0-1背包问题-贪心法和动态规划法求解1
- 格式:doc
- 大小:58.50 KB
- 文档页数:6
背包问题解析(⼀)-贪⼼算法⼀、题⽬:有N件物品和⼀个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装⼊背包可使这些物品的重量总和不超过背包容量,且价值总和最⼤。
⼆、解决思路:本题刚开始的解题的时候,想采取贪⼼算法来解决,也就是将放⼊的物品的性价⽐按照从⾼到低进⾏排序,然后优先放优先级⾼的,其次优先级低的。
三、代码实现(python)1# 重量w=[5,4,3,2]2# 价值v=[6,5,4,3]3 b=[]4 m=int(input("请输⼊背包的最⼤重量:"))5 n=int(input("请输⼊商品的数量:"))6for i in range(n):7 a=input("请分别输⼊重量和价值,以空格隔开:")8 a=a.split("")9for i in range(len(a)):10 a[i]=int(a[i])11 b.append(a)12print("加载初始化:",b)13for i in range(len(b)):14for j in range(i+1,len(b)):15if b[i][1]/b[i][0]<b[j][1]/b[j][0]:16 b[i],b[j]=b[j],b[i]17print("性价⽐排序:",b)18 v=019 c=[]20for i in range(len(b)):21if m-b[i][0]>0:22 m=m-b[i][0]23 c.append(b[i])24 v+=b[i][1]25print("放⼊背包:",c)26print("最⼤价值为:",v)打印结果:四、算法分析:贪⼼选择是指所求问题的整体最优解可以通过⼀系列局部最优的选择,即贪⼼选择来达到。
实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
现代经济信息求解0-1背包问题算法研究田秀芹 百色学院数学与统计学院摘要:本文主要概述了求解0-1背包问题的两大类算法:精确算法和近似算法,并分析了这些算法的优缺点,并提出了求解该问题的算法发展趋势。
关键词:0-1背包问题;精确算法;近似算法中图分类号:TP312 文献识别码:A 文章编号:1001-828X(2017)010-0386-03The Study of the 0-1 Knapsack Problem AlgorithmAbstract: This paper mainly summarizes the solving 0-1 knapsack problem algorithm of two categories: accurate and approximate algorithms, and analyzes the advantages and disadvantages of these algorithms, and put forward the development trend of algorithms to solve the problem.Keywords: 0-1 knapsack problem, precise algorithm, approximate algorithmDantzig[1]在20世纪50年代首次提出了背包问题(Knapsack problem,简称KP),在文献[2]中,阐述了该问题是一个NP-难问题,在背包问题中,我们很难设计出多项式时间算法,除非P=NP。
0-1背包问题就是,给定一个容量为的背包和件具有价值的物品,在不超过背包容量的前提下,选择若干物品放入背包,使得装入背包的物品总价值最大。
同时给出一种放置物品的方案。
背包问题就有普遍的应用背景,在日常的许多实践中如:材料切割、资源有效分配问题、资金估算的问题、运输过程的货仓装载等起着很大的作用,许多的组合优化问题都可以简化为背包问题,背包问题的各种解法也可用来解决组合优化问题,因此对0-1背包问题的解法进行深入的研究具有重大的意义。
01背包问题的数学逻辑1.引言1.1 概述01背包问题是一类经典的组合优化问题,它是数学逻辑中的一个重要问题之一。
在实际生活中,我们经常会面对资源有限的情况,而如何在有限的资源下做出最佳决策,已经成为一个重要的研究领域。
01背包问题就是在给定总容量和一组物品的情况下,选取其中的一些物品放入背包中,使得背包中物品的总价值最大化,而不超过背包的总容量。
这个问题由G. Dantzig在1957年首次提出,并且成为组合优化中的一个经典问题。
它的名字来源于背包只能放入0或1个同样特性的物品。
虽然问题看似简单,但由于问题的解空间庞大,是一个NP完全问题,因此求解过程通常使用一些近似算法。
1.2 目的本文的目的是探究01背包问题的数学逻辑,并介绍一些常用的求解方法。
通过深入研究01背包问题,我们可以更好地理解其数学模型,在实际应用中解决类似的优化问题。
具体目标包括:1. 分析01背包问题的数学模型,并介绍相关的定义和术语;2. 探讨01背包问题的求解方法,包括动态规划、贪心算法和近似算法等;3. 介绍优化问题的评价指标,包括背包的总价值、总重量和可行性等;4. 分析不同情况下的算法复杂性,讨论解决01背包问题的时间和空间复杂性;5. 举例说明01背包问题在实际生活中的应用,如旅行行李、采购决策等。
通过对01背包问题的研究,我们能够更好地理解和应用数学逻辑,提高问题求解的能力。
了解背包问题的求解方法和评价指标,对我们在实际生活中面对资源有限的情况下做出最佳决策具有重要意义。
无论是在物流管理、金融投资还是其他领域,都可以通过对01背包问题的研究,提高决策的效率和准确度。
在接下来的文章中,将会详细介绍01背包问题的数学逻辑,分析不同求解方法的优劣,并给出实际应用的例子,以便读者更好地理解和应用该问题。
2.正文2.1 01背包问题的定义和背景介绍01背包问题是运筹学中的一个经典问题,在算法和动态规划中有重要的应用。
该问题的核心是在给定的背包容量和一组物品的情况下,如何选择物品放入背包中,使得背包中的物品总价值最大化。
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
0-1背包问题的算法决策分析【摘要】0-1背包问题是一个经典的组合优化问题,在计算机领域有着广泛的应用。
本文将对0-1背包问题的算法决策进行深入分析。
首先介绍了背包问题的概述和算法决策的重要性,接着分别探讨了贪心算法、动态规划算法和回溯算法在0-1背包问题中的应用。
随后对比了不同算法在解决该问题时的表现,并讨论了影响算法选择的决策因素。
提出了最优算法选择的建议,并探讨了未来研究方向。
通过这篇文章的分析,读者可以更好地理解不同算法在0-1背包问题中的应用和选择合适算法的决策因素。
【关键词】0-1背包问题、算法决策、贪心算法、动态规划、回溯算法、算法表现对比、算法选择、最优算法、未来研究、决策因素、引言、正文、结论、总结1. 引言1.1 背包问题概述背包问题,即0-1背包问题,是一种经典的组合优化问题,通常用于描述在有限的容量下如何选择物品以获得最大的价值。
具体而言,给定一个背包的容量C和n个物品,每个物品有一个重量wi和一个价值vi,每个物品可以选择装入或不装入背包,但不能分割。
背包问题的目标是在不超过背包容量的前提下,选择物品使得背包中物品的总价值最大。
背包问题是一个NP难题,即没有多项式时间内的确定性算法可以解决。
研究者们为了寻找高效的解决方案,提出了各种算法并进行了比较和分析。
常见的解决背包问题的算法主要有贪心算法、动态规划算法和回溯算法。
每种算法都有其特点和适用情况,因此在选择算法时需要考虑问题的规模、性质和具体要求。
1.2 算法决策的重要性算法决策在解决0-1背包问题中扮演着至关重要的角色。
在面对限定容量下的物品选择时,选择适用的算法决策可以直接影响到问题的解决效率和解的质量。
不同的算法在解决背包问题时所需要的时间复杂度和空间复杂度各不相同,因此在选择算法时需要综合考虑问题的规模、约束条件和性能要求。
正确选择算法决策能够高效地解决问题,提高计算效率,降低计算成本。
贪心算法适用于一些简单情况下的背包问题,可以获得较快的解决速度;动态规划算法适用于大规模、复杂的背包问题,可以获得较优的解;回溯算法在一些特殊情况下也能发挥作用。
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
背包问题常州一中林厚从背包问题是信息学奥赛中的经典问题。
背包问题可以分为0-1背包和部分背包两种类型,0-1背包还可以再分为有限背包和无限背包(完全背包)。
背包问题的求解涉及到贪心、递归、递推、动态规划、搜索等多种算法。
熟练掌握各种背包问题及其变形试题的解法,是信息学奥赛选手从入门走向提高的必经之路。
先简单归纳一下涉及到的这几种重要算法:1、贪心:贪心法可以归纳为“每步取优”。
假设你的程序要走1~n共n步,则你只要保证在第i步(i=1..n)时走出的这一步是最优的。
所以,贪心法不是穷举,而只是一种每步都取优的走法。
但由于目光短浅,不考虑整体和全局,所以“步步最优”并不能保证最后的结果最优。
比如经典的“两头取数”问题、“n个整数连接成最大数”问题、“删数”问题等。
2、递归:递归算法可以归纳为将问题“由大化小”。
也就是将一个大问题分解为若干个“性质相同”的子问题,求解的的过程,一般是通过“函数的递归调用”,不断将大问题逐步细化、直至元问题(边界情况),最后通过递归函数的自动返回得到问题的解。
递归算法的关键是递归函数的构造,它的效率往往比较低,原因在于大量的“冗余”计算。
比如经典的“斐波那挈数列”问题,在递归实现时效率极低,存在着大量的冗余计算,可以采用“记忆化”的方法优化。
3、递推:递推问题往往有一个“递推公式”,其实和“递归公式”差不多,但是出发点不一样,递归的思想是“要想求什么就要先求出什么”。
而递推是从问题的边界情况(初始状态)出发,一步步往下走,直到走完n步,判断最后的解。
由于其中的每一步并不知道当前一步的哪一个值对后面的步骤有用,所以只能把所有情况(一步的所有走法)全部计算出来,也造成了很多的“冗余计算”。
时间上往往没有太多的优化余地,但空间上经常利用“滚动数组”等方式,把空间复杂度由O(n2)降到O(2n)。
比如经典的“杨辉三角形”问题、“判断n是否是斐波那挈数”问题等。
4、动态规划:本质上是一种克服了“冗余”的“递归”算法。
算法分析与设计大作业…实验题目:0-1背包问题求解方法综述组员:班级:指导老师:]%0-1背包问题求解方法综述【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活中的很多问题都可以以它为模型。
本文首先对背包问题做了阐述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了求最优值的递归关系式。
最后对四种算法从不同角度进行了对比和总结。
【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。
0.引言0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n),再给定一个背包,其容量为W。
要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。
单个物品要么装入,要么不装入。
很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。
目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。
其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。
文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。
背包问题描述0-1背包问题(KP01)是一个著名的组合优化问题。
它应用在许多实际领域,如项目选择、资源分布、投资决策等。
背包问题得名于如何选择最合适的物品放置于给定背包中。
本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。
为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。
解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。
0-1背包问题的算法决策分析1. 引言1.1 背包问题简介背包问题是一个经典的组合优化问题,通常用于描述在给定一定容量的背包和一组物品的情况下,如何选择装入背包中的物品,使得背包内物品的总价值最大或总重量最小。
这种问题在实际生活中有着广泛的应用,比如在物流配送、资源分配等领域都能见到类似的问题。
背包问题通常包括01背包、完全背包、多重背包等不同变种,其中最为经典和常见的是01背包问题。
在01背包问题中,每种物品只能选择装入或不装入背包,不能将物品进行切割。
为了解决背包问题,通常采用动态规划算法或贪心算法。
动态规划算法通过递推的方式计算出最优解,具有较高的时间复杂度但能够保证全局最优解;贪心算法则通过选择局部最优解的方式逐步构建全局最优解,具有较低的时间复杂度但不能保证一定得到最优解。
在实际应用中,对于不同规模和要求的背包问题,需要根据具体情况选择适用的算法来求解。
背包问题的解决思路可以帮助我们更好地理解和应用算法解决实际问题。
1.2 算法决策的重要性在解决0-1背包问题时,算法决策的重要性不可忽视。
背包问题是一个经典的组合优化问题,其在实际生活中有着广泛的应用。
在面对不同的背包问题时,选择合适的算法决策可以大大提高问题的解决效率和准确性。
通过精心选择算法,可以避免不必要的计算和浪费,节省时间和资源。
在动态规划和贪心算法两种经典算法中,不同的问题可能更适合不同的解决方案。
算法决策的重要性体现在如何根据问题的性质和约束条件选择最合适的算法,以达到最优的解决方案。
在实际应用中,算法决策的重要性更加凸显。
对于大规模背包问题,合理选择算法可以极大地提高问题的求解效率,节约资源和时间成本。
而对于特定场景下的背包问题,例如物流配送、资源分配等,算法决策的准确性直接影响到问题的实际应用效果和经济效益。
因此,对于0-1背包问题的解决来说,算法决策的重要性不言而喻。
只有通过深入理解不同算法的特点和适用条件,才能更好地选择合适的解决方案,从而达到最优解并取得较好的求解效果。
运筹学背包问题例题
运筹学中的背包问题是一个经典的组合优化问题,通常分为0-1背包问题和分数背包问题。
这个问题可以用来描述一个背包有限的容量,以及一系列物品,每个物品都有自己的重量和价值。
问题的目标是找到一个组合,使得放入背包的物品总重量不超过背包容量,同时使得这些物品的总价值最大化。
举一个例子来说明背包问题:假设有一个背包容量为10kg,现有以下物品:
物品A,重量3kg,价值150元。
物品B,重量4kg,价值300元。
物品C,重量5kg,价值200元。
针对这个例子,我们可以用动态规划或者贪心算法来解决背包问题。
在0-1背包问题中,每个物品只能选择放或者不放,不能进行分割。
而在分数背包问题中,物品可以进行分割放入背包。
解决背包问题的关键是建立递推关系和状态转移方程,以确定
如何选择物品放入背包以达到最优解。
动态规划是解决背包问题的
常用方法,通过填写一个二维的状态转移表格来逐步求解最优解。
贪心算法则是通过每一步选择当前最优的策略,不断迭代直至达到
最优解。
除了动态规划和贪心算法,还有其他方法可以解决背包问题,
比如分支限界法、回溯法等。
每种方法都有其适用的场景和局限性。
总的来说,背包问题是运筹学中的一个经典问题,有着广泛的
应用。
通过合适的算法和方法,我们可以有效地解决背包问题,找
到最优的放置方案,这对于资源分配、生产调度等实际问题有着重
要的意义。
实验四“0-1”背包问题
一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:
掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题
1.“0-1”背包问题的贪心算法
2.“0-1”背包问题的动态规划算法
说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。
五、实验程序
// 贪心法求解
#include<iostream>
#include"iomanip"
using namespace std;
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float*arry_avgp,float*arry_p,float *arry_w );
//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float *arry_x,float u);
int main(){
float w[7]={2,3,5,7,1,4,1}; //物品重量数组
float p[7]={10,5,15,7,6,18,3}; //物品收益数组
float avgp[7]={0}; //单位毒品的收益数组
float x[7]={0}; //最后装载物品的最优解数组
const float M=15; //背包所能的载重
float ben=0; //最后的收益
AvgBenefitsSort(avgp,p,w);
ben=GetBestBenifit(p,w,x,M);
cout<<endl<<ben<<endl; //输出最后的收益
system("pause");
return 0;
}
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float*arry_avgp,float*arry_p,float*arry_w ) {
//求出物品的单位收益
for(int i=0;i<7;i++)
{
arry_avgp[i]=arry_p[i]/arry_w[i];
}
cout<<endl;
//把求出的单位收益排序,冒泡排序法
int exchange=7;
int bound=0;
float temp=0;
while(exchange)
{
bound=exchange;
exchange=0;
for(int i=0;i<bound;i++)
{
if(arry_avgp[i]<arry_avgp[i+1])
{
//交换单位收益数组
temp=arry_avgp[i];
arry_avgp[i]=arry_avgp[i+1];
arry_avgp[i+1]=temp;
//交换收益数组
temp=arry_p[i];
arry_p[i]=arry_p[i+1];
arry_p[i+1]=temp;
//交换重量数组
temp=arry_w[i];
arry_w[i]=arry_w[i+1];
arry_w[i+1]=temp;
exchange=i;
}
}
}
}
//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float *arry_x,float u)
{
int i=0; //循环变量i
float benifit=0; //最后收益
while(i<7)
{
if(u-arry_w[i]>0)
{
arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组
benifit+=arry_p[i]; //收益增加当前物品收益
u-=arry_w[i]; //背包还能载重量减去当前物品重量
cout<<arry_x[i]<<" "; //输出最优解
}
i++;
}
return benifit; //返回最后收益}
//动态规划法求解
#include<>
#include<>
#define n 6
void DKNAP(int p[],int w[],int M,const int m);
void main()
{
int p[n+1],w[n+1];
int M,i,j;
int m=1;
for(i=1;i<=n;i++)
{
m=m*2;
printf("\nin put the weight and the p:");
scanf("%d %d",&w[i],&p[i]);
}
printf("%d",m);
printf("\n in put the max weight M:");
scanf("%d",&M);
DKNAP(p,w,M,m);
}
void DKNAP(int p[],int w[],int M,const int m)
{
int p2[m],w2[m],pp,ww,px;
int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];
F[0]=1;
p2[1]=w2[1]=0;
l=h=1;
F[1]=next=2;
for(i=1;i<n;i++)
{
k=l;
max=0;
u=l;
for(q=l;q<=h;q++)
if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i])
{
u=q;
max=w2[q]+w[i];
}
for(j=l;j<=u;j++)
{
pp=p2[j]+p[i];
ww=w2[j]+w[i];
while(k<=h&&w2[k]<ww)
{
p2[next]=p2[k];
w2[next]=w2[k];
next++;
k++;
}
if(k<=h&&w2[k]==ww)
{
if(pp<=p2[k])
pp=p2[k];
k++;
}
else if(pp>p2[next-1])
{
p2[next]=pp;
w2[next]=ww;next++;
}
while(k<=h&&p2[k]<=p2[next-1])
k++;
}
while(k<=h)
{
p2[next]=p2[k];
w2[next]=w2[k];
next=next+1;
k++;
}
l=h+1;
h=next-1;
F[i+1]=next;
}
for(i=1;i<next;i++)
printf("%2d%2d ",p2[i],w2[i]);
for(i=n;i>0;i--)
{
next=F[i];
next--;
pp=pk=p2[next];
ww=w2[next];
while(ww+w[i]>M&&next>F[i-1])
{
next=next-1;
pp=p2[next];
ww=w2[next];
}
if(ww+w[i]<=M&&next>F[i-1])
px=pp+p[i];
if(px>pk&&ww+w[i]<=M)
{
s[i]=1;
M=M-w[i];
printf("M=%d ",M);
}
else s[i]=0;
}
for(i=1;i<=n;i++)
printf("%2d ",s[i]);
}
六、实验结果
1、贪心法截图:
七、实验分析。