初三数学反比例函数及圆相关公式复习
- 格式:doc
- 大小:164.50 KB
- 文档页数:3
反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。
而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。
反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。
增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。
对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。
2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。
九年级反比例函数知识点反比例函数是数学中的一种特殊函数类型,它的图像呈现出一条直线,并且函数的定义域和值域都不包括零。
在九年级学习数学的过程中,反比例函数是一个重要的知识点。
本文将为大家介绍九年级反比例函数的相关知识。
一、反比例函数的定义与特征反比例函数是指当自变量x变大时,函数值y变小;当自变量x变小时,函数值y变大。
可以简单地用以下形式表示:y = k/x,其中k为一个常数。
反比例函数的定义域是除了x=0之外的所有实数。
反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。
这条直线的渐进线是x轴和y轴,即当x趋近于正无穷或者负无穷时,函数值y趋近于零。
二、反比例函数的性质与运算1. 曲线的平移:若y = k/x关于y轴平移h个单位,则函数变为y = k/(x - h)。
2. 曲线的伸缩:若y = k/x的k值乘以a,则函数变为y = ak/x。
当a>1时,图像在x轴方向上被压缩;当0<a<1时,图像在x轴方向上被展开。
3. 曲线的关于y轴的对称:若y = k/x关于y轴对称,则函数变为y = -k/x。
4. 曲线的关于x轴的对称:若y = k/x关于x轴对称,则函数变为y = -k/x。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,下面以几个例子来说明:1. 比例尺:地图上的比例尺就是一个反比例函数。
比如地图上标注1cm代表的实际距离为1km,这个比例尺可以表示为y = 1/x。
2. 速度与时间:当一辆车以恒定的速度行驶时,车辆的速度与时间呈现出反比例关系。
速度越大,所用的时间越短,可以用反比例函数来表示。
3. 某商品的价格与销售数量:在市场中,某商品的价格与销售数量通常是呈反比例关系的。
价格越高,销售数量越小,可以用反比例函数来描述。
四、反比例函数的图像与解析式反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。
9(上)第五章 反比例函数复习(一)一、 反比例函数的定义例1 下列函数中是反比例函数的是( )A y=x+1,B y=x8, C y= —2x, D y=2x 2 【说明】本题的四个选项呈现了一次函数、反比例函数、正比例函数(也是一次函数)、二次函数的表达形式,应让学生会识别、区分它们。
本题答案:B例2 已知函数12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,1y =-;当3x = 时,5y =.求y 关于x 的函数关系式.【说明】由于正比例函数定义式是y=kx,反比例函数定义式是y=xk,两式都使用了字母k,受此影响,学生解答此题时易犯的错误是:设y 1=kx 、设y 2=xk,而本题中的正比例和成反比例的比例系数未必相同,因此应设y 1=k 1x 、设y 2=xk 2,以示两个比例系数的不同。
尽管本题最后结论y 关于x 的函数关系式是复合函数的形式,但这类型的题目还是比较常见的,有时也会考到这种题型,还是建议在复习中作补充训练。
本题答案:y=2x-x3二、 反比例函数的图像和性质例3(1)图象经过点(2,-3)的反比例函数是( )A y= -x 6B y=x 6C y= x 23D y=-x23 (2) 已知反比例函数y=xk的图象经过点(2,3),那么下列在函数的图象上的点是( )A (4,1)B (21,-1)C (-23,-11) D (-3 ,-21)【说明】本例是已知图像上一点的坐标,用待定系数法确定反比例函数解析式。
例4(1)已知反比例函数21m y x-=的图象在一,三象限,那么m 的 取值范围是______________.(2)已知反比例函数xm21-=y 的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2是,有y 1<y 2.则m 的取值范围是( ).A.m <0, B .m >0,C.m<21,D.m>21【说明】本例是考察对反比例函数图像和性质的理解,并与解不等式知识结合。
九年级数学下册反比例函数知识点总结反比例函数是数学中常见的一种函数形式。
在反比例函数中,当自变量的值增大时,因变量的值会减小;当自变量的值减小时,因变量的值会增大。
下面是九年级数学下册关于反比例函数的知识点总结:1.反比例函数的定义:反比例函数是指一个函数,其方程形式为y = k/x,其中k是常数,x是自变量,y是因变量。
2.反比例函数的特点:当x为正数且逐渐增大,y的值会逐渐减小。
当x为正数且逐渐减小,y的值会逐渐增大。
如果x等于0,函数的值为无穷大或无穷小。
反比例函数的图像通常是一个曲线,经过原点,并且关于y轴和x轴都对称。
3.反比例函数的图像:反比例函数的图像通常是一个双曲线的一支。
当k为正数时,双曲线的开口朝上。
当k为负数时,双曲线的开口朝下。
当k的绝对值变大时,双曲线的形状越陡峭。
4.反比例函数的应用:反比例函数在实际生活中有许多应用,例如:速度与时间的关系:当行驶的时间增加时,速度会减小。
工作的时间与人数的关系:当完成工作的时间减少时,需要的人数会增加。
投资的金额与收益的关系:当投资的金额增加时,收益会减少。
5.反比例函数的求解:给定反比例函数的方程,可以通过代入不同的自变量的值来计算相应的因变量的值。
给定一组包含自变量和因变量的数值对,可以通过取自变量与因变量的乘积的比值来求解反比例函数的常数k。
以上是九年级数学下册关于反比例函数的知识点总结。
反比例函数在数学中扮演着重要的角色,并在实际生活中有许多应用。
通过理解这些知识点,可以更好地应用和解决与反比例函数相关的问题。
九年级反比例函数经典复习资料知识梳理知识点1.反比例函数的概念一般地,如果两个变量X、y之间的关系可以表示成“上或y二k* (k为常X 数,kHO)的形式,那么称y是x的反比例函数。
反比例函数的概念需注意以下儿点:(1)k是常数,且k不为零;(2)£中分母x的指数为1,如y = 4不是反x •比例函数。
(3)自变量x的取值范围是XH O—切实数.(4)自变量y的取值范围是y = 0一切实数。
知识点2.反比例函数的图象及性质反比例函数y =上的图象是双曲线,它有两个分支,这两个分支分别位于第一、X三象限或第二、■四象限。
它们关于原点对称、反比例函数的图象与X轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范圉是XH O,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
反比例函数的性质y = -(k^O)的变形形式为xy=k (常数)所以:X(1)其图象的位置是:当k>0时,x、y同号,图象在第一、三象限;当kvO时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y =上的图象上,则点(-m,-n)也在此图象上,X故反比例函数的图象关于原点对称。
(3)当k>0时,在每个象限内,y随x的增大而减小;当kvO时,在每个象限内,y随x的增大而增大;知识点3.反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定难点:山条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y =-中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只X 需给出一组X、y的对应值或图象上点的坐标,代入y =上中即可求出k的值,从而确定反比例函数的关系式。
九年级反比例函数知识点总结讲解【导言】反比例函数是数学中比较重要的一种函数类型。
在九年级的数学课程中,学生们会接触到反比例函数的概念、性质和应用。
本文将对九年级反比例函数的知识点进行总结和讲解。
【1. 反比例函数的定义】反比例函数是指当自变量增大时,因变量以相反的比例减小,或当自变量减小时,因变量以相反的比例增大的函数。
反比例函数通常可以表示为y = \(\frac{a}{x}\),其中a为常数。
【2. 反比例函数的性质】反比例函数有以下几个重要的性质:1) 定义域和值域:对于反比例函数y = \(\frac{a}{x}\),其定义域为除了x = 0以外的所有实数,其值域为除了y = 0以外的所有实数。
2) 对称中心和对称轴:反比例函数的对称中心为原点(0, 0),对称轴为y轴。
3) 渐近线:反比例函数的图像以x轴和y轴为渐近线,即当x 趋近于正无穷或负无穷时,y趋近于0;当y趋近于正无穷或负无穷时,x趋近于0。
4) 变化趋势:反比例函数在定义域内是递减的,在值域内是递增的。
【3. 反比例函数的图像特点】反比例函数的图像具有以下几个特点:1) 形状:反比例函数的图像呈现出一条由左上向右下倾斜的直线。
2) 渐近线:除了x轴和y轴外,反比例函数的图像没有其他渐近线。
3) 均匀变化:反比例函数图像上的任意两点,其纵坐标之积为常数。
4) 原点截距:反比例函数图像与坐标轴的交点为原点(0, 0)。
5) 比例关系:反比例函数图像上的任意点坐标(x, y),有xy = a 成立。
【4. 反比例函数的应用】反比例函数在实际问题中有广泛的应用,下面分别介绍几个常见的应用场景:1) 电阻和电流关系:根据欧姆定律,电阻R与电流I之间存在反比关系,即R = \(\frac{U}{I}\),其中U为电压常数。
当电流变大时,电阻减小;当电流变小时,电阻增大。
2) 速度和时间关系:在匀速运动过程中,速度v与时间t之间存在反比关系,即v = \(\frac{s}{t}\),其中s为位移常数。
初三数学知识点全总结初三数学是初中数学学习的重要阶段,知识点繁多且复杂,需要我们认真梳理和掌握。
以下是对初三数学知识点的全面总结。
一、函数1、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。
当 b = 0 时,函数为正比例函数y =kx。
我们需要掌握一次函数的图像和性质,例如斜率 k 决定了函数图像的倾斜程度,k > 0 时函数单调递增,k <0 时函数单调递减。
同时,要能根据给定的条件求出函数的解析式,并解决与一次函数相关的实际问题。
2、反比例函数反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0)。
反比例函数的图像是以原点为对称中心的两条曲线,当 k > 0 时,图像在一、三象限,在每个象限内 y 随 x 的增大而减小;当 k < 0 时,图像在二、四象限,在每个象限内 y 随 x 的增大而增大。
3、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0),顶点式为 y =a(x h)²+ k,交点式为 y = a(x x₁)(x x₂)。
二次函数的图像是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
我们要学会求二次函数的解析式、顶点坐标、对称轴,掌握二次函数的图像和性质,并能利用二次函数解决最值问题和实际应用题。
二、几何图形1、圆圆的相关概念包括圆心、半径、直径、弧、弦、圆心角、圆周角等。
圆的性质有:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;直径所对的圆周角是直角;圆的切线垂直于过切点的半径等。
我们要掌握圆的周长和面积公式,以及弧长和扇形面积的计算方法,并能解决与圆有关的证明和计算问题。
2、相似三角形相似三角形的判定方法有:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似。
相似三角形的性质有:对应边成比例,对应角相等;相似三角形的周长比等于相似比,面积比等于相似比的平方。
初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。
2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。
3. 对称性:反比例函数的图象关于原点对称。
三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。
2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。
3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。
四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。
五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。
2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。
六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。
2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。
七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。
八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。
2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。
九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。
初三数学反比例函数及圆相关公式复习
反比例函数.圆周长、弧长公式及圆的面积和扇形、弓形面积.
一、教学目的:
1.掌握反比例函数的定义、图象和性质.
2.掌握圆周长、弧长公式及圆、扇形、弓形的面积公式.并能熟练的进行公式变形、正确的计算. 二、基础知识及说明:
1.函数)0(≠=k x k y 叫反比例函数(或11
-⋅=⋅==x k x
k x k y ).其图象是双曲
线,所以我们也叫双曲线x k
y =.当0>k 时,图象在一、三象限,在每个象限内,
x y 随的增大而减小,当0<k ,双曲线在二、四象限,
在每个象限内,x y 随的增大而增大.
2.设圆的半径是n ,则圆的周长R c π2=.若一条弧所对的圆心角是n ,半径是
R,则弧长公式是180
R
n l π=.(注意,求弧长有①圆心角的度数②半径的长两个条件),
注意公式的变形.已知弧长求圆心角R l n π180⋅=.已知弧长求半径R=n
l π180
⋅.
3.已知圆的半径R,则圆的面积是S=πR 2
.扇形的面积是lR S R n S 2
1
3602==
或π,第一个公式是利用圆心角的度数n 和半径R 求得的.第二个公式是利用扇形的弧
长和半径R 求得的,要注意根据已知条件选用恰当的公式.
4.弓形面积,若一个弓形小于半圆则S 弓形=S 扇形-S △;若一个弓形大于半圆,则S 弓形=S 扇形+S △. 三、练习: 1.填空题:
⑴弧AB 的长是10cm,半径是10cm,则AB 所对的圆心角是____度, S 扇形AOB=____cm 2.
⑵两个同心圆,若小圆的切线被大圆截取的部分为8cm,则两圆围成的环形面积是____cm 2.
⑶扇形的圆心角是120°,弧长是4π,则扇形的面积是____.
⑷弓形的弧所对的圆心角是120°,弓形的弦长是a ,则该弓形的面积是____. ⑸如图:两个同心圆被两条半径截得
的AB 长是π8cm. CD 的长是π3
40
AC=8cm,则S 阴影=____cm 2⑹已知扇形的半径是它内切圆的半径的3倍,则扇形的面积与内切圆的面积之比是____.
⑺已知21y y y -=,x y 与1的算术平方根成正比例,x y 与2成反比例,且当
2
11
,4;1,1=
===y x y x 时时,则x y 与间的函数关系式是____. ⑻已知b kx y +=与反比例函数x
y 2
=的图象的两个交点的横坐标分别是
12
1
-和,则这个一次函数的解析式是____. ⑼反比例函数的图象经过(-3,6)点,则这个函数的解析式是____.
⑽如图:已知⊙O 1和⊙O 2的半径分别是6cm 和2cm,⊙O 1和⊙O 2外切于P.AB 是两圆的外公切线,则S 阴影=____cm 2.
⑾已知反比例函数x y 2=的图象经过点A(a ,2
1
),已知直线l 也经过点A 与x 轴
相交于点B,且S △AOB=6,则直线l 的解析式是____.
⑿已知反比例函数7
62
)3(+--=m m
x m y 的图象在二、四象限,则m 的值是____.
⒀如果一个扇形的半径为一个圆的半径的2倍,且扇形的面积与圆的面积相等,那么这个扇形的中心角是____度.
⒁弓形的高为1cm,弦长为32,则弓形的面积是____. 四、练习答案:
⑴50,180
π
⑵π16(提示:S 环=S 大圆-S 小圆=22r R ππ-=)(22r R -π=24⨯π=16π)
R r
⑶π12
⑷2)1239(a -π(提示:∠AOD=60° AD 2a = R
a
260sin = R a 33
S 扇形
=
22
9360)
33(
120a a ππ=⋅ OD=a a ctg 63260= S △=212
36321a a a =⋅⨯)
A D B
O
⑸分析:S 阴影=S
大扇-S 小扇,而由S 扇形=lR 2
1
,必须求R.但在此图形中,两扇形的半径
不同,面积不同,但两个扇形的圆心角相同,利用8
2400
180)8(340+=+=r n r n 得ππ.再
利用1808r n ππ= r n 1440=和圆心角相同即r
r 1440
82400=+,解得:12=r ∴S 大扇
=ππ3400203402121=
⨯⨯=⋅⋅R l , S 小扇=ππ481282
1
=⨯⋅ ∴S 阴影=πππ3256
483400=-.此题还可记住书中P212中第11题第②小题中公式S 阴影=ππλ3256
8)8340(21)(21=
⨯+=⋅'+D l l . ⑹此题的图
设小圆半径为r,扇形的半径3r,圆⊙O '与扇形成内切 ∴O O '=2r OD=r
∴∠O 'OD=30°, ∠AOB=60°S 扇形=22
23
360)3(60r r ππ=⋅ ∴2
32322
==r r
S S ππ圆
扇
.
⑺x x y 23-
= ⑻24+=x y ⑼x
y 18
-= ⑽提示:连结O 1O 2,O 1A,O 2B,过O 2作O 2D ⊥O 1A,则O 1O 2=8cm,O 1D=4cm,
则∠O 1O 2D=30°,∠AO 1O 2=60°,∠O 1O 2B=120°,S 扇形=6π,S 小扇=3
4π
,S 梯形=163,
S 阴影=163-π322
.
⑾724785245821+=+-=x y x y 或 ⑿2 ⒀90° ⒁33
4
-π。