第八章机械优化设计实例
- 格式:pptx
- 大小:444.75 KB
- 文档页数:30
机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。
2.已知条件已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。
3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。
由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。
单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:]3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.0222122212221222212212122221222120222222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++-----+-=πππππππ式中符号意义由结构图给出,其计算公式为b c d m u m z d d d mu m z D m z d m z d z z g g 2.0)6.110(25.0,6.110,21022122211=--==-===由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为T z z T d d l m z b x x x x x x x ][][211654321==3.2目标函数为min)32286.18.092.0858575.4(785398.0)(2625262425246316321251261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f3.3约束条件的建立1)为避免发生根切,应有min z z ≥17=,得017)(21≤-=x x g2 )齿宽应满足max min ϕϕ≤≤d b,min ϕ和max ϕ为齿宽系数d ϕ的最大值和最小值,一般取min ϕ=0.9,max ϕ=1.4,得04.1)()(0)(9.0)(32133212≤-=≤-=x x x x g x x x x g3)动力传递的齿轮模数应大于2mm ,得 02)(34≤-=x x g4)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于max 1d ,得0300)(325≤-=x x x g 5)齿轮轴直径的范围:max min z z z d d d ≤≤得0200)(0130)(0150)(0100)(69685756≤-=≤-=≤-=≤-=x x g x x g x x g x x g 6)轴的支撑距离l 按结构关系,应满足条件:l 2min 5.02z d b +∆+≥(可取min ∆=20),得0405.0)(46110≤--+=x x x x g7)齿轮的接触应力和弯曲应力应不大于许用值,得400)10394.010177.02824.0(7098)(0400)10854.0106666.0169.0(7098)(0550)(1468250)(224222321132242223211213211≤-⨯-⨯+=≤-⨯-⨯+=≤-=---x x x x x x g x x x x x x g x x x x g8)齿轮轴的最大挠度max δ不大于许用值][δ,得0003.0)(04.117)(445324414≤-=x x x x x x g 9)齿轮轴的弯曲应力w δ不大于许用值w ][δ,得5.5106)1085.2(1)(05.5104.2)1085.2(1)(1223246361612232463515≤-⨯+⨯=≤-⨯+⨯=x x x x x g x x x x x g4.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab 优化工具箱中的fmincon 函数来求解此非线性优化问题,避免了较为繁重的计算过程。
机械优化设计案例:某生产线自动送料机构的改进
在制造领域,生产线上的自动送料机构是确保生产流程顺畅、高效的关键环节。
然而,传统的自动送料机构往往存在效率低下、易损坏、维护成本高等问题。
为了解决这些问题,我们采用了机械优化设计的方法,对某生产线上的自动送料机构进行了改进。
该自动送料机构的主要任务是将原材料从存储区输送到生产线,并确保每次输送的数量准确。
但是,在长时间使用后,传统的送料机构常常出现卡顿、输送不准确等问题。
经过分析,我们发现这些问题主要是由于机构中的某些部件设计不合理,导致机械效率降低。
为了解决这些问题,我们采用了以下优化策略:
结构优化:利用拓扑优化技术,对送料机构的主体结构进行了重新设计,使其在满足强度和刚度的同时,减轻了重量,从而减少了动力消耗。
传动系统优化:采用了新型的齿轮和链条传动系统,减少了传动过程中的摩擦和能量损失,提高了传动效率。
控制系统优化:引入了PLC和传感器技术,实现了对送料过程的精确控制,确保了每次输送的数量准确。
维护性优化:设计了易于拆卸和维护的结构,减少了维护时间和成本。
经过上述优化后,新的自动送料机构的性能得到了显著提升。
与传统的送料机构相比,新的机构在输送速度、准确性、使用寿命和维护成本等方面都有了显著的优势。
经过实际生产验证,新的自动送料机构不仅提高了生产效率,还降低了生产成本,为企业带来了显著的经济效益。
机械优化设计实例公司生产的机械设备是用来处理废气的,该设备由风机和过滤系统组成。
一些客户反映在高温环境下,设备的性能下降严重,需要频繁维护和更换零部件。
为了解决这个问题,公司决定进行机械优化设计,提高设备在高温环境下的性能和可靠性。
首先,公司通过实地调研和用户反馈,发现高温环境下设备性能下降的主要原因是风机的叶轮脆性破坏和过滤系统的滤芯耐高温能力差。
因此,公司决定对风机和过滤系统进行优化设计。
风机优化设计的一项重要措施是改变叶轮材料。
公司与材料科学研究院合作,选用一种可耐高温的新型材料。
这种新材料具有良好的耐腐蚀性和高强度,能够在高温环境下保持稳定的性能。
通过对风机进行新材料叶轮的更换,可以大大提高设备在高温环境下的可靠性和寿命。
过滤系统的优化设计主要包括滤芯材料的改进和结构的优化。
公司与滤芯制造商进行合作,针对高温环境下滤芯易损的情况,选用了一种能够耐受高温的特殊材料制作滤芯。
该材料具有优异的耐热性和抗腐蚀性,能够有效过滤废气中的有害物质。
此外,公司还对滤芯的结构进行优化设计,增加了滤芯的表面积,提高了吸附效率和容尘量。
除了对零部件的优化设计,公司还对设备的工艺流程进行了改进。
在原有的设备上增加了高温预热和冷却系统,可以避免温度的突变对设备的影响,提高了设备的稳定性和寿命。
经过优化设计,该公司的机械设备在高温环境下的性能得到了显著提高。
经实际运行验证,设备在高温环境下能够稳定工作,无需频繁维护和更换零部件,极大地减少了停机时间和维修成本。
同时,设备的可靠性和寿命也得到了显著提升,增强了客户的信任和满意度。
这个实例充分展示了机械优化设计的重要性和成功应用。
通过对机械结构、工艺流程和材料的优化,可以提高机械产品的性能、效率和可靠性,满足客户的需求,提升企业的竞争力。
机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。
机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。
本文将介绍几个经典的机械优化设计实例。
第一个实例是汽车发动机的优化设计。
汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。
一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。
例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。
此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。
第二个实例是飞机机翼的优化设计。
飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。
机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。
例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。
第三个实例是电机的优化设计。
电机是广泛应用于各种机械设备和电子产品中的核心动力装置。
电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。
例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。
总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。
通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。
这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。
第八章机械优化设计实例机械优化设计是指通过优化设计方法和技术,提高机械产品的性能、降低成本和改善产品的可靠性和可维修性。
在本章中,我们将介绍两个机械优化设计实例,分别是汽车发动机和风力发电机的优化设计。
汽车发动机的优化设计是目前汽车行业的热点问题。
传统的汽车发动机具有功率输出低、能效低和排放高等问题。
为解决这些问题,可以通过优化设计改善发动机的气缸设计、燃烧室设计和可变气门技术等。
例如,通过增加气缸数和减小气缸直径来提高发动机的功率输出和燃烧效率;通过优化燃烧室形状和喷射系统来提高燃烧效率和降低排放;通过采用可变气门技术来提高发动机的响应速度和燃烧效率。
风力发电机的优化设计是提高风力发电机转化效率的重要途径。
传统的风力发电机的转化效率较低,主要是由于叶片的设计不合理和气动噪声等。
为此,可以通过优化叶片的形态和材料,改善气动性能和降低噪声水平。
例如,通过增加叶片的长度和调整叶片的弯曲角度来提高叶片的气动效率;通过选择具有良好耐候性和强度的材料来延长叶片的使用寿命。
此外,还可以通过改进整个风力发电机的结构和控制系统,提高发电机的运行稳定性和可靠性。
以上两个实例都是典型的机械优化设计案例,通过采用优化设计方法和技术,可以显著提高机械产品的性能和质量,降低生产成本和维护成本,同时还可以减少对环境的影响,提高产品的竞争力和市场占有率。
机械优化设计的核心是在设计阶段充分考虑产品的性能、成本和可靠性等因素,通过系统性的优化设计方法和工具,找出最佳设计方案。
优化设计的过程包括问题定义、设计参数选择、设计方案生成和评估等。
其中,设计参数的选择是非常重要的,设计参数的合理选择可以显著影响产品性能和成本。
在实际的优化设计中,可以使用模拟软件和实验方法进行参数优化和设计方案评估。
在机械优化设计实例中,我们提到了汽车发动机和风力发电机的优化设计。
这两个实例都是当今社会中具有重要意义的机械产品,它们的性能和质量对整个行业的发展和进步起着重要的推动作用。
机械优化设计实例------以曲柄摇杆机构为例例8-5.设计一曲柄摇杆机构,要求曲柄l 1从φ0转到φm =φ0+90时,摇杆l3的转角最佳在线已知的运动规律:ΨE =Ψ0+2/3π(φ-φ0)2且已知l 1=1,l 4=5,φ0为极位角,其传动角允许在45<=γ<=135范围内变化。
解 1. 数学模型的建立该机构的运动简图如上图。
在这个问题中,已知l 1=1,l 4=5且φ和φm 不是独立参数,它们可由下式求出:⎥⎦⎤⎢⎣⎡--+=⎥⎦⎤⎢⎣⎡++-+=3232202232201025)1(arccos )1(1025)1(arccos l l l l l l ψϕ所以该问题只有两个独立参数l 2,l 3。
因此设计变量为:[][]TTl l x x x 3221==将输入角分成30等份,并用近似公式计算,可得目标函数的表达式:[]∑=---=30112)()()(i i i Ei i x f ϕϕψψ式中 ,其计算公式为时的去机构实际输出角—当—i ϕϕψ=ii i i βαπψ--=式中()21i 21i412421i i 2i 4i 21242i i 2i 21222i 3i 2232i i )10cos 26(cos l 2l l l r 10r 24r arccos l 2r l l r arccos x 2r x x r arccos l 2r l l r arccos ϕϕβα-=-+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=20i 0Eii Ei 32)(由下式计算时的理想输出角,其值为当ϕϕπψψϕϕψ-+==约束函数按曲柄存在条件对传动角的限制来建立,得g1(x)=-x1<=0 g2(x)=-x2<=0 g3(x)=6-x1-x2<=0 g4(x)=x1-x2-4<=0 g5(x)=x2-x1-4<=0g6(x)=x1^2+x2^2-1.414x1*x2-16<=0 g7(x)=36-x1^2-x2^2-1.414 x1*x2<=02.程序代码根据上述数学模型写出其程序代码 (1)function y=f(x) Pi=3.1416;c0=acos(((1+x(1))^2-x(2)^2+25)/(10*(1+x(1)))); d0=acos(((1+x(1))^2-x(2)^2-25)/(10*x(2))); y=0; for i=0:30;c=c0+Pi*i/60;r=(26-10*cos(c))^0.5;a=acos((r^2+x(2)^2-x(1)^2)/(2*r*x(2))); b=acos((r^2+24)/(10*r)); d=Pi-a-b;de=d0+2*(c-c0)^2/(3*Pi); y0=(d-de)^2*(Pi/60); y=y0+y;end………………………………….%建立f 文件计算目标函数的表达式(2)function [c1,c2]=nonlin(x)c1=[x(1)^2+x(2)^2-1.414*x(1)*x(2)-16;36-x(1)^2-x(2)^2-1.414*x(1)*x(2)]; c2=[];………………………..%建立nonlin 文件(3)A=[-1 -1;1 -1;-1 1];b=[-6;4;4]; lb=[0 0]; ub=[];Aeq=[]; beq=[];x0=[4 3];……………………….%给定初始搜索点[x,fval]=f mincon(@f,x0,A,b,Aeq,beq,lb,ub,@nonlin)…………..%建立约束优化条件并求最优解三运算结果及说明运用MA TLAB计算出结果跟课本运算结果最优解大致相同,但最优解的值有所区别,通过分析我认为其原因:由于Pi的值取的精度不同,初始点取得不同,导致运算的结果会有所区别,同时函数值即最优解的值比较小,而函数值变化浮动比较大。
机械优化设计实例以机械设备的流体传动系统为例,该系统由电机、泵、阀门等构成,用于传动液体介质。
现有系统存在的问题是效率低、能耗高以及噪音大等。
为了改善这些问题,进行了机械优化设计。
首先,针对效率低和能耗高这两个问题,通过增大泵的转速和修改泵的设计参数来提高泵的效率。
同时,通过更换高效的电机,以减小能耗。
此外,对于传动介质进行优化选择,使用黏度小的液体介质,进一步提高系统的效率。
其次,针对噪音大的问题,从系统的结构和材料方面考虑进行优化。
通过增加隔音隔震材料,减少噪音的传递和扩散。
在设计阀门和管道连接处增加密封材料,减少泄漏和冲击声发生。
另外,通过优化系统的结构,减少振动和共振现象,降低噪音产生。
此外,还可以通过加入传感器和自动控制系统来实现对流体传动系统的自动监控和控制,进一步提高系统的效率和稳定性。
通过传感器检测系统的工作状态和参数,通过控制系统对电机、泵和阀门等进行自动调整和优化控制,实现系统的自动化运行。
最后,对整个流体传动系统进行整体优化设计。
通过数值模拟和实验验证,调整和改进系统的设计参数。
通过减少系统的阻力和压降,提高系统的流动性能。
同时,优化系统的结构布局,减少空间占用和安装方便。
通过以上的优化措施,改进了机械设备的流体传动系统的性能。
系统的效率得到提高,能耗减少,同时噪音也得到了降低。
同时,通过自动控制系统的应用,实现了对系统的自动监控和优化,提高了整个系统的可靠性和稳定性。
这也是一个典型的机械优化设计实例。
总结起来,机械优化设计可以通过对机械结构、零部件、工艺等方面进行修改和改进,提高机械性能、降低成本和提高效率。
在实际应用中,需要根据具体问题进行针对性的优化设计,并进行数值模拟和实验验证,以达到最佳的优化效果。
机械优化设计作业一、优化设计问题的提出预制一无盖水槽,现有一块长为4m,宽为3m的长方形铁板作为原材料,想在这块铁板的四个角处剪去相等的正方形以制成无盖水槽,问如何剪法使水槽的底面积最大?二、建立问题的数学模型为了建成此无盖水槽,可设在这块铁板的四个角处剪去相等的正方形的边长为X,所建造水槽的底面积为S,分析问题有次问题变成在约束条件:X≥04-2X≥03-2X≥0限制下,求目标函数:S(X)=(4-2X)(3-2X)=4-14X+12的最大值。
由此可得此问题的数学模型为:Min S(X)=4约束条件:( =-X ≤0 ( = -(4-2X )≤0( =-(3-2X )≤0 算法为黄金分割法。
四、外推法确定最优解的搜索区间用外推法确定函数S (X )=4 索区间。
设初始点 , =S( )=12; = +h=0+1=1, =S( )=2;比较 和 ,因为 < h=2h=2x1=2, = +h=1+2=3, 比较 和 ,因为 > ,面,故搜索区间可定为[a,b]=[1,3]。
五、算法框图六、算法程序#include <math.h>#include <stdio.h>double obfunc(double x){double ff;ff=4*X*X-14*X+12;return(ff);}void jts(double x0,double h0,double s[],int n,double a[],double b[]) {int i;double x[3],h,f1,f2,f3;h=h0;for(i=0;i<n;i++)x[0]=x0;f1=obfunc(x[0]);for(i=0;i<n;i++) x[1]=x[0]+h*s[i];f2=obfunc(x[1]);if(f2>=f1){h=-h0;for(i=0;i<n;i++)x[2]=x[0];f3=f1;for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}for(;;){h=2.0*h;for(i=0;i<n;i++)x[2]=x[1]+h*s[i];f3=obfunc(x[2]);if(f2<f3)break;else{for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}}if(h<0)for(i=0;i<n;i++){a[i]=x[2];b[i]=x[0];}elsefor(i=0;i<n;i++){a[i]=x[0];b[i]=x[2];}printf("%4d",n);}double gold(double a[],double b[],double eps,int n,double xx) double f1,f2,ff,q,w;double x[3];for(i=0;i<n;i++){x[0]=a[i]+0.618*(b[i]-a[i]);x[1]=a[i]+0.382*(b[i]-a[i]);}f1=obfunc(x[0]); f2=obfunc(x[1]);do{if(f1>f2){for(i=0;i<n;i++){b[i]=x[0];x[0]=x[1];}f1=f2;for(i=0;i<n;i++)x[1]=a[i]+0.382*(b[i]-a[i]);f2=obfunc(x[1]);}else{for(i=0;i<n;i++){a[i]=x[1];x[1]=x[0];}f2=f1;for(i=0;i<n;i++)x[0]=a[i]+0.618*(b[i]-a[i]);f1=obfunc(x[0]);}q=0;for(i=0;i<n;i++)q=q+(b[i]-a[i])*(b[i]-a[i]);w=sqrt(q);}while(w>eps);for(i=0;i<n;i++)xx=0.5*(a[i]+b[i]);ff=obfunc(xx);printf("xx=ff=%5.2f,,,,%5.2f",xx,ff);return(ff);}void main(){int n=1;double a[1],b[1],xx;double s[]={1},x0=0;double eps1=0.001,h0=0.1;jts(x0,h0,s,n,a,b);gold(a,b,eps1,n,xx);七、程序运行结果与分析(1)程序运行结果(截屏)(2)结果分析、对与函数S(X)=(4-2X)(3-2X)=4-14X+12,令(X)=8X-14=0可解的X=1.75,说明程序运行结果正确。
机械优化设计实例以汽车制造过程中的发动机设计优化为例,该实例涉及程序和算法框图。
1.现状分析:首先,我们需要分析目前使用的发动机设计的性能和问题,这可以通过实验数据和模拟结果来获取。
通过这些数据,我们可以确定哪些方面需要进行优化。
2.目标设定:在优化设计之前,我们需要设定设计目标,例如提高燃烧效率、减少排放、提高动力输出等。
3.参数选择:根据设计目标,我们需要选择一些关键参数进行调整,例如燃烧室形状、进气道设计、气缸布置等。
这些参数的选择可以基于经验或者通过试验和模拟得到。
4.方案设计:通过调整参数,我们可以设计若干不同的发动机构型。
这些构型可以通过CAD软件进行绘制和设计。
5.程序编写:为了评估不同构型的性能,我们需要编写相应的计算程序。
该程序可以基于数值模拟和实验数据,根据给定的输入参数计算发动机的性能指标,例如动力输出、燃油消耗等。
6.算法框图:以下是一个简化的算法框图,描述了发动机设计优化的步骤:开始->现状分析->目标设定->参数选择->方案设计->程序编写->性能计算->评估结果->是否满足设计目标?->是->结束;否->调整参数->重新方案设计->重新程序编写->重新性能计算->重新评估结果->…在这个框图中,我们可以看到,如果评估结果不满足设计目标,我们需要调整参数,并重新进行方案设计、程序编写和性能计算。
这个过程可以循环进行,直到满足设计目标为止。
总结:通过以上步骤,我们可以进行机械优化设计实例,特别是发动机设计优化。
通过分析现状、设定目标、调整参数、设计方案和编写程序,我们可以评估不同设计的性能,并通过循环优化的方式不断改进设计,以达到更好的性能和效果。
第8章_机械优化设计实例1.引言机械优化设计是用于提高机械系统性能的重要方法之一、本章将介绍两个机械优化设计实例,分别是电动车的电动机设计和汽车发动机排气系统设计。
通过对这两个实例的分析和优化,可以了解到机械优化设计的基本原理和方法。
2.电动车的电动机设计电动车的电动机是其动力系统的核心部件,其设计和性能直接影响到电动车的续航里程、加速性能和整车效率等。
在进行电动机设计时,需要考虑功率、转速范围、效率等因素。
在优化设计电动机时,首先需要确定其电机类型,常见的有直流电机(DC motor)、异步电机(Asynchronous motor)和同步电机(Synchronous motor)等。
根据电动车的使用条件和要求,选择合适的电机类型。
其次,需要确定电动机的参数,如磁极数、线圈匝数、齿槽数等。
通过改变这些参数,可以改变电动机的转速范围和功率输出等性能。
同时,还需要优化电动机的效率,提高其能量利用率。
最后,还需要对电动机进行热设计,确保其工作时不会过热。
通过合理的散热设计和冷却系统,可以有效降低电动机的温度,提高其稳定性和寿命。
3.汽车发动机排气系统设计汽车发动机排气系统是排放控制和动力性能的重要组成部分,其设计直接影响到发动机的功率输出和排放性能。
在进行排气系统设计时,需要考虑排气阻力和噪声等因素。
优化排气系统设计的方法之一是通过改变排气管的形状和长度来降低排气阻力。
通过数值模拟和实验测试,可以确定最佳的排气管尺寸和形状,以提高发动机的功率输出和燃烧效率。
另一方面,还可以通过改变排气系统的消声器和消音器等部件来降低排气噪声。
通过优化消声器的结构和材料,可以有效降低排气系统的噪声水平,提高车辆的驾驶舒适度。
此外,还需要考虑排气系统对发动机的冷却效果。
通过合理设计排气系统的散热器和风道等部件,可以提高发动机的冷却效果,降低发动机的温度,提高整车的性能和可靠性。
4.结论机械优化设计是提高机械系统性能的重要手段之一、通过上述两个机械优化设计实例的分析,可以看出在机械优化设计中需要考虑多个方面的因素,如功率、效率、排气阻力、噪声等。