2020-2021全国中考数学相似的综合中考真题分类汇总
- 格式:doc
- 大小:2.33 MB
- 文档页数:22
2020-2021全国中考数学相似的综合中考真题分类汇总
一、相似
1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.
(1)①求证:AP=CQ;②求证:PA2=AF•AD;
(2)若AP:PC=1:3,求tan∠CBQ.
【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,
∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°
∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;
②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,
∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,
由①得△ABP≌△CBQ,∠ABP=∠CBQ
∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,
(本题也可以连接PD,证△APF∽△ADP)
(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,
∵∠ACB=45°,∴∠PCQ=45°+45°=90°
∴tan∠CPQ= ,
由①得AP=CQ,
又AP:PC=1:3,∴tan∠CPQ= ,
由②得∠CBQ=∠CPQ,
∴tan∠CBQ=tan∠CPQ= .
【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可
得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答
案.
2.如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
(1)求直线AB的解析式和抛物线的解析式;
(2)如果点P是MN的中点,那么求此时点N的坐标;
(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.
【答案】(1)解:设直线的解析式为()
∵,
∴解得
∴直线的解析式为
∵抛物线经过点,
∴解得
∴
(2)解:∵轴,则,
∴,
∵点是的中点
∴
∴
解得,(不合题意,舍去)
∴
(3)解:∵,,
∴,
∴
∵
∴当与相似时,存在以下两种情况:
∴解得
∴
∴ ,解得
∴
【解析】【分析】(1)运用待定系数法解答即可。
(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m 表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。
(3)在△BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。
3.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为,sinA= ,求BH的长.【答案】(1)证明:如图,
∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线
(2)证明:连接AC,如图2所示:
∵OF⊥BC,
∴,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴,
∴CE2=EH•EA
(3)解:连接BE,如图3所示:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为,sin∠BAE= ,
∴AB=5,BE=AB•sin∠BAE=5× =3,
∴EA= =4,
∵,
∴BE=CE=3,
∵CE2=EH•EA,
∴EH= ,
∴在Rt△BEH中,BH= .
【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°;
(2)连接AC,要证CE2=EH•EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解;
(3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。
4.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E、F分别从B、C 两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA、AB向终点B运动,速度为5cm/s,设它们运动的时间为x(s).