抽水试验(含承压水)曲线
- 格式:xls
- 大小:1.08 MB
- 文档页数:1
承压水抽水试验研究作者:温卫军张凡王金玺来源:《城市建设理论研究》2014年第09期【摘要】承压水水头控制对深基坑施工的安全性起着至关重要的影响,作者以苏州中心承压水抽水试验为例,探究承压水水头控制在深基坑施工中的作用。
【关键词】深基坑;止水帷幕;承压水;抽水试验中图分类号:TU753 中图分类号:A一、工程概况苏州中心项目B-1区共有4幢塔楼,分别为6#塔楼、7#塔楼、8#塔楼和9#塔楼。
B-1区基坑面积约29192㎡,裙房基坑开挖底标高为-12.55m,主楼基坑开挖底标高为-17.15m~-20.35m,具体开挖参数如下表所示:表1-1 基坑开挖工程性质表序号工程部位地面绝对标高(m)坑底绝对标高(m)开挖深度(m)止水帷幕深度(m)1 B-1区裙房 +3.00 -12.65 15.65 31.352 B-1区主楼 +3.00 -13.45m~-20.35m 16.45~23.35 49.00为确保坑中坑部位土方开挖和基础底板施工安全,对坑内承压水进行处理:地下三层主楼核心筒区域(含电梯井等落深区)采用超深三轴水泥土搅拌桩侧封以隔断承压水层,同时采用高压旋喷桩底封的方式进行封底处理以提高坑底土体强度。
二、水文地质条件2.1微承压水微承压水主要赋存于⑤层粉土夹粉砂,富水性中等,透水性较好,勘察期间测得其稳定水位标高0.90~1.00m。
2.2第Ⅰ承压水上段本场地对基坑开挖有影响的承压含水层主要为第Ⅰ承压水上段,主要分布于第⑨2层土中。
根据本次勘察期间施工的抽水试验井内进行的水位观测,本场地⑨2层第Ⅰ承压水上段实测水位标高在-9.88~-9.80m。
由于场地周边对地下水进行了降水,该层水水位偏低。
三、抽水试验的必要性由于本工程基坑开挖较深,且周边环境复杂,为此有必要进行承压水的抽水试验,以检验承压水是否被隔断和现有的减压井是否满足坑中坑开挖施工对承压水的要求。
四、抽水试验的目的本工程现场承压水抽水试验目的如下:◇提供本地块准确的承压水含水层第⑨2层试验期间承压水水头高度,并提供本场地内降承压水的临界开挖深度。
利用抽水试验确定承压含水层参数方法摘要:地下水资源评价与地下水可开采量计算,需要对地下含水层组参数进行分析确定。
本文探讨定流量(单孔或多孔)抽水试验确定含水层参数的可行性,并对定降深抽水试验确定水文地质参数方法进行了探索。
关键词:水文地质参数,抽水试验,承压水地下水资源评价和以地下水作为供水水源的建设项目的水资源论证工作,在对评价区域水文地质条件进行勘测论证之后,主要任务就是对取水水源地所在区域地下水可开采量进行估算,以满足制定水资源开发利用规划和建设项目取用水规划的需要。
浅层地下水的评价论证,可开采量估算通常采用水量均衡法、数值法和统计分析法;但深层承压含水层组地下水可开采量的计算,比较成熟的方法相对较少,水文地质参数确定得合理与否,直接影响到计算成果的可靠程度,进而关系到水资源论证评价的科学性。
本文探讨承压含水层组水文地质参数确定的方法问题。
1.定流量抽水试验确定水文地质参数1.1单井抽水试验推求水文地质参数方法原理:承压完整井非稳定抽水的泰斯公式为:式中:S------与抽水井距离r处得水位降深(m)Q------抽水井流量(m³/d)T-------含水层导水系数(㎡/d)A------含水层压力传导系数(㎡/d)t-------抽水历时(d)W(u)-------井函数,与α、t、r有关。
对式(1)两边取对数可得:曲线lgW(u)-lg(1/u)相似,只能纵横坐标相差一个常数,lgs-lgt是抽水试验观测孔的实测曲线(t为分钟)。
据此可根据抽水试验观测数据,采用图解分析法与分析计算含水参数。
操作步骤:首先制作标准曲线lgW(u)-lg(1/u),.再依据抽水试验资料在双对数纸上点绘lgS-lgt曲线,纵横坐标平行移动,找到一个最佳配合位置,使lgS-lgt 实测点据与标准曲线lgW(u)-lg(1/u)重和度最好,然后固定两曲线图位置,任意找到一个配合点M(S,t取整数),读取其W(u)、l/u/、S、t的值,有下列公式计算含水弹性给水度e::1.3多孔抽水试验推求含水层水文地质参数为确保试验所得水文地质参数能客观反映水源地含水层组透水和弹性释水特性,在客观条件允许时还应在单孔抽水试验基础上进行多孔(也称群孔)抽水试验,进一步验证单孔试验取得参数的合理性。
抽水试验确定渗透系数的方法及步骤1.抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。
试验结束后,应进行资料分析、整理,提交抽水试验报告。
单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。
并利用单孔抽水试验资料编绘导水系数分区图。
多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。
群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。
注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。
多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。
2. 稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。
(1) 只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数(m/d);Q——抽水井流量(m3/d);sw——抽水井中水位降深(m);M——承压含水层厚度(m);R——影响半径(m);H——潜水含水层厚度(m);h——潜水含水层抽水后的厚度(m);rw——抽水井半径(m)。
(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式式中hw ——抽水井中水柱高度(m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。
(1)采用承压转无压完整式大 井涌水量解析法公式计算,即:K[(2H M)M ho]inR o式中:Q —大井涌水量,m 3/d ;K —含水层渗透系数,m/d ;H —抽水前大井的水柱高度(从含水层底板到初始静止水位)(m )M —承压含水层厚度,(m )h o —抽水稳定后大井中的水柱高度(从含水层底板到动水位)(m )r o —大井的引用半径(基坑的等效半径),(m ); R o —引用影响半径,R o =R+r ,其中R —为用抽水试验资料或者经验公式计算出的影响半径,(m ):(1)基坑等效半径的确定r o 引用半径为基坑的假想等效半径,当基坑为矩形或者长条形时,基坑的等效半径可可按下式计算:式中,a――基坑长度;b --- 基坑宽度(m);(3)对于潜水,当降深一定时,可采用下面的经验公式来计算大井的影响半径:R 2s 「KH(4)n 为概化系数,n 值取值见下表:(基坑工程手册)表1 系数n 与b/a 关系表本次降水基坑长度为98m ,宽度为3m ,这样计算出的r 为:r 0=1.15 X 98+43 ) /4=40.54m (2)大井法引用影响半径的确定对承压水,当降深一定时,可采用承压水影响半径的经验公式吉 哈尔特公式近似计算大井的影响半径:R 10sJkR --- 影响半径,m ; s --- 大井中的水位降深,m ; K --- 渗透系数其中,H ――含水层厚度,m ;若采用承压水计算影响半径的公式,贝卅算出的影响半径为:R 10s虑10 5.0 J75.17 =433.5m若采用潜水计算影响半径的公式,则计算出的影响半径为:R 2s、KH 2 5.0、75.17 6 212.37m由于本次基坑的降水过称为承压转无压,所以既不能采用承压水的经验公式,也不能采用潜水的经验公式来计算大井的影响半径。
而应该根据实际情况和以往经验综合判定。
结合以往的降水经验,本次采用二者的平均值,即323m。
抽水经验公式及其适用条件序号线型曲线类型及其经验公式经验参数计算公式S值外延极限适用条件说明Q=f(S)图像抽水曲线方程式直线图解法解析法均衡误差法最小二乘法Ⅰ直线型Q=q n S 当抽水试验有两次水位降深时,可由两相应的出水量点绘Q=f(S)曲线是否通过原点来判断有无直线关系<1.5S n承压水近似计算Q:推算设计出水量(吨/日)。
S:相应Q时的水位降深(米)。
Q n:单井实抽最大出水量(吨/日)。
S n:相应Q n时的最大水位降深(米)。
q n:单位出水量(吨/日米)。
S0=S/Qq、a、b、m、n:由抽水试验决定的经验参数。
N:降深次数。
n1、n2:均衡误差法求参数时将三次以上抽水试验资料分成两组,计算第组和第二组的次数。
曲度法鉴别曲线类型:用Q=f(S)曲线的曲度值(n)来鉴别:n=(lgS2-lgS1)/(lgQ2-lgQ1)当n=1时,为直线型;当n=2时,为抛物线型;当1<n<2时,为指数曲线型;当n>2时,为对数曲线型;当n<1时,一般为异常型曲线。
Ⅰ为抛物线型,Ⅱ为指数曲线型,Ⅲ对数曲线型。
Ⅱ抛物线型Q={(2H-S)S}/[2H-]S n]S=[H2-S n\Q n(2H-S n)Q]1\2Q n=Q n/S nA=q n/(2H-S n)/ / <1.5S n<(0.5-0.8)H潜水近似计算Ⅲ抛物线型Q=[√(a2+4bS)-a]/(2b)S=aQ+bQ2S0=S/Qa=(S1Q22-S2Q12)/(Q1Q22-Q2Q12)b=(S1Q2-S2Q1)/(Q12Q2-Q22Q1)a=(∑S0-b∑Q)/Nb=(N∑S0-∑S0∑Q)/[(N∑Q2-(∑Q)2)(1.75-2.0)S n用于承压水,当抽水试验与公式计算相符时,也可用于潜水Ⅳ指数曲线型Q=nS=(Q/n)mm=(lgS2-lgS1)/(lgQ2-lgQ1)lgn=lgQ1-lgS1/m=n1lgn+1/m=n2lgn+1/mm=N∑(lgS)2-(∑lgS)2/[N∑(lgslgQ)-∑lgQ∑lgS]lgn=(∑lgQ-1/m∑lgS)/N(1.75-2.0)S n用于承压水,当抽水试验与公式计算相符时,也可用于潜水Ⅴ对数曲线型Q=a+blgSS=arclg(Q-a)/ba=Q1-blgS1b=(Q2-Q1)/(lgS2-lgS1)=n1a+b=n2a+ba=(∑Q-b∑lgS)/Nb=(N∑(QlgS)-∑Q∑lgS)/[(N∑(lgS)2-(∑lgS)2)(2.0-3.0)S n用于承压水,当抽水试验与公式计算相符时,也可用于潜水QSQSQSQSQS。
安徽焦炭联产甲醇工程一期年产60万吨甲醇项目A1标段抽水试验报告上海设计集团上海工程有限公司二零一一年一月安徽焦炭联产甲醇工程一期年产60万吨甲醇项目A1标段抽水试验报告编写:审核:审定:上海设计集团工程有限公司二零一一年一月二十八日目录第一章前言 (1)第一节工程概况 (1)第二节现场抽水试验 (1)第二章场地地质及水文地质条件 (4)第一节场地地质条件 (4)第二节水文地质条件 (6)第三章单井抽水试验 (6)第一节水文地质钻探 (6)第二节抽水试验 (7)第三节抽水试验观测孔动态 (8)第四节抽水试验参数计算 (10)附件 (15)第四章结论及建议 (17)第一节结论 (17)第二节建议 (17)第一章前言第一节工程概况安徽化工有限公司入驻二坝开发区拟建年产60万吨甲醇项目。
本次拟建为A1区运煤地槽,基坑周长为491m,面积约4519m2。
本基坑开挖深度为自然地面以下6.5~12.7m,已经挖穿承压含水层。
基坑采用三轴搅拌桩止水帷幕,深度为16.6~25.6米,没有隔断承压含水层。
同时本基坑场区内沟塘纵横,场地东南侧为长江,距离本场区较近。
基坑开挖范围内地基土层多为砂性土,含水量特别丰富,且含水层很厚,而基坑开挖又较深,地下水对基坑开挖影响特别大。
鉴于地下水对4#转运站基坑开挖时造成的不利影响,为充分观测和掌握承压水抽水引起对含水层地下水位变化特征、求取水文地质参数、以及降水过程中引起的固结沉降影响,为基坑设计、施工方案制定和优化,有必要在泄煤地槽基坑开挖前做一次有针对性的地下水水文勘察及专项抽水试验。
我公司于2011年1月对该工程进行了水文地质试验,并进行该段工程的地质调查、水文地质调查、钻探、抽水试验等。
根据该地区水文地质条件,进行了两组非稳定流的单井抽水试验,共布置了3个试验井。
第二节现场抽水试验一、目的、任务(一)目的本次试验分为两部分:小流量的单井抽水试验,大流量的单井抽水试验。
井孔抽水试验一、抽水试验的目的、任务及原理(一)目的与任务1、确定含水层的水文地质参数,如渗透透系数、导水系数、给水系数、弹性储水系数等,为计算井孔涌水量和评价地下水资源提供数据。
2、确定影响半径的大小,了解降落漏斗的形状及其扩展情况,为合理开发利用和有效管理地下水资源取得依据。
3、确定地下水动力性质,查清地下水与地表水之间以及不同含水层之间的水力联第,阐明地下水的补、径、排关系,为各种水源间的补偿调节提供数据资料。
4、确定单井或群井涌水量与水位降深之间的关系,进而拟定合理的适宜的井径、井深、井距等布井方案。
(二)基本原理把流向垂直井中的地下水导引或汲取到井外,使井内的位下降,而进壁外含水层中的地下水在降落漏斗范围内,由于水头差的作用,连续不断地流入进内,逐渐的在井壁周围形成一个以井轴为中心的由小支大以至稳定的降落漏斗。
初期降落漏斗范围攻很小,因地下水流向井的坡度较大,使流速和流量也较大。
但是随着时间的推移,影响范围会不断扩大,水力坡度逐渐变小,所以在抽水设备及井的出水能力很大的情况下,如果控制水位降深不变时,井孔出水量必将逐渐减小;或保持出水量不变则井内水位将会不断下降。
但是,在实际工作中,井的出水能力都是有限的,在满足控制出水量的情况下,水位降深也会逐渐达到相对稳定。
上述过程可以从两个方面加以利用和研究,如采用非稳定流理论,应取用水位降深和出水量尚未达到稳定但变化较小的抽水过程段的观测资料求得水文地质参数。
如采用稳定流理论,则取用水位降深与出水量均达到相对稳定的抽水过程段的观测资料,求得水文地质参数。
二、抽水试验的类型(一)稳定流和非稳定流抽水试验非稳定流抽水试验要求井(孔)出水量或水位两者之中的一个保持为常量,观测另一个的数据随时间变化的关系,而后将其代入相应的计算公式,则可求得渗透系数、导水系数、贮水系数或压力传导系数。
稳定流抽水试验要求水位降深与井(孔)出水量均须达到相对稳定状态,即保持近似的常量,代入计算公式求得渗透系数。
采用承压转无压完整式大井涌水量解析法公式计算,即:20ln ])2[(r R h M M H K Q --=π (1)式中:Q —大井涌水量,m 3/d ;K —含水层渗透系数,m/d ;H —抽水前大井的水柱高度(从含水层底板到初始静止水位),(m )M —承压含水层厚度,(m )h 0—抽水稳定后大井中的水柱高度(从含水层底板到动水位),(m )r 0—大井的引用半径(基坑的等效半径),(m ); R 0—引用影响半径,R 0=R+r ,其中R —为用抽水试验资料或者经验公式计算出的影响半径,(m ):(1)基坑等效半径的确定r 0引用半径为基坑的假想等效半径,当基坑为矩形或者长条形时,基坑的等效半径可可按下式计算:40ba r +=η, (2) 式中,a ——基坑长度;b ——基坑宽度(m );η为概化系数,η值取值见下表:(基坑工程手册)表1 系数η与b/a关系表本次降水基坑长度为98m,宽度为3m,这样计算出的r为:r0=1.15×(98+43)/4=40.54m(2)大井法引用影响半径的确定对承压水,当降深一定时,可采用承压水影响半径的经验公式吉哈尔特公式近似计算大井的影响半径:kR10=(3)sR——影响半径,m;s——大井中的水位降深,m;K——渗透系数对于潜水,当降深一定时,可采用下面的经验公式来计算大井的影响半径:=(4)KHR2s其中,H——含水层厚度,m;若采用承压水计算影响半径的公式,则计算出的影响半径为:==k⨯sR=433.5m7517.0.51010⨯若采用潜水计算影响半径的公式,则计算出的影响半径为:2=0.52⨯==⨯75⨯sKHmR37.176212.由于本次基坑的降水过称为承压转无压,所以既不能采用承压水的经验公式,也不能采用潜水的经验公式来计算大井的影响半径。
而应该根据实际情况和以往经验综合判定。
结合以往的降水经验,本次采用二者的平均值,即323m。
抽水试验主要技术要求一、钻探技术要求:1、抽水孔的孔位应由地质、钻探、测量人员共同在现场确定。
2、钻探完成后应及时测量孔(管)口高程及孔位坐标,孔内所有测深均应从一个固定点算起。
3、抽水孔应采用跟管法钻进,也可采用能保证抽水孔平直,孔身附近不受扰动,孔壁不被覆盖和堵塞的其他钻进方法。
严禁采用泥浆和植物胶冲洗液钻进。
4、抽水孔孔径不宜小于200mm;过滤器直径不宜小于127mm,测压管内径不小于25mm。
5、取1-3组颗粒分析试验试样。
二、设备安装主要技术要求:1、下过滤器前,应用清水将孔内泥质物质冲洗干净,详细记录过滤器各部分的规格和实际长度(其中沉降管长度宜为2-3m)和实际下入深度,并及时绘制抽水孔结构图。
2、采用包网过滤器。
3、抽水孔的测压管应固定在过滤器外壁上,与过滤器同步下入孔内,并应采取适当措施,保证过滤器处于居中位置下到孔内预定深度。
4、抽水孔过滤器骨架的空隙率不小于30%。
5、抽水时,应将抽出的水排至影响范围以外。
6、用水表测定流量前,应准确测定起始读数。
三、抽水试验:1、采用单孔稳定流抽水试验,3次降深,以在抽水孔测压管内测得的降深为准,各次降深间的差值宜相等,降深宜从小到大,最小降深不宜小于0.5m。
2、试验前应对抽水孔进行清洗,直到水清、砂净、无沉淀时止。
3、洗孔后即可进行试验抽水,其降深宜逐渐增大,达到最大降深后的持续时间不应少于2h。
抽水试验过程中,应观测抽水孔出水量及水位变化,检查抽水设备运行是否正常;确定稳定流抽水的最大降深。
4、正式抽水前,静水位观测应每30min观测一次,2h内变幅不大于2cm,且无连续上升或下降趋势时,即可视为稳定。
5、试验时抽水开始后的第5min、10min、15min、20min、30min、40min、50min、60min,宜各观测一次动水位和出水量,以后每隔30min观测一次。
6、动水位稳定标准:采用地面离心泵和潜水电泵抽水时,抽水孔的水位波动不应大于3cm;采用空压机抽水时,抽水孔的水位波动值不应大于10cm。
抽水试验在综合管廊工程中的应用发布时间:2022-08-08T07:32:16.173Z 来源:《工程管理前沿》2022年第8卷3月6期作者:於李军张青芳[导读] 地下水在工程建设中起到至关重要的作用,准确掌握场地水文地质条件是工程设计的基础。
本文於李军张青芳(武汉市政工程设计研究院有限责任公司)摘要:地下水在工程建设中起到至关重要的作用,准确掌握场地水文地质条件是工程设计的基础。
本文以东湖新城综合管廊二期工程为例,选取该综合项目进行抽水试验,本次抽水试验为多孔稳定流抽水试验,采用三个落程进行了稳定流抽水试验,抽水试验数据准确,为后续工程设计提供了可靠的水文地质参数资料。
关键词:综合管廊;抽水试验;渗透系数;影响半径0 引言随着城市化进程的发展,近年来城市建设项目中综合管廊工程的比重越来越大。
所谓综合管廊就是“地下城市管道综合走廊”,即在城市地下建造一个隧道空间,将市政、电力、通讯、燃气、给排水等各种管线集于一体,设有专门的检修口、吊装口和监测系统,实施统一规划、设计、建设和管理。
在城市综合管廊工程的勘察中,地下水起着重要的控制作用,为了准确掌握场地地下水的地质参数,抽水试验不失为一个好方法。
本文以东湖新城综合管廊二期工程为例,选取该综合管廊项目进行抽水试验,通过对试验数据的记录整理,分析计算求得抽水的出水量、渗透系数K、影响半径R,为该综合管廊工程的设计提供了准确的依据。
1 抽水试验设计1.1工程概况拟新建的东湖新城综合管廊二期工程由蓝天横路综合管廊、沙湖港北路综合管廊、信合西路综合管廊、蓝天路综合管廊及绿岛西路综合管廊组成。
本次抽水试验为多孔稳定流抽水试验,采用三个落程。
依据地层情况抽水试验井深设计为26. 5米,对砂层承压水进行了稳定流抽水试验。
抽水试验数据准确客观,为后续工程设计提供了可靠的水文地质参数资料。
1.2场地地质条件拟建工程位于武汉洪山区东湖新城地块,西面及北面毗邻东湖港,东面毗邻杨春湖路,南面紧临欢乐大道,团结大道由西至东横穿拟建工程场地。