 1E 和A 1F 所成角的余弦值为3210,则λ的值为______.答案 13解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),正方体的棱长为2,则A 1(2,0,2),D 1(0,0,2),E (0,2,1),A (2,0,0), ∴D 1E —→=(0,2,-1), A 1F —→=A 1A —→+AF →=A 1A —→+λAD → =(-2λ,0,-2).∴cos〈A 1F —→,D 1E —→〉=A 1F —→·D 1E —→|A 1F —→||D 1E —→|=22λ2+1×5=3210, 解得λ=13⎝⎛⎭⎪⎫λ=-13舍.(2)(2022·武汉模拟)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________.答案24解析 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形, 所以BM ⊥AC ,同理,A 1M ⊥AC , 因为平面A 1ACC 1⊥平面ABC , 平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1, 因为A 1M ⊂平面A 1ACC 1, 所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为坐标原点,MA →,MB →,MA 1—→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系.设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1—→=(-3,0,3),A 1B —→=(0,3,-3), 所以cos 〈AC 1—→,A 1B —→〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24. 题型二 直线与平面所成的角例2 (2022·广州模拟)在边长为2的菱形ABCD 中,∠BAD =60°,点E 是边AB 的中点(如图1),将△ADE 沿DE 折起到△A 1DE 的位置,连接A 1B ,A 1C ,得到四棱锥A 1-BCDE (如图2).(1)证明:平面A 1BE ⊥平面BCDE ;(2)若A 1E ⊥BE ,连接CE ,求直线CE 与平面A 1CD 所成角的正弦值. (1)证明 连接图1中的BD ,如图所示.因为四边形ABCD 为菱形,且∠BAD =60°, 所以△ABD 为等边三角形,所以DE ⊥AB , 所以在图2中有DE ⊥BE ,DE ⊥A 1E , 因为BE ∩A 1E =E ,BE ,A 1E ⊂平面A 1BE , 所以DE ⊥平面A 1BE , 因为DE ⊂平面BCDE , 所以平面A 1BE ⊥平面BCDE .(2)解 因为平面A 1BE ⊥平面BCDE ,平面A 1BE ∩平面BCDE =BE ,A 1E ⊥BE ,A 1E ⊂平面A 1BE ,所以A 1E ⊥平面BCDE ,以E 为坐标原点建立如图所示的空间直角坐标系,所以A 1(0,0,1),C (2,3,0),D (0,3,0),E (0,0,0),所以A 1D —→=(0,3,-1),A 1C —→=(2,3,-1),EC →=(2,3,0), 设平面A 1CD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1D —→=3y -z =0,n ·A 1C —→=2x +3y -z =0,令y =1,则n =(0,1,3),所以cos 〈n ,EC →〉=n ·EC →|n ||EC →|=327=2114,所以直线CE 与平面A 1CD 所成角的正弦值为2114. 教师备选(2020·新高考全国Ⅰ)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面PAD ,平面PAD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC , 因为PD ⊥平面ABCD ,所以AD ⊥PD , 所以l ⊥PD ,因为DC ∩PD =D ,PD ,DC ⊂平面PDC , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系,因为PD =AD =1,则有D (0,0,0),C (0,1,0),P (0,0,1),B (1,1,0), 因为平面PAD ∩平面PBC =l , 所以l 过点P ,设Q (m ,0,1),则有DC →=(0,1,0),DQ →=(m ,0,1),PB →=(1,1,-1), 设平面QCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 记PB 与平面QCD 所成的角为θ,根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值, 则sin θ=|cos 〈n ,PB →〉|=|1+m |3·m 2+1, 当m =0时,sin θ=33, 当m ≠0时,sin θ=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2mm 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 思维升华 利用空间向量求线面角的解题步骤跟踪训练2 (2022·全国百校联考)如图所示,在三棱锥S -BCD 中,平面SBD ⊥平面BCD ,A 是线段SD 上的点,△SBD 为等边三角形,∠BCD =30°,CD =2DB =4.(1)若SA =AD ,求证:SD ⊥CA ;(2)若直线BA 与平面SCD 所成角的正弦值为419565,求AD 的长.(1)证明 依题意,BD =2, 在△BCD 中,CD =4,∠BCD =30°, 由余弦定理求得BC =23, ∴CD 2=BD 2+BC 2,即BC ⊥BD .又平面SBD ⊥平面BCD ,平面SBD ∩平面BCD =BD ,BC ⊂平面BCD , ∴BC ⊥平面SBD .从而BC ⊥SD , 在等边△SBD 中,SA =AD ,则BA ⊥SD . 又BC ∩BA =B ,BC ,BA ⊂平面BCA , ∴SD ⊥平面BCA ,又CA ⊂平面BCA , ∴SD ⊥CA .(2)解 以B 为坐标原点,BC ,BD 所在直线分别为x 轴、y 轴,过点B 作平面BCD 的垂线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (23,0,0),D (0,2,0),S (0,1,3),故CD →=(-23,2,0),SD →=(0,1,-3), 设平面SCD 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·CD →=0,m ·SD →=0,即⎩⎨⎧-23x +2y =0,y -3z =0,取x =1,则y =3,z =1, ∴m =(1,3,1), 设DA →=λDS →(0≤λ≤1), 则DA →=(0,-λ,3λ),故A (0,2-λ,3λ),则BA →=(0,2-λ,3λ), 设直线BA 与平面SCD 所成角为θ, 故sin θ=||cos 〈m ,BA →〉=|m ·BA →||m ||BA →|=|23-3λ+3λ|5·2-λ2+3λ2=419565, 解得λ=14或λ=34,则AD =12或AD =32.题型三 平面与平面的夹角例3 (12分)(2021·新高考全国Ⅰ)如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD; [切入点:线线垂直转化到线面垂直](2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E -BC -D 的大小为45°,求三棱锥A -BCD 的体积.[关键点:建系写坐标]教师备选(2020·全国Ⅰ改编)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66 DO.(1)证明:PA⊥平面PBC;(2)求平面BPC与平面EPC的夹角的余弦值.(1)证明由题设,知△DAE为等边三角形,设AE=1,则DO=32,CO=BO=12AE=12,所以PO =66DO =24,PC =PO 2+OC 2=64, 同理PB =64,PA =64, 又△ABC 为等边三角形, 则BAsin60°=2OA ,所以BA =32,PA 2+PB 2=34=AB 2,则∠APB =90°,所以PA ⊥PB ,同理PA ⊥PC , 又PC ∩PB =P ,PC ,PB ⊂平面PBC , 所以PA ⊥平面PBC .(2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝ ⎛⎭⎪⎫-12,0,0,P ⎝ ⎛⎭⎪⎫0,0,24,B ⎝ ⎛⎭⎪⎫-14,34,0,C ⎝ ⎛⎭⎪⎫-14,-34,0, PC →=⎝ ⎛⎭⎪⎫-14,-34,-24, PB →=⎝ ⎛⎭⎪⎫-14,34,-24,PE →=⎝ ⎛⎭⎪⎫-12,0,-24, 设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2),由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝ ⎛⎭⎪⎫1,33,-2, 故cos 〈m ,n 〉=m ·n|m ||n |=223×103=255, 所以平面BPC 与平面EPC 的夹角的余弦值为255.思维升华 利用空间向量求平面与平面夹角的解题步骤跟踪训练3 (2021·全国乙卷改编)如图,四棱锥P -ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 的中点,且PB ⊥AM .(1)求BC ;(2)求平面APM 与平面BPM 夹角的正弦值.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD ,PD ⊥DC .在矩形ABCD 中,AD ⊥DC ,故以点D 为坐标原点建立空间直角坐标系如图所示,设BC =t ,则A (t ,0,0),B (t ,1,0),M ⎝ ⎛⎭⎪⎫t 2,1,0,P (0,0,1), 所以PB →=(t ,1,-1),AM →=⎝ ⎛⎭⎪⎫-t 2,1,0.因为PB ⊥AM ,所以PB →·AM →=-t 22+1=0,得t =2,所以BC = 2.(2)易知C (0,1,0),由(1)可得AP →=(-2,0,1),AM →=⎝ ⎛⎭⎪⎫-22,1,0,CB →=(2,0,0),PB →=(2,1,-1).设平面APM 的法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧ n 1·AP →=0,n 1·AM →=0,即⎩⎪⎨⎪⎧-2x 1+z 1=0,-22x 1+y 1=0,令x 1=2,则z 1=2,y 1=1,所以平面APM 的一个法向量为n 1=(2,1,2). 设平面PMB 的法向量为n 2=(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n 2·CB →=0,n 2·PB →=0,即⎩⎨⎧2x 2=0,2x 2+y 2-z 2=0,得x 2=0,令y 2=1,则z 2=1,所以平面PMB 的一个法向量为n 2=(0,1,1). 设平面APM 与平面BPM 夹角为θ,cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=37×2=31414,sin θ=1-cos 2θ=7014. 所以平面APM 与平面BPM 夹角的正弦值为7014.课时精练1.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求平面A 1BD 与平面A 1AD 所成角的正弦值. 解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1—→}为一个正交基底,建立空间直角坐标系,因为AB =AD =2,AA 1=3,∠BAD =120°, 则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B —→=(3,-1,-3),AC 1—→=(3,1,3). 则cos 〈A 1B —→,AC 1—→〉=A 1B —→·AC 1—→|A 1B —→||AC 1—→|=3-1-37×7=-17.因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)可知平面A 1AD 的一个法向量为 AE →=(3,0,0),设m =(x ,y ,z )为平面A 1BD 的一个法向量, 又A 1B —→=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧m ·A 1B —→=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2.所以m =(3,3,2)为平面A 1BD 的一个法向量, 从而cos 〈AE →,m 〉=AE →·m |AE →||m|=333×4=34.设平面A 1BD 与平面A 1AD 所成的角为θ, 则cos θ=34.所以sin θ=1-cos 2θ=74. 因此平面A 1BD 与平面A 1AD 所成角的正弦值为74. 2.(2021·浙江)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,∠ABC =120°,AB =1,BC =4,PA =15,M ,N 分别为BC ,PC 的中点,PD ⊥DC ,PM ⊥MD .(1)证明:AB ⊥PM ;(2)求直线AN 与平面PDM 所成角的正弦值. (1)证明 因为底面ABCD 是平行四边形, ∠ABC =120°,BC =4,AB =1, 且M 为BC 的中点,所以CM =2,CD =1,∠DCM =60°, 易得CD ⊥DM .又PD ⊥DC ,且PD ∩DM =D ,PD ,DM ⊂平面PDM , 所以CD ⊥平面PDM .因为AB ∥CD ,所以AB ⊥平面PDM . 又PM ⊂平面PDM ,所以AB ⊥PM .(2)解 方法一 由(1)知AB ⊥平面PDM , 所以∠NAB 为直线AN 与平面PDM 所成角的余角. 连接AM ,因为PM ⊥MD ,PM ⊥DC ,所以PM ⊥平面ABCD ,所以PM ⊥AM . 因为∠ABC =120°,AB =1,BM =2, 所以由余弦定理得AM =7, 又PA =15,所以PM =22, 所以PB =PC =23, 连接BN ,结合余弦定理得BN =11. 连接AC ,则由余弦定理得AC =21, 在△PAC 中,结合余弦定理得PA 2+AC 2=2AN 2+2PN 2,所以AN =15.所以在△ABN 中,cos∠BAN =AB 2+AN 2-BN 22AB ·AN =1+15-11215=156.设直线AN 与平面PDM 所成的角为θ, 则sin θ=cos∠BAN =156. 方法二 因为PM ⊥MD ,PM ⊥DC , 所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM .因为∠ABC =120°,AB =1,BM =2, 所以AM =7,又PA =15,所以PM =22, 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E , 则ME ⊥MD .故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝⎛⎭⎪⎫32,-12,2.所以AN →=⎝ ⎛⎭⎪⎫332,-52,2.易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ, 则sin θ=|cos 〈AN →,n 〉|=|AN →·n ||AN →||n |=5215=156.3.(2022·汕头模拟)如图,在圆柱OO 1中,四边形ABCD 是其轴截面,EF 为⊙O 1的直径,且EF ⊥CD ,AB =2,BC =a (a >1).(1)求证:BE =BF ;(2)若直线AE 与平面BEF 所成角的正弦值为63,求平面ABE 与平面BEF 夹角的余弦值. (1)证明 如图,连接BO 1,在圆柱OO 1中,BC ⊥平面CEDF ,∵EF ⊂平面CEDF ,∴EF ⊥BC , ∵EF ⊥CD ,BC ∩CD =C ,BC ,CD ⊂平面ABCD ,∴EF ⊥平面ABCD ,又BO 1⊂平面ABCD ,∴EF ⊥BO 1,∵在△BEF 中,O 1为EF 的中点,∴BE =BF .(2)解 连接OO 1,则OO 1与该圆柱的底面垂直,以点O 为坐标原点,OB ,OO 1所在直线分别为y ,z 轴建立如图所示的空间直角坐标系,则A (0,-1,0),B (0,1,0),E (-1,0,a ),F (1,0,a ),AE →=(-1,1,a ),BE →=(-1,-1,a ),BF →=(1,-1,a ),设平面BEF 的法向量是n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1·BE →=0,n 1·BF →=0, 得⎩⎪⎨⎪⎧-x 1-y 1+az 1=0,x 1-y 1+az 1=0, 取z 1=1,得n 1=(0,a ,1),设直线AE 与平面BEF 所成的角为θ,则sin θ=|cos 〈AE →,n 1〉| =2aa 2+2·a 2+1=63,化简得(a 2-2)(a 2-1)=0,∵a >1,解得a =2,∴n 1=(0,2,1),设平面ABE 的法向量是n 2=(x 2,y 2,z 2),AB →=(0,2,0),由⎩⎪⎨⎪⎧n 2·AB →=0,n 2·AE →=0,得⎩⎨⎧ 2y 2=0,-x 2+y 2+2z 2=0,取z 2=1,得n 2=(2,0,1),设平面ABE 与平面BEF 的夹角为α,则cos α=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=13, ∴平面ABE 与平面BEF 夹角的余弦值为13.4.(2021·全国甲卷改编)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小?(1)证明 因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2, 所以CF =1,BF = 5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC ,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则B (0,0,0),E (1,1,0),F (0,2,1),BF →=(0,2,1).设B 1D =m (0≤m ≤2),则D (m ,0,2),于是DE →=(1-m ,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0).设平面DFE 的一个法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧ DE →·n 2=0,EF →·n 2=0,又DE →=(1-m ,1,-2),EF →=(-1,1,1),所以⎩⎪⎨⎪⎧ 1-m x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是平面DFE 的一个法向量为n 2=(3,m +1,2-m ),所以cos 〈n 1,n 2〉=32⎝ ⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 的夹角为θ,则sin θ=1-cos 2〈n 1,n 2〉,故当m =12时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小,为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 夹角的正弦值最小.。
第十二讲立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面 角。
1. 范围:0,—2异面直线所成角2. 求法:zrarcsin m n 若 m n 贝U a// 或 a m n|1范围:0.定义法(即垂面法)3) 二面角2.作二面角平■面角的方法:三垂线定理及逆定理垂线法 直接法3. 求二面角大小的方法射影面积法 向量法1).................... 0,一 (找平■行线替换) 22)直线与平面所成角1. 范围0 -2定义2. 求法心曰决向重法0,一 2若m//n 则aS Scos角)当为锐角时,(S 为原斜面面积,S 为射影面积为斜面与射影所成锐二面角的平面arccosm n 同ln当为锐角时,m n arccos二、例题讲解1.在正三棱柱ABC A1B1C1中,若AB 很BB1,求AB1与C1B所成的角的大小。
解:法一:如图一所示,设O为B i C、C1B的交点,D为AC的中点,则所求角是DOB。
设BB, a,则AB J2a,于是在DOB中,1 3 3 ;.6OB BC1 ——a,BD ——;2a ——a,2 2 2 2OD 1AB -3a,BD2 OB2 OD2, 2 2即DOB 90 , DOB 90、. 一一 _ - _ 1 一一一…、法一:取A,B i的中点O为坐标原点,如图建立空间直角坐标系O xyz, — AB的长度单位,2A 0, 1, J2 ,B 0,1^2 ,B i 0,1,0 ,C i . 3,0,0J3,1,,2C1B2.如图二所示,在四棱锥P ABCD 中,底面ABCD是一直角梯形,BAD 90 ,AD//BC,AB BC a, AD 2a,且PA 底而ABCD , PD与底面成30⑵求异面直线AE,CD所成角的大小。
解:⑴证明:;PA 底面ABCD, PA AB,再由AB …牛AB 平面PAD, AB PDAD,侍I :皿乂 , AE PD, PD 平面ABE,故BEPD⑵如图三所示设G , H分别为ED, AD的中点,连结BH , HG , BG。
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
高中数学立体几何空间的角专项练习题1.两异面直线所成的角:直线a 、b 是异面直线,经过空间一点O 分别引直线a' a ,b' b ,把直线a'和b'所成的 或 叫做两条异面直线a 、b 所成的角,其范围是 .2.直线和平面所成的角:平面的一条斜线和它在平面上的 所成的 角,叫做这条斜线和平面所成的角.规定: ① 一条直线垂直于平面,我们说它们所成的角是 角;② 一条直线与平面平行或在平面内,我们说它们所成的角是 角. 其范围是 .公式:cosθ=cosθ1cosθ2,其中,θ1是 ,θ2是 ,θ是 . 3.二面角:从一条直线出发的 所组成的图形叫做二面角.4.二面角的平面角:以二面角的棱上 一点为端点,在两个面内分别作 棱的两条射线,这两条射线所成的角叫做二面角的平面角,其范围是 .例1. 如图,已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点.(1)求EF 与平面PAD 所成角的大小; (2)求EF 与CD 所成角的大小;(3)若∠PDA =45°,求:二面角F —AB —D 的大小. 解:(1)易知EF ∥平面PAD ,故EF 与平面PAD 成角为0°; (2)易知EF ⊥CD ,故EF 与CD 成角为90°;(3)取AC 中点为0,则∠FEO 为所求二面角的平面角,易求得∠FEO =45°. 变式训练1:如图,ABCD —A 1B 1C 1D 1是正四棱柱,若二面角C 1 —BD —C 的大小为60°,求异面直线BC 1与AC 所成 的角的大小. 答案:arccos 55PBE FDCA A 1B 1 D 1C 1DA BC例2. 在等腰梯形ABCD 中,AB =20,CD =12,它的高为215,以底边的中垂线MN 为折痕,将梯形MBCN 折至MB 1C 1N 位置,使折叠后的图形成120°的二面角,求: ⑴ AC 1的长;⑵ AC 1与MN 所成的角; ⑶ AC 1与平面ADMN 所成的角. 答案:(1) 16 (2) arcsin 87(3) arcsin 1633变式训练2:已知四边形ABCD 内接于半径为R 的⊙O ,AC 为⊙O 的直径,点S 为平面ABCD 外一点,且SA ⊥平面ABCD ,若∠DAC =∠ACB =∠SCA =30°,求: ⑴ 二面角S -CB -A 的大小; ⑵ 直线SC 与AB 所成角的大小. 答案:(1) arctan 332(2) arccos43例3. △ABC 和△DBC 所在平面互相垂直,且AB =BC =BD ,∠ABC =∠DBC =120°.求: ⑴ AD 与平面DBC 所成的角; ⑵ 二面角A -BD -C 的正切值. 解:(1) 作AE ⊥BC 交BC 的延长线于E ,由面ABC ⊥面BCD 知AE ⊥向BCD ,∠ADE 即为所求,求得∠ADE =45° (2) 作EF ⊥BO 于F ,∠AFE 即为所求,求得tan ∠AFE =2 变式训练3:正三棱柱ABC -A 1B 1C 1中,E 是AC 中点. ⑴ 求证:平面BEC 1⊥平面ACC 1A 1; ⑵ 求证:AB 1∥平面BEC 1;⑶ 若221 ABA A ,求二面角E -BC 1-C 的大小.答案:(1) 略 (2) 略 (3) 45°例4: 已知直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =a ,AA 1=2AB ,M 为CC 1上的点.(1) 当M 在C 1C 上的什么位置时,B 1M 与平面AA 1C 1C 所成的角为30°; (2) 在(1)的条件下,求AM 与A 1B 所成的角. 解(1) 取A 1C 1的中点N 1,连结B 1N 1,N 1M , 由已知易知B 1N 1⊥平面A 1C 1CA.∴∠B 1MN 1为B 1M 与平面A 1C 1CA 所成的角, 设C 1M =x ,B 1N 1=22a.A BDAC MA 1B 1C 1BB BAECCAsin < B 1MN 1=21/2222111=+=a x M B N B , 解得x =a ,则C 1M =21C 1C, ∴M 为C 1C 的中点(2) arccos1515变式训练4:已知正方形ABCD ,E 、F 分别是边AB 、 CD 的中点,将△ADE 沿DE 折起,如图所示,记二 面角A —DE —C 的大小为)0(πθθ<<,若△ACD 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值. 解:点A 在平面BCDE 内的射影在直线EF 上, 过点A 作AG ⊥平面BCDE ,垂足为G , 连结GC 、GD . ∵△ACD 为正三角形, ∴AC =AD ,∴GC =GD ,∴G 在CD 的垂直平分线上,又∵EF 是CD 的垂直平分线,∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH ⊥ED ,垂足为H ,连结AH ,则AH ⊥DE .∴∠AHG 是二面角A —DE —C 的平面角,即∠AHG =θ, 设原正方形ABCD 的边长为2a ,由直角三角形的射影定理 可得AH =52a ,GH =52a ,∴41cos ==AH GH θ.1.两异面直线所成角的作法:① 平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,常常利用中位线或成比例线段引平行线;② 补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的是 容易作出两条异面直线所成的角.2.作出直线和平面所成角的关键是作垂线,找射影. 3.平面角的作法:① 定义法;② 三垂线法;③ 垂面法.A EFBCD4.二面角计算,一般是作出平面角后,通过解三角形求出其大小,也可考虑利用射影面积公式S'=Scosθ来求.5.空间角的计算有时也可以利用向量的求角公式完成.。
立体几何---用空间向量求空间角专题训练(解析版)【题组一 线线角】1.如图,在等腰三角形ABC 与ABD 中,90DAB ABC ∠=∠=︒,平面ABD ⊥平面ABC ,E ,F 分别为BD ,AC 的中点,则异面直线AE 与BF 所成的角为( )A .2πB .3πC .4πD .6π 【答案】B【解析】由于在等腰三角形ABC 与ABD 中,90DAB ABC ∠=∠=︒,平面ABD ⊥平面ABC ,根据面面垂直的性质定理可知AD ⊥平面ABC ,BC ⊥平面ABD ,所以AD BC ⊥.依题意设DA AB BC x ===,由于,E F是等腰直角三角形斜边的中点,所以2AE BF x ==.设异面直线AE 与BF 所成的角为θ,则cos cos ,AE BF θ=AE BF AE BF ⋅=⋅()()12AB AD AF AB AE BF +⋅-=⋅()()1122AB AD AB BC AB AE BF ⎡⎤+⋅+-⎢⎥⎣⎦=⋅()111222AB AD BC AB AE BF ⎛⎫+⋅- ⎪⎝⎭=⋅()214AB BC AD BC AB AB AD AE BF ⋅+⋅--⋅=⋅22111422AB x AE BF -⋅===⋅,由于π0,2θ⎛⎤∈ ⎥⎝⎦,所以π3θ=.故选:B 2.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,E 为BB ′的中点,异面直线CE 与C A '所成角的余弦值是( )A B .C .D 【答案】D【解析】直三棱柱ABC A B C -'''中,AC BC AA ==',90ACB ∠=︒,E 为BB '的中点.以C 为原点,CA 为x 轴,CB 为y 轴,CC '为z 轴,建立空间直角坐标系,设2AC BC AA =='=,则(0C ,0,0),(0E ,2,1),(0C ',0,2),(2A ,0,0),(0CE =,2,1),(2C A '=,0,2)-,设异面直线CE 与C A '所成角为θ, 则||210cos 10||||58CE C A CE C A θ'==='∴异面直线CE 与C A '所成角的余弦值为10. 故选:D .3.已知直三棱柱111ABC A B C -,90ABC ∠=︒,12AB BC AA ===,1BB 和11B C 的中点分别为E 、F ,则AE 与CF 夹角的余弦值为( )A B .25 C .45 D 【答案】B【解析】如图所示:分别以1,,BA BC BB 为,,x y z 轴建立空间直角坐标系.故()0,2,0A ,()2,0,0C ,()0,0,1E ,()1,0,2F ,故()0,2,1AE =-,()1,0,2CF =-. 2cos ,5AE CFAE CF AE CF ⋅==⋅,即AE 与CF 夹角的余弦值为25. 故选:B .4.如图所示,四棱锥P ABCD -中,PB PD AD AB ===,60BAD ∠=︒,1CD CB ==,120BCD ∠=︒,点M N 、分别为PA AB 、的中点.(1)证明:平面DMN ∥平面PBC ;(2)若2PA =PA 与BC 所成角的余弦值.【答案】(1)证明见解析;(2)4 【解析】(1)如图,因为M N 、分别为PA AB 、的中点,所以//MN PB ,MN ⊄平面PBC ,∴//MN 平面PBC ;又AB AD =,60BAD ∠=︒,所以ABD △为正三角形,又CD BC =,120BCD ∠=︒,所以30CBD ∠=︒,BC AB ⊥,又DN AB ⊥,所以BC DN ,∴DN 平面PBC因为MN DN N ⋂=,所以平面DMN 平面PBC . (2)如图,取BD 中点O ,连结,,AO CO PO ,因为AD AB =,60DAB ∠=︒,所以ABD △为正三角形,所以AO BD ⊥,又因为BCD 为等腰三角形,所以CO BD ⊥,所以A O C 、、三点共线,所以AC BD ⊥,因为PB PD =,所以PO BD ⊥,1CD BC ==,120BCD ∠=︒,所以BD =,所以PB PD AD AB ====,32AO PO ==,又2PA =,所以222AO PO PA +=, 所以AO PO ⊥,又AOPO O =,所以PO ⊥平面ABCD . 以O 为坐标原点,,,OA OB OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,3,0,02A ⎛⎫ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,B ⎛⎫ ⎪ ⎪⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭, 33,0,22PA ⎛⎫=- ⎪⎝⎭,1,2BC ⎛⎫=- ⎪ ⎪⎝⎭, 设异面直线PA 与BC 所成角为α,所以cos ,||||3PA BC PA BC PA BC⋅〈〉===⋅ 所以异面直线PA 与BC【题组二 线面角】1.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,如下图.(Ⅰ)求证:A 1O ⊥BD ;(Ⅱ)求直线A 1C 和平面A 1BD 所成角的正弦值;【解析】(Ⅰ)因为AB AC =,,D E 分别为,AB AC 中点,故可得AD AE =,故1A DE 为等腰三角形,又O 为DE 中点,故可得1AO DE ⊥,又因为平面A 1DE ⊥平面BCED ,且交线为DE , 又1AO ⊂平面1A DE ,故1AO ⊥平面BCED ,又BD ⊂平面BCDED , 故1AO BD ⊥.即证. (Ⅱ)过O 作OH BC ⊥,由(Ⅰ)可知1AO ⊥平面BCED , 又,OH OE ⊂平面BCED ,故可得11,AO OH AO OE ⊥⊥, 又因为,OH BC BC ⊥//DE ,故可得OH OE ⊥.综上所述:1,,OH OE OA 两两垂直,故以O 为坐标原点,1,,OH OE OA 分别为,,x y z 轴建立空间直角坐标系, 如下图所示:故可得()()()()10,0,2,2,2,0,0,1,0,2,2,0A C D B --, 则()()10,1,2,2,1,0A D BD =--=-设平面1A BD 的法向量为(),,n x y z =,故可得100n A D n BD ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y --=⎧⎨-+=⎩, 取1x =,可得2,1y z ==-.故()1,2,1n =-.又()12,2,2AC =-, 故可得11122,?3n AC cos n AC n AC ⋅==. 设直线A 1C 和平面A 1BD 所成角为θ,故可得12,3sin cos n AC θ==.则直线A 1C 和平面A 1BD 所成角的正弦值为3.2.如图1,在ABC 中, D , E 分别为AB , AC 的中点,O 为DE 的中点,AB AC ==4BC =.将ABC 沿DE 折起到1A DE △的位置,使得平面1A DE ⊥平面BCED ,如图2.(1)求证:1AO BD ⊥; (2)求直线1AC 和平面1ABD 所成角的正弦值.【答案】(1)证明见解析;(2)3. 【解析】(1)连接1AO .图1中,AB AC =,D , E 分别为AB , AC 的中点,AD AE ∴=, 即11A D A E =,又O 为DE 的中点,1AO DE ∴⊥. 又平面1A DE ⊥平面BCED ,且平面1A DE 平面BCED DE =,1AO ⊂平面1ADE , 1AO ∴⊥平面BCED ,又BD ⊂平面BCED , 1AO BD ∴⊥. (2)取BC 中点G ,连接OG ,则OG DE ⊥.由(1)可知1AO ⊥平面BCED ,OG ⊂平面BCED 11,AO DE AO OG ∴⊥⊥. 以O 为原点,分别以1,,OG OE OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示AB AC ==4BC =,112,1,2A D DE OD A O ∴==∴=∴==.()()()()10,0,2,2,2,0,2,2,0,0,1,0A B C D ∴--, ()()()11112,2,2,0,1,2,2,2,223A B A D AC AC ∴=--=--=-=,. 设平面1A BD 的法向量为(),,n x y z =,则11·0·0n A B n A D ⎧=⎪⎨=⎪⎩,即222020x y z y z --=⎧⎨--=⎩,令1z =,则2,1y x =-=-,()1,2,16n n ∴=--=,. 设直线1AC和平面1A BD 所成的角为θ,则 111sin cos ,323AC n ACn AC n θ-=〈〉===, 所以直线1AC 和平面1A BD 所成角的正弦值为3. 3.在矩形ABCD 中,3AB =,2AD =,点E 是线段CD 上靠近点D 的一个三等分点,点F 是线段AD 上的一个动点,且()01DF DA λλ=≤≤.如图,将BCE ∆沿BE 折起至BEG ∆,使得平面BEG ⊥平面ABED .(1)当12λ=时,求证:EF BG ⊥; (2)是否存在λ,使得FG 与平面DEG 所成的角的正弦值为13?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)见解析(2) 12λ= 【解析】(1)当12λ=时,点F 是AD 的中点. ∴112DF AD ==,113DE CD ==. ∵90ADC ∠=︒,∴45DEF ∠=︒. ∵223CE CD ==,2BC =,90BCD ∠=︒, ∴45BEC ∠=︒.∴BE EF ⊥.又平面GBE ⊥平面ABED ,平面GBE ⋂平面ABED BE =,EF ⊂平面ABED ,∴EF ⊥平面BEG .∵BG ⊂平面BEG ,∴EF BG ⊥.(2)以C 为原点,,CD CB 的方向为x 轴,y 轴的正方向建立如图所示空间直角坐标系Cxyz .则()2,0,0E ,()3,0,0D ,()3,2,0F λ.取BE 的中点O ,∵2GE BG ==,∴GO BE ⊥,∴ 易证得OG ⊥平面BCE ,∵BE =OG(G .∴(2,12FG λ=--,(EG =-,(DG =-.设平面DEG 的一个法向量为(),,n x y z =,则20,0,n DG x y n EG x y ⎧⋅=-++=⎪⎨⋅=-++=⎪⎩令z =(0,n =-. 设FG 与平面DEG 所成的角为θ, 则sin cos ,FG n θ=13==, 解得12λ=或710λ=-(舍去)∴存在实数λ,使得DG 与平面DEG 所成的角的正弦值为13,此时12λ=. 4.如图,在直三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为6的等边三角形,D ,E 分别为AA 1,BC 的中点.(1)证明:AE //平面BDC 1;(2)若异面直线BC 1与AC DE 与平面BDC 1所成角的正弦值.【答案】(1)详见解析;(2 【解析】(1)证明:取BC 1的中点F ,连接DF ,EF ,∵E 为BC 中点,∴EF ∥1CC ,112EF CC = 又∵D 为AA 1的中点,DA ∥1CC ,112DA CC =, ∴EF ∥DA ,EF DA =∴四边形ADFE 为平行四边形,∴AE ∥DF ,∵AE ⊄平面BDC 1,DF ⊂平面BDC 1,∴AE ∥平面BDC 1;(2)由(1)及题设可知,BC ,EA ,EF 两两互相垂直,则以点E 为坐标原点,EC ,EA ,EF 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AA 1=2t (t >0),则1(3,0,0),(3,0,2),(3,0,0),)B C t A C D t -,所以1(3,33,),(6,0,2),(3,BD t BC t AC ===-,故111|cos ,|4||||6BC AC BC AC BC AC ⋅<>===⋅解得t =,设平面BDC 1的法向量为(,,)m x y z =由100m BD m BC ⎧⋅=⎪⎨⋅=⎪⎩,得3060x x⎧+=⎪⎨+=⎪⎩, 令1x =,则(1,0,m =,又D ED ∴=, 所以cos ,||||(3ED m ED m ED m ⋅<>===, 设DE 与平面BDC 1所成角为θ,则sin θ=30|cos ,|20ED m <>=, ∴DE 与平面BDC 15.如图,四棱锥P ABCD -中,AP ⊥平面PCD ,AD BC ∥,2DAB π∠=,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求直线AB 与平面PBD 所成角的正弦值.. 【解析】Ⅰ)由已知AP ⊥平面PCD ,可得AP PC ⊥,AP CD ⊥,由题意得,ABCD 为直角梯形,如图所示,BC DE ,所以BCDE 为平行四边形,所以BE CD ∥,所以AP BE ⊥.又因为BEAC ⊥,且AC AP A =, 所以BE ⊥面APC ,故BE PO ⊥.在直角梯形中,AC ==,因为AP ⊥面PCD ,所以AP PC ⊥,所以PAC 为等腰直角三角形,O 为斜边AC 上的中点,所以PO AC ⊥.且ACBE O =,所以PO ⊥平面ABCD(Ⅱ)法一:以O 为原点,分别以,,OB OC OP 为x 轴,y 轴,z 轴的建立直角坐标系.不妨设1BO = 0(0)1A -,,,()100B ,,,()001P ,,,0()21D -,,,设(,,)n x y z =是平面PBD 的法向量.满足00n PB n BD ⎧⋅=⎨⋅=⎩, 所以030x z x y -+=⎧⎨-+=⎩, 则令1x = ,解得(1,3,1)n =sin cos ,AB n θ=22211AB nAB n ⋅==⋅ 法二:(等体积法求A 到平面PBD 的距离)A PBD P ABD V V--=设AB=1,计算可得1PF =,PD= ,BD ,4PBD S =△ 1133PBD ABD S hS PO ⨯⨯=⨯⨯△△,解得h = sin h AB θ==【题组三 二面角】1.如图,平行四边形ABCD 所在平面与直角梯形ABEF 所在平面互相垂直,且11,//2AB BE AF BE AF ===,,,2,3AB AF CBA BC P π⊥∠==为DF 中点.(1)求异面直线DA 与PE 所成的角;(2)求平面DEF 与平面ABCD 所成的二面角(锐角)的余弦值.【答案】(1)6π(2【解析】在ABC ∆中,1,,23AB CBA BC π=∠==,所以2222cos 3AC BA BC BA BC CBA =+-⨯∠=所以222AC BA BC +=,所以AB AC ⊥又因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,AC ⊂平面ABCD ,所以AC ⊥平面ABEF如图,建立空间直角坐标系{},,AB AF AC ,则1(0,0,0),(1,0,0),((1,1,0),(0,2,0),(22A B C D E F P--(1)3(1,0,3),(,0,2DA PE=-=设异面直线DA与PE所成的角为α,则3cos2DA PEDA PEα⋅===⨯⨯所以异面直线DA与PE所成的角为6π;(2)(0,2,0)AF=是平面ABCD的一个法向量,设平面DEF的一个法向量(,,)n x y z=,(2,1,3),(1,2,DE DF=-=则(,,)(2,1,20{(,,)(1,2,20n DE x y z x yn DF x y z x y⋅=⋅=+-=⋅=⋅=+-=,得z==,取1x=,则1,y z==故(1,1,3)n=是平面DEF的一个法向量,设平面DEF与平面ABCD 所成的二面角(锐角)为β,则2cos525AF nAF nβ⋅===⨯⨯.2.如图,梯形ABCS中,//AS BC,AB BC⊥,122AB BC AS===,D、E分别是SA,SC的中点,现将SCD∆沿CD翻折到PCD∆位置,使PB=(1)证明:PD ⊥面ABCD ;(2)求二面角E BD C --的平面角的正切值;(3)求AB 与平面BDE 所成的角的正弦值.【答案】(1)证明见解析;(23)3【解析】(1)梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,2DA =,四边形ABCD 为平行四边形,AB BC ⊥,2AB DA ==,BD =所以四边形ABCD 为正方形,CD DS ⊥,折叠后,CD DP ⊥,2PD =,PB =PBD 中,2224812PD BD PB +=+==,所以BD DP ⊥,,CD DB 是平面ABCD 内两条相交直线,所以PD ⊥面ABCD ;(2),,DA DC DP 两两互相垂直,以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,如图所示:则(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(0,1,1)D A B C P E (2,2,0),(0,1,1)DB DE ==,设平面BDE 的法向量为(,,)n x y z = 则2200DB n x y DE n y z ⎧⋅=+=⎨⋅=+=⎩,解得y z x z =-⎧⎨=⎩,令1z =,取(1,1,1)n =- 由(1)可知,PD ⊥面ABCD ,取平面ABCD 的法向量(0,0,2)DP =cos ,3DP n ==,根据图形,二面角E BD C --所以二面角E BD C --(3)(0,2,0)AB =,由(2)可得平面BDE 的法向量(1,1,1)n =- 设直线AB 与平面BDE 所成的角为θ,sin cos ,AB n θ-===.所以AB 与平面BDE3.如图四棱柱1111ABCD A BC D -中,//AD BC ,AB AD ⊥,2AD AB BC ==,M 为1A D 的中点.(1)证明://CM 平面11AA B B ;(2)若四边形11AA B B 是菱形,且面11AA B B ⊥面ABCD ,13B BA π∠=,求二面角1A CM A --的余弦值. 【答案】(1)证明见解析;(2)25. 【解析】(1)取1AA 的中点N ,连接MN ,BN ,∵M 为1A D 的中点,∴//MN AD 且12MN AD = 又//BC AD ,12BC AD = ,所以//BC MN 且MN BC =, 所以四边形MNBC 是平行四边形,从而//CM BN ,又BN ⊂平面11AA B B ,CM ⊄平面11AA B B ,所以//CM 平面11AA B B .(2)取11A B 的中点P ,连接AP ,1AB ,∵四边形11AA B B 为菱形,又13B BA π∠=,易知AP AB ⊥.又面11AA B B ⊥面ABCD ,面11AA B B 面ABCD AB =,AD AB ⊥∴AD ⊥平面11AA B B ,AD AP ⊥故AB ,AD ,AP 两两垂直以A 为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系A xyz -(如图所示),不妨设4AB =.则()0,0,0A ,()0,4,0D ,()4,2,0C,,(1A -,(1,M -,(11,2,A M =,(CM =-,()4,2,0AC =设平面1ACM 的法向量为(),,m x y z =, 由100m A M m CM ⎧⋅=⎨⋅=⎩,得2050x y x ⎧+=⎪⎨-=⎪⎩,可得平面1ACM的一个法向量1,m ⎛= ⎝⎭, 设平面ACM 的法向量为()111,,n x y z =,由00n AC n CM ⎧⋅=⎨⋅=⎩,得111142050x y x +=⎧⎪⎨-+=⎪⎩, 可得平面ACM的一个法向量1,n ⎛=- ⎝⎭. ∴25142cos ,51m nm n m n -+⋅===⋅+ 所以二面角1A CM A --的余弦值为25. 4.已知平行四边形ABCD 中60A ∠=︒,22AB AD ==,平面AED ⊥平面ABCD ,三角形AED 为等边三角形,EF AB ∥.(Ⅰ)求证:平面⊥BDF平面AED ;(Ⅱ)若BC ⊥平面BDF①求异面直线BF 与ED所成角的余弦值;②求二面角B DF C --的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)①45.【解析】(Ⅰ)平行四边形ABCD 中∵60A ∠=︒,22AB AD ==,由余弦定理可得BD ,由勾股定理可得BD AD ⊥,如图,以D 为原点建立空间直角坐标系O xyz -∴()0,0,0D ,()1,0,0A ,()B ,12E ⎛ ⎝⎭,()C -∴()=DB ,()1,0,0DA =,1,0,22DE ⎛= ⎝⎭∴0DB DA ⋅=,0DB DE ⋅=,∴DB DA ⊥,DB DE ⊥.又DA DE D ⋂=,∴DB ⊥平面AED .又∵DB ⊂平面BDF ,∴平面⊥BDF 平面AED .(Ⅱ)∵EF AB ∥,∴设()(),0EF AB λλλ==-=-∴12F λ⎛- ⎝⎭,()1,0,0BC =-. ∵BC ⊥平面BDF ,∴BC DF ⊥,∴102BC DF λ⋅=-=,∴12λ=.∴F ⎛⎝⎭.①0,BF ⎛= ⎝⎭,1,0,2ED ⎛=- ⎝⎭∴34cos cos ,BF ED θ=== ∴异面直线BF 与ED ②设(),,n x y z =为平面BDF 的法向量,则303022n DB y n DF y z ⎧⋅==⎪⎨⋅=+=⎪⎩可得()1,0,0n=,设(),,m x y z =为平面CDF 的法向量,则0302m DC x m DF y z ⎧⋅=-=⎪⎨⋅=+=⎪⎩可得()3,1,1m =-,∴3cos ,5m n ==sin θ= ∴二面角B DF C --. 5.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)求平面PAB 与平面PCD 所成锐二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.【答案】 【解析】以为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为()()()()1,0,0,1,1,0,0,2,0,0,0,2B C D P .(1) 因为AD ⊥平面PAB ,所以是平面PAB 的一个法向量,.因为(1,1,2),(0,2,2)PC PD =-=-.设平面PCD 的法向量为(),,m x y z =,则0,0m PC m PD ⋅=⋅=,即20{220x y z y z +-=-=,令1y =,解得1,1z x ==. 所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,3||||AD m AD m AD m ⋅〈〉==,所以平面PAB 与平面PCD所成二面角的余弦值为3. (2) 因为(1,0,2)BP =-,设(,0,2)(01)BQ BP λλλλ==-≤≤,又(0,1,0)CB =-,则(,1,2)CQ CB BQ λλ=+=--,又(0,2,2)DP =-, 从而1cos ,||||10CQ DP CQ DP CQ DP ⋅〈〉==, 设[]12,1,3t t λ+=∈,则2222229cos ,5109101520999t CQ DP t t t 〈〉==≤-+⎛⎫-+ ⎪⎝⎭,当且仅当95t =,即25λ=时,|cos ,|CQ DP 〈〉因为cos y x=在0,2π⎛⎫ ⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP ==25BQ BP ==.6.如图,在三棱锥S 一ABC 中,SA =AB =AC =BC ,O为BC 的中点(1)求证:SO ⊥平面ABC(2)在线段AB 上是否存在一点E ,使二面角B —SC -E ?若存在,求B E BA 的值,若不存在,试说明理由【答案】(1)见解析(2)23【解析】(1)∵SB SC =,O 为BC 的中点,∴SO BC ⊥,设SB a =,则SO =,AO a =,SA =, ∴222SO OA SA +=,∴SO OA ⊥,又∵BC OA O ⋂=,∴SO ⊥平面ABC .(2)以O 为原点,以OA 所在射线为x 轴正半轴,以OB 所在射线为y 轴正半轴,以OS 所在射线为z 轴正半轴建立空间直角坐标系.则有()0,0,0O ,0,0,2S ⎛⎫ ⎪ ⎪⎝⎭,0,,02C a ⎛⎫- ⎪ ⎪⎝⎭,,0,02A a ⎛⎫ ⎪ ⎪⎝⎭,0,,02B a ⎛⎫ ⎪ ⎪⎝⎭. 假设存在点E 满足条件,设()01BE BA λλ=≤≤,则(),1,02E a a λ⎫-⎪⎪⎝⎭,则()62,02CE a λ⎛⎫=- ⎪ ⎪⎝⎭. 设平面SCE 的法向量为(),,n x y z =,由00n CE n SC ⎧⋅=⎨⋅=⎩,得()200x y y z λ+-=+=⎪⎩,故可取()2,n λ=-.易得平面SBC 的一个法向量为()1,0,0m =.所以,cos 5m nm n θ⋅===⋅,解得23λ=或2λ=-(舍). 所以,当23BE BA =时,二面角B SC E --. 7.在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ;(Ⅱ)求二面角C PB Q --的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB所成角的余弦值为15,求线段DH 的长. 【答案】(1)证明见解析;(2)56π;(3)32. 【解析】(1)平面ADPQ ⊥平面ABCD ,平面ADPQ ⋂平面ABCD AD =,PD ADPQ ⊂平面,PD AD ⊥,∴直线PD ⊥平面ABCD .由题意,以点D 为原点,分别以,,DA DC DP 的方向为x 轴,y 轴,z 轴的正向建立如图空间直角坐标系,则可得:()()()0,0,0,2,2,0,0,2,0D B C ,()()()2,0,0,2,0,1,0,0,2A Q P .依题意,易证:()2,0,0AD =-是平面PDC 的一个法向量, 又()0,2,1QB =-,∴ 0QB AD ⋅=, 又直线QB ⊄平面PDC ,∴ //QB PDC 平面.(2) ()()2,2,2,=0,22PB PC =--,. 设()1111,,n x y z =为平面PBC 的法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111112220220x y z y z +-=⎧⎨-=⎩. 不妨设11z =,可得()10,1,1n =.设()2222,,n x y z =为平面PBQ 的法向量,又()()2,2,2,2,0,1PB PQ =-=-, 则2200n PB n PQ ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x z x y z -=⎧⎨+-=⎩. 不妨设22z =,可得()21,1,2n =,∴ 1212123cos<,2n n n n n n ⋅>==⋅, 又二面角C PB Q --为钝二面角,∴二面角C PB Q --的大小为56π. (3)设()()0,0,02H h h ≤≤,则()2,0,AH h =-,又()2,2,2PB =-, 又7cos<,15PB AH >=15=, ∴ 2625240h h -+=,解得32h =或83h =(舍去). 故所求线段DH 的长为32.8.已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC 是边长为2的等边三角形,1AE =,M 为AB 的中点.(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.【答案】(1)证明见解析;(2)90.【解析】(1)证明:ABC为等边三角形,M为AB的中点,∴CM AB⊥,又DB⊥平面ABC,CM⊂平面ABC,∴DB CM⊥,DB AB B=,DB,AB平面ABDE,∴CM⊥平面ABDE,又EM⊂平面ABDE,∴CM EM⊥.(2)过点M作//Mz BD,易知Mz、MB、MC两两垂直;以M为原点,分别以MC、MB、Mz作为x轴、y轴、z轴建立空间直角坐标系,如图;DB⊥平面ABC,∴DMB∠直线DM与平面ABC所成角,∴tan2BDDMBBM∠==,∴22BD BM==,∴()0,1,0B,)C,()0,1,2D,()0,1,1E-,∴()3,1,0BC=-,()CD=-,()1,1CE=--,设平面BCD的一个法向量为()111,,m x y z=,则m BCm CD⎧⋅=⎨⋅=⎩即1111120yy z-=++=⎪⎩,令11x=,则()1,3,0m=,设平面CDE的一个法向量为()222,,n x y z=,则n CEn CD⎧⋅=⎨⋅=⎩即22222220y zy z⎧-+=⎪⎨++=⎪⎩,令2x=,则()3,1,2n=-,∴cos,0m nm nm n⋅==⋅,∴二面角B CD E--的大小为90.。
专题:空间角一、基础梳理1.两条异面直线所成的角(1)异面直线所成的角的范围:(0,]2π。
(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。
两条异面直线,a b 垂直,记作a b ⊥。
(3)求异面直线所成的角的方法:(1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。
平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。
1:三棱柱111B A O OAB -,平面11O OBB ⊥平面OAB ,90,601=∠=∠AOB OB O ,且12,OB OO == 3OA =,求异面直线B A 1与1AO 所成角的余弦。
2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。
一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0︒角。
直线和平面所成角范围:[0,2π]。
(2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。
(3)公式:已知平面α的斜线a 与α内一直线b 相交成θ角, 且a 与α相交成ϕ1角,a 在α上的射影c 与b 相交成ϕ2角, 则有θϕϕcos cos cos 21= 。
由(3)中的公式同样可以得到:平面的斜线和它在平面 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。
AB O 1A1B1O ϕ2ϕ1cbaθPαO AB考点二:直线和平面所成的角例2. 如图,在三棱柱ABC A B C '''-中,四 边形A ABB ''是菱形,四边形BCC B ''是矩形,C B AB ''⊥,02,4,60C B AB ABB '''==∠=, 求AC '与平面BCC B ''所成角的正切。
3:(1)在0120的二面角P a Q --的两个面P 与Q 内分别有两点A B 、,已知点A 和点B 到棱的距离分别为2,4cm cm ,且线段10AB cm =。
求:①直线AB 和棱a 所成角的正弦值;②直线AB 和平面Q 所成角的正弦值。
(2)(08全国Ⅰ11)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13B.3C.3D .23(3)如图,在矩形ABCD中,3AB BC ==,沿对角线BD 将BCD ∆折起,使点C 移到C '点,且C '点在平面ABD 上的射影O 恰在AB 上。
求直线AB 与平面BC D '所成角的大小。
A BCA 'B 'C '⇒A B()C C 'DO(4)①AB 为平面β的斜线,则平面β内过A 点的直线l 与AB 所成的最小角为_____________, 最大角为__________________。
平面内过A 点的 直线l 与AB 所成角θ的范围为_______________。
②AB 与平面β内不过A 点的直线所成的角的范围 为_______________________。
③直线1l 与平面α所成的角为030,直线2l 与1l 所成角为060,则2l 与平面α所成角的取值范围是______________________。
④设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有 ( )(A)1条 (B)2条 (C)3条 (D)4条⑤过正方体的顶点A 作截面,使正方体的12条棱所在直线与截面所成的角皆相等。
试写出满足条件的一个截面________________________(注:只须任意写出一个),并证明。
3.二面角(1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。
若棱为l ,两个面分别为,αβ的二面角记为l αβ--。
(2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角。
说明:①二面角的平面角范围是[]0,π,因此二面角有锐二面角、直二面角与钝二面角之分。
②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直。
(3)二面角的求法:(4)(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法)l B'O'A'B O A βα(二)间接法:面积射影定理的方法。
(4)面积射影定理:面积射影定理:已知ABC ∆的边BC 在平面α内,顶点A α∉。
设ABC ∆的面积为S ,它在平面α内的射影面积为1S ,且平面α与ABC ∆所在平面所成的二面角为0(090)θθ<<,则1cos SSθ=。
注:①面积射影定理反映了斜面面积、射影面积 和这两个平面所成二面角的平面角间的关系; ABC ∆可以推广到任意的多边形。
②在二面角的平面角不易作时,经常采用 “面积射影定理法”。
例3.如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点。
(1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小。
如图所示,在直三棱柱111ABC A B C -中,090,1,ACB CB ∠==1CA AA ==M 为侧棱1CC 上一点, 1AM BA ⊥。
(1)求证:1AM A BC ⊥平面; (2)求二面角B AM C --的大小; (3)求点C 到平面ABM 的距离。
CA BMC1A1B1CA B CD1A θS1S α四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =。
①证明:AD CE ⊥;②设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小。
S 为直角梯形ABCD 所在平面外一点0,90,ABC SA ∠=⊥面,ABCD SA AB BC ===1,12AD =,求平面SCD 与平面SAB 所成二面角的大小。
等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 。
CDEABSABCD例4.如图所示,已知平行六面体 1111ABCD A B C D -的底面ABCD 是矩形,且侧面11ABB A ⊥底面ABCD ,11,3,AB BB AN NB == M 、E 分别是1B C 、AB 的中点,F 是EC的中点,4,AB MN ==侧棱与底面ABCD 成045的角。
(1)求证:MF ⊥底面ABCD ; (2)求二面角M AB C --的大小;(3)求MN 与平面1B CE 所成角的大小。
1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1B 与AC 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200(2)(08全国Ⅱ10)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13 B.3 CD .23(3)Rt ABC ∆的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则BA C '∠的范围是________________。
(4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α⊂,这时PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( )A.x y >B.x y =C.x y <D.,x y 的大小关系不确定(5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的射影所成的角是( )A .30°B .45°C .60°D .90°(6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离BC1A1B1C ED1DMFNABA 11分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。
(7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( )A .21B .22 C .36 D .33(8)如图,在正方体1111D C B A ABCD -中,,M N 分别是1,A A AB 上的点,若0190NMC ∠=, 那么1NMB ∠的大小是( )A.大于090 B.小于090 C. 090 D.不能确定(9)已知SO ABC ⊥∆所在平面于O 点,且S 到,,A B C 三点等距离,若ABC ∆中,有cos cos sin sin A B A B >,则O 点( )A.必在ABC ∆的某一边上B.必在ABC ∆外部(不含边界)C.必在ABC ∆内部(不含边界)D.以上都不对(10)如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为 21θθ和,则( )A .1sin sin 2212≥+θθB .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ (11)如图,l A B αβαβαβ⊥=∈∈,,,,A B ,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别 是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,(12)与正方形各面成相等的角且过正方体三个顶点的截面的个数是________。
2.已知直三棱柱111,,ABC A B C AB AC F -=为1BB 上一点,12,BF BC a FB a ===。