《锐角三角函数——余弦、正切》评课稿
- 格式:doc
- 大小:14.50 KB
- 文档页数:1
《锐角三角函数——余弦、正切》评课稿
授课人
评课人
《锐角三角函数——余弦、正切》评课稿
聆听了周老师的课。下面就周老师执教的《锐角三角函数——余弦、正切》这一课谈谈自己的看法。
周老师这堂课紧凑有序,首先复习回顾正弦的引入过程,用类比的数学思想去探究余弦和正切的概念。在直角三角形中,固定角的正弦是固定值,根据勾股定理邻边也是随对边斜边变化而变化的,故有理由相信余弦正切也是定值。
统合来看,对于每一个固定的锐角,sinA有唯一确定的值与之对应,所以sinA是A的函数,同样的cosA、tanA也是A的函数,统称为∠A的锐角三角函数。
巩固练习环节,学生在平面直角坐标系、圆的外切三角形、等腰三角形、三垂直图形中充分熟练余弦正切,以及三种已知三角函数的相互转化关系,加深对本节课的认识,计算结果并不复杂,题目的设置主要考查学生对算理的灵活程度。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:学生在确定边长的过程中,单一思维就是勾股定理,对使用正弦、余弦、正切求边长主动意识不够。