当前位置:文档之家› 热工计算边界条件

热工计算边界条件

热工计算边界条件
热工计算边界条件

传热系数环境条件:

NFRC Simulation Conditions:

T in = interior ambient temperature of 21.0o C (69.8o F) T out = exterior ambient temperature of -18.0o C (-0.4o F) V = wind speed of 5.5 m/s (12.3 mph)

T rm,out = T out

T rm,in = T in

I s = 0 W/m2 (0 Btu/h·ft2)

遮阳算法边界条件:

围护结构保温材料选用及热工性能指标

附录围护结构保温材料选用及热工性能指标 附录A 屋面保温材料选用及热工性能参数 A.0.1屋面保温材料主要性能指标应符合表A.0.1的要求 表A.0.1屋面保温材料的主要性能指标 A.0.2正置式屋面的保温材料、厚度及热工性能按表A.0.2-1、表A.0.2-2确定

A.0.3倒置式屋面的保温材料、厚度及热工性能按表A.0.3-1、表A.0.3-2确定 注:倒置式屋面保温层的设计厚度按计算厚度增加25%;

A.0.4倒置式屋面采用B1级保温材料时,应按住宅单元设置防火隔断墙,防火隔断墙为厚度不小于100 mm 的不燃烧体,应从屋面板砌至高出屋面完成面不小于250mm ;防火隔断墙可利用住宅单元分隔墙延伸至屋面以上,高度不小于250mm ;防火隔断墙之间的屋顶面积不应大于300㎡,当屋面面积大于300㎡时,应增设一道防火隔断墙;防火隔断墙的泛水构造应符合屋面防水技术规范要求。 图A.0.4 屋面防火隔断墙示意图

附录B 外墙保温材料选用及热工性能参数 B.0.1 保温材料主要性能指标应符合表B.0.1的要求 表B.0.1外墙内保温材料的主要性能指标 能参数取自上海市地方标准《保温装饰复合板墙体保温系统应用技术规程》DG/TJ08-2122-2013表B.0.5 B.0.2全装修房外墙内保温的装饰面层由装修设计确定,内保温的构造组成应符合表B.0.2的规定, 2、保温材料采用硬泡聚氨酯时,应采用板材或硬泡聚氨酯龙骨固定内保温系统 3、岩棉、硬泡聚氨酯龙骨固定内保温系统的基本构造详见《外墙内保温工程技术规程》JGJ/T261-2011表6.6.1,并应符合《外墙内保温工程技术规程》JGJ/T261-2011第6.6节的规定。

围护结构热工性能简化权衡判断计算表.

附表7 围护结构热工性能简化权衡判断计算表 建筑面积 建筑面积(A 0) 窗 墙 面 积 比 屋顶透明部分与屋顶总面积之比 中庭屋顶透明部分与中庭屋顶面 积之比 原设计建筑 南 东 西 北 建筑外表面积 建筑体积 体形系数 参照建筑 规定值 设计值 规定值 设计值 调整后设计建筑 围 护 结 构 传 热 量 计 算 体形系数S 计算项目 i ε 原设计建筑 参照建筑 调整后设计建筑 S ≤0.30 0.30

围护结构隔声性能计算报告

围护结构隔声性能计算报告 二0一三年七月

1.概述 噪声进入建筑围护结构有三种方式:1.孔洞直接传声;2.声波撞击到墙面引起墙体震动向对面传声,对应的隔声措施称为空气声隔声;3.物体撞击地面或墙体产生结构振动而辐射声音,对应的隔声措施称为撞击声隔声。对于绿色建筑对建筑构件隔声的要求主要考虑构件的空气声隔声和撞击声隔声。 2.计算依据 《绿色建筑评价标准》GB/T 50378-2006 《建筑隔声评价标准》GB/T50121-2005 《民用建筑隔声设计规范》GBJ118-88 《工程做法(自重计算)》GJBT-1033 《建筑设计资料集第二版》 《金雁饭店项目环评报告书》 建筑设计相关施工图图纸 其中,《绿色建筑评价标准》GB/T 50378-2006对建筑围护结构隔声要求为:“5.5.9宾馆类建筑围护结构隔声性能满足《民用建筑隔声设计规范》GBJ118中的一级要求”。 客房空气隔声标准表6.1.2 客房撞击声隔声标准表6.1.3

3.计算过程 3.1 空气声计权隔声量计算 外门窗选用断桥铝合金框LOW_E中空玻璃门窗,隔声不小于35dB。户门隔声不小于35dB。户门、外门窗的空气声计权隔声量均满足绿色建筑评价标准的要求。 客房的楼板、隔墙的分层做法和材料属性见表3-2所示,分别对其进行空气声计权隔声量的计算。 表3-2客房的楼板、隔墙的分层做法和材料属性 计算楼板空气声计权隔声量时采用单层构件空气声计权隔声量计算公式: R = 23lgm - 9dB (m>200kg/m2) R = 13.5lgm + 13dB (m<200kg/m2)

上面公式中,R为单层构件的隔声量;m为构件的面密度。楼板的空气声计权隔声量为: 楼 分户墙的空气声计权隔声量为: 隔墙 隔墙 外墙 因此,日出东方酒店项目的楼板、客房与客房之间隔墙、客房与走廊间隔墙、外墙的空气声计权隔声量满足《民用建筑隔声设计规范》GBJ118中表6.1.2客房空气隔声标准中的一级要求,满足《绿色建筑标准》GB/T50378-2006的“5.5.9宾馆类建筑围护结构构件隔声性能满足现行国家标准《民用建筑隔声设计规范》GBJ118中的一级要求”的要求。 3.2楼板计权标准化撞击声声压级计算 本项目装修,客房地板做见表3-2, 根据《建筑物理》建筑声学附录3中已知的常用楼板计权标准撞击声压级,如图3-1所示,100厚混凝土楼板+8-12mm地毯的面密度为270kg/ m2,撞击声级达到52dB,该项目的客房地板做法优于规范规定的做法,故撞击声压级低于52dB;项目的客房远离噪声源,未出现客房与噪声源相邻,所以项目的楼板计权标准化撞击声声压级满足标准中不大于65dB的要求。

5.2.3 1#围护结构热工性能提高率计算书

1#楼围护结构热工性能 提高率计算书 (居住建筑) 提供者: XXXX建筑设计有限公司 绿色建筑咨询中心 电话:0635-XXXXXX 传真:0635-XXXXXX 地址:山东省XXX市XX区XX路X号 日期:2017-05

目录 一、项目概况 (3) 二、建筑信息 (3) 三、设计依据 (3) 四、体形系数 (3) 五、参考标准 (3) 六、围护结构热工性能提高率汇总表 (5) 七、结论 (5)

一、项目概况 二、建筑信息 三、设计依据 1.《山东省居住建筑节能设计标准》(DB37_5026_2014) 2.《严寒和寒冷地区居住建筑节能设计标准》(JGJ26-2010) 3.《民用建筑热工设计规范》(GB50176-93) 4.《建筑外门窗气密、水密、抗风压性能分级及检测方法》(GB/T 7106-2008) 5.《建筑设计防火规范》(GB50016-2014) 四、体形系数 五、参考标准 围护结构热工性能指标依据为《绿色建筑评价标准》(GB/T 50378-2014)中有关围护结构热工性能的条目要求。具体要求如下: 5.2.3 围护结构热工性能指标优于国家现行相关建筑节能设计标准的规定,评价总分值

为10分,并按下列规则评分: 1 围护结构热工性能比国家现行相关建筑节能设计标准规定的提高幅度达到5%,得5分;达到10%,得10分。 注:外墙、屋面的传热系数,外窗/幕墙的传热系数、遮阳系数,比《严寒和寒冷地区居住建筑节能设计标准》JGJ26-2010中表4.2.2-5规定的现行值高出5%或10%,即可判定满足该条款。

六、围护结构热工性能提高率汇总表 注: 1.东西向窗墙比小于0.2,外窗遮阳系数不做要求。 2.该汇总表传热系数设计值来源于5.1.1 1#楼节能计算书、节能登记表。 七、结论 根据计算,该工程维护结构热工性能指标优于国家现行标准《严寒和寒冷地区居住建筑节能设计标准》JGJ26-2010的相关标准规定,提高幅度达到10%。 根据《绿色建筑评价标准》第5.2.3条“围护结构热工性能比国家现行相关建筑节能设计标准规定的提高幅度达到10%,”本项目得10分。 根据《绿色建筑评价标准》第11.2.1条“围护结构热工性能比国家现行相关建筑节能设计标准的规定高20%,”本项目得2分。

围护结构说明

围护结构(building envelope)是指建筑及房间各面的围挡物,如门、窗、墙等,能够有效地抵御不利环境的影响。 围护结构分透明和不透明两部分:不透明维护结构有墙、屋顶和楼板等;透明围护结构有窗户、天窗和阳台门等。建筑工程建筑面积计算规范GB/T50353-2005中规定:围护结构(envelop enclosure )是指围合建筑空间四周的墙体、门、窗等。构成建筑空间,抵御环境不利影响的构件(也包括某些配件)。根据在建筑物中的位置,围护结构分为外围护结构和内围护结构。外围护结构包括外墙、屋顶、侧窗、外门等,用以抵御风雨、温度变化、太阳辐射等,应具有保温、隔热、隔声、防水、防潮、耐火、耐久等性能。内围护结构如隔墙、楼板和内门窗等,起分隔室内空间作用,应具有隔声、隔视线以及某些特殊要求的性能。围护结构通常是指外墙和屋顶等外围护结构。 分类 50353-2005中规定:围护结构(envelop enclosure )是指围合建筑空间四周的墙体、门、窗等。构成建筑空间,抵御环境不利影响的构件(也包括某些配件)。根据在建筑物中的位置,围护结构分为外围护结构和内围护结构。外围护结构包括外墙、屋顶、侧窗、外门等,用以抵御风雨、温度变化、太阳辐射等,应具有保温、隔热、隔声、防水、防潮、耐火、耐久等性能。内围护结构如隔墙、楼板和内门窗等,起分隔室内空间作用,应具有隔声、隔视线以及某些特殊要求的性能。围护结构通常是指外墙和屋顶等外围护结构。 构造 外围护结构的材料有砖、石、土、混凝土、纤维水泥板、钢板、铝合金板、玻璃、玻璃钢和塑料等。外围护结构按构造可分为单层的和多层复合的两类。单层构造如各种厚度的砖墙、混凝土墙、金属压型板墙、石棉水泥板墙和玻璃板墙等。多层复合构造围护结构可根据不同要求和结合材料特性分层设置。通常外层为防护层,中间为保温或隔热层(必要时还可设隔蒸汽层),内层为内表面层。各层或以骨架作为支承结构,或以增强的内防护层作为支承结构。 性能 围护结构应具有下述性能: 保温 在寒冷地区,保温对房屋的使用质量和能源消耗关系密切。围护结构在冬季应具有保持室内热量,减少热损失的能力。其保温性能用热阻和热稳定性来衡量。保温措施有:增加墙厚;利用保温性能好的材料;设置封闭的空气间层等。 隔热 围护结构在夏季应具有抵抗室外热作用的能力。在太阳辐射热和室外高温作用下,围护结构内表面如能保持适应生活需要的温度,则表明隔热性能良好;反之,则表明隔热性能不良。提高围护结构隔热性能的措施有:设隔热层,加大热阻;采用通风间层构造;外表面采用对太阳辐射热反射率高的材料等。 隔声 围护结构对空气声和撞击声的隔绝能力。墙和门窗等构件以隔绝空气声为主;楼板以隔绝撞击声为主(见建筑物隔声)。 防水防潮 对于处在不同部位的构件,在防水防潮性能上有不同的要求。屋顶应具有可靠的防水性能,即屋面材料的吸水性要小而抗渗性要高。外墙应具有防潮性能,潮湿的墙体会恶化室内条件,降低保温性能和损坏建筑材料。外墙受潮的原因有:①雨水通过毛细管作用或风压作用向墙内渗透;②地下毛细水或地下潮气上升到墙体内;③墙内水蒸气在冬季形成的凝结水等。为避免墙身受潮,应采用密实的材料作外饰面;设置墙基防潮层以及在适当部位设隔

混凝土热工计算公式

冬季施工混凝土热工计算步骤 冬季施工混凝土热工计算步骤如下: 1、混凝土拌合物的理论温度: T0=【0.9(mceTce+msaTsa+mgTg)+4.2T(mw+wsamsa-wgmg)+c1(wsamsaTsa+wgmgTg) -c2(wsamsa+wgmg)】÷【4.2mw+0.9(mce+msa+mg)】 式中 T0——混凝土拌合物温度(℃) mw、 mce、msa、mg——水、水泥、砂、石的用量(kg) T0、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃) wsa、wg——砂、石的含水率(%) c1、c2——水的比热容【KJ/(KG*K)】及熔解热(kJ/kg) 当骨料温度>0℃时, c1=4.2, c2=0; ≤0℃时, c1=2.1, c2=335。 2、混凝土拌合物的出机温度: T1=T0-0.16(T0-T1) 式中 T1——混凝土拌合物的出机温度(℃) T0——搅拌机棚温度(℃) 3、混凝土拌合物经运输到浇筑时的温度: T2=T1-(at+0.032n)(T1-Ta) 式中 T2——混凝土拌合物经运输到浇筑时的温度(℃); tt——混凝土拌合物自运输到浇筑时的时间; a——温度损失系数 当搅拌车运输时, a=0.25 4、考虑模板及钢筋的吸收影响,混凝土浇筑成型时的温度: T3=(CcT2+CfTs)/( Ccmc+Cfmf+Csms) 式中 T3——考虑模板及钢筋的影响,混凝土成型完成时的温度(℃); Cc、Cf、Cs——混凝土、模板、钢筋的比热容【kJ/(kg*k)】; 混凝土取1 KJ/(kg*k); 钢材取0.48 KJ/(kg*k); mc——每立方米混凝土的重量(kg); mf、mc——与每立方米混凝土相接触的模板、钢筋重量(kg); Tf、Ts——模板、钢筋的温度未预热时可采用当时的环境温度(℃)。 根据现场实际情况,C30混凝土的配比如下: 水泥:340 kg,水:180 kg,砂:719 kg,石子:1105 kg。 砂含水率:3%;石子含水率:1%。 材料温度:水泥:10℃,水:60℃,砂:0℃,石子:0℃。 搅拌楼温度:5℃ 混凝土用搅拌车运输,运输自成型历时30分钟,时气温-5℃。 与每立方米混凝土接触的钢筋、钢模板的重量为450Kg,未预热。 那么,按以上各步计算如下: 1、 T0=【0.9(340×10+719×0+1105×0)+4.2×60×(180-0.03×719-0.01×1105)+2.1×0.03×719×0+2.1×0.01×1105×0-335×(0.03×719+0.01×1105)】/【4.2×180+0.9(340+719+1105)】=13.87℃ 2、 T1= T0-0.16(T0- T1)=13.87-0.16×(13.78-5)=12.45℃ 3、 T2= 12.45-(0.25×0.5+0.032×1)(12.45+5)=9.7℃

建筑热工计算的补充说明

建筑热工计算的补充说明 一、热工计算方法补充说明 6-01

6-01 3 朝向窗墙面积比M 1 1) 地下室为非采暖空间时,±0.00以下的建筑物垂直外立面不参与计算。 2) 地下室为采暖空间时,±0.00以下与室外空气接触的建筑物垂直外立面参与计算(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外墙和门窗)。 4 建筑物体形系数S 1) 没有地下室,或有地下室但地下室为非采暖空间时,建筑物外表面积及其所包围的空间从首层地面(±0.00)算起,±0.00以下不参与计算。 2) 有地下室且地下室为采暖空间时 (1)参与计算的建筑物外表面积F Σ,为地上和地下所有与大气接触的围护结构外表面积的总和(其中凸窗和封闭式阳台计算方法见上述1、2)。 (2)参与计算的建筑物体积0V ,为±0.00以上体积上V 和±0.00以下计算体积’下V 两部分之和。 (3)±0.00以下计算体积’下V 按下式确定: 下 下 ’ 下 ’下 V f f V 式中:’ 下f ——±0.00以下与室外空气接触的垂直外立面面积(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外立面); 下f ——±0.00以下垂直外立面总面积(包括与室外空气接触和与土壤接触的外立面) ; 下V ——±0.00以下下f 包围的总体积。 5 当建筑物各部分层数不统一(阶梯式错层)时,该建筑热工参数限值可按面积所占比例最大部分的层数统一确定取值。 6 采用附录权衡判断表B.1.3.-2进行温差传热量计算时, 楼梯间和封闭外走廊的屋面、地面(或楼板)不单独计算,简化为与户内部分统一计算,即室内外温差均为17.9℃。

建筑热工计算的补充说明

建筑热工计算的补充说明一、热工计算方法补充说明

3 朝向窗墙面积比M 1 1) 地下室为非采暖空间时,±0.00以下的建筑物垂直外立面不参与计算。 2) 地下室为采暖空间时,±0.00以下与室外空气接触的建筑物垂直外立面参与计算(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外墙和门 窗)。 4 建筑物体形系数S 1) 没有地下室,或有地下室但地下室为非采暖空间时,建筑物外表面积及其所包围的空间从首层地面(±0.00)算起,±0.00以下不参与计算。 2) 有地下室且地下室为采暖空间时 (1)参与计算的建筑物外表面积F Σ,为地上和地下所有与大气接触的围护结构外表面积的总和(其中凸窗和封闭式阳台计算方法见上述1、2)。 (2)参与计算的建筑物体积0V ,为±0.00以上体积上V 和±0.00以下计算体积’ 下V 两部分之和。 (3)±0.00以下计算体积’下V 按下式确定: 下 下 ’ 下 ’下 V f f V 式中:’ 下f ——±0.00以下与室外空气接触的垂直外立面面积(包括:±0.00至室外地平、至窗井底部、至下沉庭院地平的外立面); 下 f ——±0.00以下垂直外立面总面积(包括与室外空气接触和与土壤接触的外立面); 下 V ——±0.00以下 下 f 包围的总体积。 5 当建筑物各部分层数不统一(阶梯式错层)时,该建筑热工参数限值可按面积所占比例最大部分的层数统一确定取值。 6 采用附录权衡判断表B.1.3.-2进行温差传热量计算时, 楼梯间和封闭外走廊的屋面、地面(或楼板)不单独计算,简化为与户内部分统一计算,即室内外温差均为17.9℃。

围护结构计算要点

明挖基坑围护结构计算书要点 1、工程概况 简单描述本工程与周围环境的关系、基坑的尺寸及深度、围护结构及支撑形式、现状地面及规划地面的标高等。 2、计算所依据的规范 (1)《建筑结构荷载规范》(GB50009-2001)(2006年版) (2)《混凝土结构设计规范》(GB50010-2002) (3)《钢结构设计规范》(GB50017-2003) (4)《建筑基坑支护技术规程》(JGJ120-99) (5)《建筑基坑工程技术规范》(YB9258-97) (6)《建筑桩基技术规范》(JGJ94-2008) (7)《钢筋焊接及验收规程》(JGJ18-2003) (8)《岩土锚杆技术规程》(CECS 22:2005) (9)《基坑土钉支护技术规程》(CECS96:97) (10)当地的规范、标准。 注意: ①当其他规范、标准与当地规范、标准矛盾时应以当地规范、标准为准; ②注意规范版本的有效性。 3、设计标准 (1)基坑支护结构采用以分项系数表示的极限状态设计法设计; (2)围护结构与主体结构的受力关系,作为临时结构还是永久性结构。(是否承受使用阶段的荷载) (3)基坑侧壁安全等级及支护结构的重要性系数; (4)基坑保护等级以及变形控制标准; (5)围护桩按强度设计,不再验算裂缝宽度; (6)基坑周边超载;是否有偏压问题。 (7)计算中对于地下水的考虑(即是否考虑水压力) (8)基坑稳定性安全系数(整体稳定性、抗滑移、抗倾覆、抗隆起(坑底、墙底)、抗管涌或渗流、抗承压水突涌); 注意:采用的安全系数与地层参数取值以及使用年限的一致性。

(9)内支撑竖向荷载(支撑自重和支撑顶面的施工活荷载等)、支撑安装误差造成的偏心距; (10)结构抗浮安全系数。 4、工程地质及水文地质情况:根据地质勘查报告,注意地质参数取值,并考虑与采用规范的对应性。 5、基坑围护结构计算 (1)计算采用的软件 如北京理正基坑程序、上海同济启明星程序等 注意: ①对于采用的程序要研究其适应性,要搞清其计算原理、基本假定和适用条件等。哪些条件下可用,哪些条件下不能用,哪些条件下用了与实际出入较大,必须进行修正。 ②最好采用当地通用程序。 (2)围护及支持结构内力、变形及地面沉降计算。(结果一般为标准值) 6、围护桩配筋计算:采用设计值进行计算 7、钢支撑计算:验算强度、稳定性。 8、锚杆(索)计算:计算杆体受力以及锚固体与土体的摩阻力。 9、钢围檩计算 10、土钉墙面板计算 11、桩顶冠梁计算 12、结构抗浮验算

科技馆金属屋面热工计算书

建设单位:扬州美科置业有限公司 工程名称:扬州市科技馆金属屋面工程 热工性能计算书 计算: 校对: 审核: 江苏华磊装饰幕墙工程有限公司 2014年9月25日

目录 一、计算说明 (3) 二、屋面采光顶热工性能计算书 (6) 三、屋面铝镁锰板热工性能计算书 (19)

计算说明 (一)本计算概况: 气候分区:夏热冬冷地区 工程所在城市:扬州 (二)参考资料: 《夏热冬冷地区居住建筑节能设计标准》JGJ134-2010 《民用建筑热工设计规范》GB50176-93 《公共建筑节能设计标准》GB50189-2005 《公共建筑节能设计标准》DGJ32/J 96-2010 《建筑玻璃应用技术规程》JGJ 113-2009 《建筑门窗玻璃幕墙热工计算规程》(JGJ/T151-2008) (三)计算基本条件: 1.计算实际工程所用的建筑门窗和玻璃幕墙热工性能所采用的边界条件应符合相应的建筑设计或节能设计标准。 2.设计或评价建筑门窗、玻璃幕墙定型产品的热工参数时,所采用的环境边界条件应统一采用规定的计算条件。 3.以下计算条件可供参考: (1)各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源(CIE D65,ISO 10526)光谱函数; R(λ):视见函数(ISO/CIE 10527)。 (2)冬季计算标准条件应为: 室内空气温度 T in=20 ℃ 室外空气温度 T out=-20 ℃ 室内对流换热系数 h c,in= W/ 室外对流换热系数 h c,out=16 W/ 室内平均辐射温度 T rm,in=T in 室外平均辐射温度 T rm,out=T out 太阳辐射照度 I s=300 W/m2 (3)夏季计算标准条件应为: 室内空气温度 T in=25 ℃ 室外空气温度 T out=30 ℃ 室内对流换热系数 h c,in= W/ 室外对流换热系数 h c,out=16 W/ 室内平均辐射温度 T rm,in=T in 室外平均辐射温度 T rm,out=T out 太阳辐射照度 I s=500 W/m2 (4)计算传热系数应采用冬季计算标准条件,并取I s= 0 W/m2。 (5)计算遮阳系数、太阳能总透射比应采用夏季计算标准条件,并取T out=25 ℃。 (6)抗结露性能计算的标准边界条件应为: 室内环境温度 T in=20 ℃ 室外环境温度 T out=0 ℃或 T out=-10 ℃或 T out=-20 ℃ 室内相对湿度 RH=30% 或 RH=60% 室外对流换热系数 h c,out=20 W/

围护结构热工性能及权衡计算--软件说明

围护结构热工性能的权衡计算 ―――软件说明 当进行围护结构热工性能权衡计算时,需要应用动态计算软件。由中国建筑科学研究院建筑物理研究所开发的建筑能耗动态模拟分析计算软件,适用于办公建筑及其它各类公共建筑的建筑节能设计达标评审。其计算内核为美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)开发的DOE-2程序,可以对建筑物的采暖空调负荷、采暖空调设备的能耗等进行全年8760小时的逐时能耗模拟。 在标准宣贯和使用过程中,大量采取能耗分析软件的主要原因在于:标准对性能化设计方法的要求以及权衡判断(Trade-off)节能指标法的引入。 首先,在标准中设置了两种指标来控制节能设计,第一种指标称为规定性指标,第二种指标称为性能性指标。规定性指标规定建筑的围护结构传热系数、窗墙比、体形系数等参数限值,当所设计的建筑能够符合这些规定时,该建筑就可判定为符合《标准》要求的节能建筑。规定性指标的优点是使用简单,无需复杂的计算。但是规定性指标也在一定程度上限制了建筑设计人员的创造性。性能性指标的优点在于突破建筑设计的刚性限制,节能目标可以通过调整围护结构的热工性能等措施来达到。也就是说性能性指标不规定建筑围护结构的各种参数,但是必须对所设计的整栋建筑在标准规定的一系列条件下进行动态模拟,单位面积采暖空调和照明的年能耗量不得超过参照建筑的限值。因此使用性能性指标来审核时需要经过复杂的计算,这种计算只能用专门的计算软件来实现。 同时,从实际使用情况来看,近年来公共建筑的窗墙面积比有越来越大的趋势,建筑立面更加通透美观,建筑形态也更为丰富。因此,传统建筑设计中对窗墙面积比的规定很可能不能满足本条文规定的要求。须采用标准第4.3节的权衡判断(Trade-off)来判定其是否满足节能要求。 图B-1 公建标准权衡判断(Trade-off)评价流程

热工计算汇总

11.热工计算 11.1.计算引用的规范、标准及资料 《建筑幕墙》 GB/T21086-2007 《民用建筑热工设计规范》 GB50176-93 《公共建筑节能设计标准》 GB50189-2005 《民用建筑节能设计标准(采暖居住建筑部分)》 JGJ26-95 《夏热冬暖地区居住建筑节能设计标准》 JGJ75-20031 《居住建筑节能设计标准意见稿》 [建标2006-46号] 《建筑门窗玻璃幕墙热工计算规程意见稿》 [建标2004-66号] 《建筑玻璃应用技术规程》 JGJ113-2003 《玻璃幕墙光学性能》 GB/T18091-2000 《建筑玻璃可见光、透射比等以及有关窗玻璃参数的测定》 GB/T2680-94 11.2.计算中采用的部分条件参数及规定 11.2.1.计算所采纳的部分参数 按《建筑门窗玻璃幕墙热工计算规程意见稿》采用 11.2.1.1.各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源光谱函数(CIE D65,ISO 10526); R(λ):视见函数(ISO/CIE 10527); 11.2.1.2.冬季计算标准条件应为: 室内环境计算温度:T in =20℃; 室外环境计算温度:T out =0℃; 内表面对流换热系数:h c =3.6W/(m2·K); 外表面对流换热系数:h e =23W/(m2·K); 室外平均辐射温度:T rm =T out 太阳辐射照度:I s =300W/m2;

11.2.1.3.夏季计算标准条件应为: 室内环境温度:T in =25℃; 室外环境温度:T out =30℃; 内表面对流换热系数:h c =2.5W/(m2·K); 外表面对流换热系数:h e =19W/(m2·K); 室外平均辐射温度:T rm =T out ; 太阳辐射照度:I s =500W/m2; 11.2.1.4.计算传热系数应采用冬季计算标准条件,并取I s =0W/m2; 11.2.1.5.计算遮阳系数、太阳能总透射比应采用夏季计算标准条件,并取T out =25℃; 11.2.1.6.抗结露性能计算的标准边界条件应为: 室内环境温度:T in =20℃; 室外环境温度:T out =-10℃或T out =-20℃ 室内相对湿度:RH=30%或RH=50%或RH=70%; 室外风速:V=4m/s; 11.2.1.7.计算框的太阳能总透射比g f 应使用下列边界条件: q in =α·I s q in :通过框传向室内的净热流(W/m2); α:框表面太阳辐射吸收系数; I s :太阳辐射照度=500W/m2; 11.2.2.最新规范《公共建筑节能设计标准》的部分规定11.2.2.1.结构所在的建筑气候分区应该按下面表格取用:

建筑围护结构热工性能的权衡计算

建筑围护结构热工性能的权衡计算 一、计算参数信息 1.1 热工参数和计算结果 1.2 室内计算参数表

二、能耗计算结果 2.1建筑累计负荷计算结果 根据《公共建筑节能设计标准》(GB50189-2015)第3.4章的要求,并参照本标准附录B的规定进行计算,本建筑的建筑累计负荷如下: 表 7 累计负荷计算结果 2.2 建筑全年空调和采暖耗电量计算 根据《公共建筑节能设计标准》(GB50189-2015)第 3.4章的要求,应按照附录B.0.6所给的公式计算建筑物全年耗电量: 夏热冬冷、夏热冬暖和温和地区: 式中:E——建筑物供暖和供冷总耗电量,(kWh/m2); E C——建筑物供冷耗电量,(kWh/m2); E H——建筑物供热耗电量,(kWh/m2); Q H——全年累计耗热量(通过动态模拟软件计算得到),(kWh); η1——热源为燃煤锅炉的供暖系统综合效率,取0.60; q1——标准煤热值,8.14kWh/ kgce; q2——上年度国家统计局发布的发电煤耗,2008年数据为0.360 kgce/kWh; Q C——全年累计耗冷量(通过动态模拟软件计算得到),(kWh); A——建筑总面积,(m2); SCOPT——供冷系统综合性能系数,取2.50; η2——热源为燃气锅炉的供暖系统综合效率,取0.75; q3——标准天然气热值,取9.87 kWh/m3;

Φ——天然气的折标系数,取1.21 kgce/m3。 依据以上建筑全年累计负荷计算结果与附录 B.0.6条所给参数,计算得到该建筑物的全年空调和采暖耗电量如下: 表 8 全年空调和采暖耗电量 本建筑的单位面积空调和采暖耗电量结果如下: 表 9 全年空调和采暖耗电量指标 能耗分析图表如下: 表 1 能耗分析图表 三、结论 该设计建筑的全年能耗小于参照建筑的全年能耗,因此该项目已达到《公共建筑节能设计标准》(GB50189-2015)的节能要求。

围护结构热工性能简化权衡判断计算表

围护结构热工性能简化权衡判断计算表 工程名称工号建筑面积A0(m2)窗墙比采光顶与屋顶 总面积之比 南东西北 建筑外表面面积(m2)建筑体积(m3) 体形 系数 参照建筑 设计建筑 计算项目εi 参照建筑设计建筑 S≤ 0.3 0.3<S ≤0.4 S> 0.4 Ki[W/ (m2· K)] Fi (m2) i i i F K εKi[W/ (m2· K)] Fi (m2) i i i F K ε传热系数限值 [W/(m2·K)] 屋顶非透明 部分 0.91 0.55 0.45 0.40 采光顶0.18 2.70 外墙南0.70 0.60 0.50 0.45 东0.86 西0.86 北0.92 外窗墙窗 面积 比≤ 0.2 南0.18 3.50 3.00 东0.57 西0.57 北0.76 0.2< 墙窗 面积 比≤ 0.3 南0.18 3.00 2.50 东0.57 西0.57 北0.76 0.3< 墙窗 面积 比≤ 0.4 南0.18 2.70 2.30 东0.57 西0.57 北0.76 0.4< 墙窗 面积 比≤ 0.5 南0.18 2.30 2.00 东0.57 西0.57 北0.76 0.5< 墙窗 面积 比≤ 0.6 南0.18 2.00 1.80 东0.57 西0.57 北0.76 墙窗南0.18 ————— 1.5

面积比>0.7 东0.57 ———西0.57 ———北0.76 ——— 接触室外空 气的架空或 外挑楼板 1.00 0.60 0.50 ∑i i i F Kε 注:由于参照建筑与设计建筑的空气渗透耗热量和室内得热量相同,因此本表进行了简化,只需调整设计建筑的F i和K i,使其∑i i i F Kε小于等于参照建筑的∑i i i F Kε即可。 设计校正审核审定

围护结构热工计算

10 围护结构热工计算 10.1 墙体热工计算 10.1.1 墙体传热系数 1 传热系数K 应按下列公式计算: e i o R R R R K ++= = 11 (10.1.1–1) ∑= j j R R (10.1.1–2) j c j j R ,λδ = (10.1.1–3) a j j c ?=λλ, (10.1.1–4) 式中 R o ——传热阻,表征围护结构(包括两侧表面空气边界层)阻抗热传递的能力,(m 2·K)/W ; R i ——内表面换热阻,(m 2·K/W )。一般取R i = 7 .81=0.11 [(m 2·K/W )],对于分户墙,两 侧表面的换热阻均取R i =0.11(m 2 ·K)/W ; R e ——外表面换热阻,一般取R e = 23 1=0.04(m 2 ·K )/W ; R ——墙体结构层的热阻,等于构成墙体的各材料层的热阻之和,由单一或多层材料构成的 结构层的热阻R 按公式(10.1.1–3)和(10.1.1–4)计算,由两种以上材料组成的、两向非匀质围护结构(包括多种形式的空心砌块、填充保温材料的墙体等,但不包括多孔粘土空心砖),其平均热阻应按《民用建筑热工设计规范》GB 50176-93中附录二的公式(附2.3)进行计算,(m 2·K)/W ; j δ——各材料层的厚度,m ; j c ,λ——各材料层的计算导热系数,W/(m ·K); j λ——各材料层材料的导热系数,一般为实验室干燥状态下的测定值,W/(m ·K); a ——考虑使用位置和湿度影响的大于1.0的修正系数。 材料的导热系数λ和修正系数a ,可在《民用建筑热工设计规范》GB 50176-93的附录表4.1和附录表4.2中查取。 2 外墙平均传热系数K m 的计算 外墙平均传热系数K m 是由外墙主体部位的传热系数K p 与面积F p 和结构性热桥部位的传热系数K b 与面积F b ,用加权平均方法按下式计算: K m = b p b b p p F F F K F K +?+? (10.1.1–5) 式中 K m ——外墙平均传热系数,(m 2·K )/W ;

玻璃幕墙热工计算

常熟--局幕墙热工性能计算书 (一)本计算概况: 气候分区:夏热冬冷地区 工程所在城市:南京 传热系数限值:≤2.80 (W/m2.K) 遮阳系数限值(东、南、西向):≤0.45 遮阳系数限值(北向):≤0.45 (二)参考资料: 《民用建筑节能设计标准(采暖居住建筑部分)》JGJ26-95 《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001 《民用建筑热工设计规范》GB50176-93 《公共建筑节能设计标准》GB50189-2005 《公共建筑节能设计标准》DBJ 01-621-2005 《居住建筑节能设计标准》DBJ 01-602-2004 《建筑玻璃应用技术规程》JGJ 113-2003 《建筑门窗玻璃幕墙热工计算规程》(JGJ/T151-2008) 《建筑门窗幕墙热工计算及分析系统(W-Energy 2010)》 (三)计算基本条件: 1.计算实际工程所用的建筑门窗和玻璃幕墙热工性能所采用的边界条件应符合相应的建筑设计或节能设计标准。 2.设计或评价建筑门窗、玻璃幕墙定型产品的热工参数时,所采用的环境边界条件应统一采用规定的计算条件。 3.以下计算条件可供参考: (1)各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源(CIE D65,ISO 10526)光谱函数; R(λ):视见函数(ISO/CIE 10527)。 (2)冬季计算标准条件应为: 室内环境温度 T in=20℃ 室外环境温度 T ou t=0℃ 内表面对流换热系数 h c,in=3.6 W/m2.K 外表面对流换热系数 h c,out=20 W/m2.K 太阳辐射照度 I s=300 W/m2 (3)夏季计算标准条件应为: 室内环境温度 T in=25℃ 室外环境温度 T ou t=30℃ 外表面对流换热系数 h c,in=2.5 W/m2.K 外表面对流换热系数 h c,out=16 W/m2.K

哈尔滨地区屋面最薄处设计热工计算说明

哈尔滨地区屋面保温层 最薄处厚度设计热工计算说明 一、计算依据 依据GB50176-93《民用建筑热工设计规范》第4.1.1条的规定,设置集中采暖的建筑物,其围护结构的传热阻应根据技术经济比较确定,且应符合国家有关节能标准的要求,因此,哈尔滨地区屋面最小传热阻应按下式计算: ()[]i e i R t n t t R ?-= ?min 0 式中: m in 0?R ——JK 保温屋面最薄弱部位最小传热阻值(m 2·K /W ); i t ——冬季室内计算温度(℃),一般居住建筑,取18℃;高级居住建筑,医疗、托幼建筑,取20℃;(本说明中按20℃取值) e t ——屋面结构冬季室外计算温度(℃),按《民用建筑热工设计规范》GB50176-93第2.0.1条的规定采用; e t n ——温差修正系数,按《民用建筑热工设计规范》 GB50176-93表4.1.1-1采用; n i R ——内表面换热阻(m 2·K /W ),一般取R i =0.11(m 2·K /W ); []t ?——室内空气与屋面结构内表面之间允许温差(℃),按《民用建筑热工设计规范》GB50176-93表4.1.1-2采用。

室内空气与屋面结构内表面之间允许温差[]t ?(℃)取值 注:本数据摘自GB50176-93《民用建筑热工设计规范》表4.1.1-2。(本说明中按4.0℃取值) 二、计算结果 根据上述公式计算,哈尔滨地区围护结构最小传热阻应为: ()[]()[]4575.111.04 33-20min 0=?-=?-=?i e i R t n t t R (m 2·K /W ) 140mm 厚JK 保温屋面热阻为: 509.21 .106.006.06.180140=?+=?+=αλδ R R (m 2·K /W )>m in 0?R 。 综上,可得知最薄处140mm 厚JK 保温屋面完全可以满足哈尔滨地区对围护结构最小传热阻的要求。

建筑热工指标计算及其标准

建筑热工指标计算 及其标准 皖源集团—安徽节源节能科技有限公司 2011年12月

一、适用范围 新标准(JGJ 26-95)中规范适用于严寒和寒冷地区,主要包括东北、华北和西北地区(简称三北地区)等年日平均温度低于或等于5℃的天数,一般都在90天以上,最长的满洲里达211天。这一地区习惯上称为采暖区,其面积占我国国土面积的70%。新标准适用于集中采暖的新建和扩建居住建筑热工与采暖节能设计。居住建筑主要包括住宅建筑(约占92%)和集体宿舍、招待所、旅馆、托幼建筑等。集中采暖系指由分散锅炉房、小区锅炉房和城市热网等资源,通过管道向建筑物供热的采暖方式。 二、相关的热工指标计算方法的规定 1、建筑物耗热量指标计算 H H T INF I H q q q q =+- 式中: H q —建筑物耗热量指标(2/W m ); H T q —单位建筑面积通过围护结构的传热耗热量(2/W m ); INF q —单位建筑面积的空气渗透耗热量(2/W m ); I H q —单位建筑面积的建筑内部得热(包括炊事、照明、家电和人体散热),住宅建筑取3.80(2/W m )。 2、单位建筑面积通过围护结构的传热耗热量计算 1()()/m i c i i i i H T t t K F A q ε==-∑ 式中: i t —全部房间平均室内计算温度,一般住宅建筑取16℃;

e t —采暖期室外平均温度(℃); i ε—围护结构传热系数的修正系数(取用方式详见附录1); i K —围护结构的传热系数() 2/m K W ,对于外墙应取其平均 传热系数(计算方法详见附录2); i F —围护结构的面积(2m )(计算方法详见附录3); 0A —建筑面积(2m )(计算方法详见附录3)。 3、单位建筑面积的空气渗透耗热量计算 ()()/i e INF t t C N V A q ρρ=- 式中: C ρ —空气比热容,取0.28/()W h kg K ; ρ—空气密度(3/kg m ),取e t 条件下的值; N —换气次数,住宅建筑取0.5(1/h ); V —换气体积(3m )(计算方法详见附录3)。 4、采暖耗煤量指标计算 1224/c H c q Z q H ηη= 式中: c q —采暖耗煤量指标(2/kg m 标准煤); H q —建筑物耗热量指标(2/W m ) ; Z —采暖期天数(d )(采用方法详见附录4); c H —标准煤热值,取38.1410/W h kg ? ; 1η—室外管网输送效率,采取节能措施前,取0.85,采取节 能措施后,取0.90;

双坡屋顶等效传热系数的计算问题

双坡 摘要:本文分析了冬季采暖房间双坡屋顶的传热问题,通过运用组合材料法和热量平衡法,推导出双坡屋顶等效传热系数的计算公式,并进行了实例分析,结果表明:坡屋顶中的空气层对屋顶的保温 影响不明显。 关键字:等效传热系数 坡屋顶 平屋顶 空气层 Calculation of equivalent heat transfer coefficient of double sloping roof Abstract: In this paper, the heat transfer mechanism of double sloping roof of heating room in winter is analyzed. By using built-up materials method and heat balance method, the formula of equivalent heat transfer coefficient of double sloping roof is introduced. Furthermore, the example analysis is also made. The conclusion is that the air space has little effort on heat preservation in the sloping roof. Key word: equivalent heat transfer coefficient sloping roof flat roof air space 随着国民经济的发展,居民生活水平的提高,人们对于居住质量的要求也越来越高。其中平屋顶建筑顶部的冬冷夏热,已成为一个不可忽视的问题。如何在原有建筑的基础上加以改造,或采用新型的屋顶形式,在改善室内热环境的同时,达到美观、节能的目的,正成为一个新的研究方向。目前解决此类问题的常规做法是设置坡屋顶。本文主要对冬季采暖房间双坡屋顶的等效传热系数的计算问题进行了讨论,推导出双坡屋顶等效传热系数的计算公式。 一 原理 根据建筑围护结构的传热原理,冬季采暖房间室内、外温度的计算模型为恒定热作用类型,即室内温度和室外温度在计算期间不随时间而变。设室内温度为i t ,室外温度为e t ,内表面换热系数为i α,外表面换热系数为e α,传热系数为0K ,传热面积为0F ,传递热量为Q ,材料层的厚度为d ,其相应的导热系数为λ。一维稳态传热的计算公式为: 00)(1 1 F t t K d t t Q e i e i e i -=+ +-= ∑ αλ α (1) 假设在一建筑体中截取一长度L 为10米,宽B 为5米,屋顶坡度为i 的部分作为计算单元(见图1)。

相关主题
文本预览
相关文档 最新文档