当前位置:文档之家› 小球做简谐运动的证明

小球做简谐运动的证明

小球做简谐运动的证明

简谐运动典型例题

简谐运动典型例题 一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在s 40-内的振动图象,下列正 确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6)cm 则该振子振动的振幅和周期为( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=1.5s 开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) -

高中物理:简谐运动的回复力和能量练习

高中物理:简谐运动的回复力和能量练习 1.(山东省临朐一中高二下学期月考)如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( A ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 解析:弹簧振子m 受重力、支持力、弹簧弹力三个力的作用,故选A 。 2.(陕西省西安一中高二下学期月考)在简谐运动中,振子每次经过同一位置时,下列各组中描述振动的物理量总是相同的是( B ) A .速度、加速度、动量和动能 B .加速度、动能、回复力和位移 C .加速度、动量、动能和位移 D .位移、动能、动量和回复力 解析:振子每次经过同一位置时,其加速度、动能、回复力和位移总相同,故选B 。 3.(内蒙古包头九中高二下学期期中)光滑的水平面上放有质量分别为m 和12 m 的两木块,下方木块与一劲度系数为k 的弹簧相连,弹簧的另一端固定在墙上,如图所示。已知两木块之间的最大静摩擦力为f ,为使这两个木块组成的系统能象一个整体一样地振动,系统的最大振幅为( C ) A .f k B .2f k C .3f k D .4f k 解析:上面木块受到的静摩擦力提供其做简谐振动的回复力,故f =0.5ma ,kA =1.5ma ,由上两 式解得A =3f k 。 4.(吉林省八校高二下学期期中联考)一个在y 方向上做简谐运动的物体,其振动图象如图所示。下列关于图(1)~(4)的判断正确的是(选项中v 、F 、a 分别表示物体的速度、受到的回复力和加速度)( C )

A.图(1)可作为该物体的v-t图象B.图(2)可作为该物体的F-t图象C.图(3)可作为该物体的F-t图象D.图(4)可作为该物体的a-t图象 解析:因为F=-kx,a=-kx m ,故图(3)可作为F-t、a-t图象;而v随x增大而减小,故v -t图象应为图(2)。

《简谐运动的回复力和能量》教案

11.3、简谐运动的回复力和能量示范教案 一、教学目的 1.掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的能量变化规律。 2.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。 3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。 二、教学难点 1.重点是简谐运动的定义; 2.难点是简谐运动的动力学分析和能量分析。 三、教具:弹簧振子,挂图。 四、主要教学过程 (一)引入新课 提问1:什么是机械振动? 答:物体在平衡位置附近做往复运动叫机械振动。 提问2:振子做什么运动? 日常生活中经常会遇到机械振动的情况:机器的振动,桥梁的振动,树枝的振动,乐器的发声,它们的振动比较复杂,但这些复杂的振动都是由简单的振动的组成的,因此,我们的研究仍从最简单、最基本的机械振动开始。刚才演示的就是一种最简单、最基本的机械振动,叫做简谐运动。 提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的? 今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。 (二)新课教学 (第二次演示竖直方向的弹簧振子) 提问4:大家应明确观察什么?(物体) 提问5:上述四个物理量中,哪个比较容易观察? 提问6:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变? 小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置 提问7:简谐运动是不是匀变速运动? 小结:简谐运动是变速运动,但不是匀变速运动。加速度最大时,速度等于零;速度最大时,加速度等于零。 提问8:从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。提问9:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功) 提问10:在A点,振子的动能多大?系统有势能吗? 提问11:在O点,振子的动能多大?系统有势能吗? 提问12:在D点,振子的动能多大?系统有势能吗? 提问13:在B,C点,振子有动能吗?系统有势能吗? 小结:简谐运动过程是一个动能和势能的相互转化过程。 (三)总结: (四)布置作业:

简谐运动典型例题精析

简谐运动?典型例题精析 [ 例题1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N 两点时速度v(v工0)相同,那么,下列说法正确的是 A.振子在M N两点受回复力相同 B.振子在M N两点对平衡位置的位移相同 C.振子在M N两点加速度大小相等 D.从M点到N点,振子先做匀加速运动,后做匀减速运动 [ 思路点拨] 建立弹簧振子模型如图9-1 所示.由题意知,振子第一 次先后经过M N两点时速度v相同,那么,可以在振子运动路径上确定M N两点,M N 两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的).建立起这样的物理模型,这时问题就明朗化了. [ 解题过程] 因位移速度加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A B选项错误.振

子在M N 两点的加速度虽然方向相反,但大小相等,故 C 选项正确?振子由 M RO 速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运 动.振子由O HN 速度越来越小,但加速度越来越大,振子做减速运动,但不 是匀减速运动,故D 选项错误.由以上分析可知,该题的正确答案为 C. [小结](1)认真审题,抓住关键词语.本题的关键是抓住“第一次先 后经过M N 两点时速度v 相同”. (2) 要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而 确定各物理量及其变化情况. (3) 要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解 决. [例题2] 一质点在平衡位置0附近做简谐运动,从它经过平衡位置起 开始计时,经0.13 s 质点第一次通过M 点,再经0.1s 第二次通过M 点,则 质点振动周期的可能值为多大? [思路点拨] 将物理过程模型化,画出具体的图景如图 9-2所示.设 质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为0.13 s , 再由M 经最右端A 返回M 经历时间为0.1 s ;如图9-3所示. 另有一种可能就是M 点在0点左方,如图9-4所示,质点由0点经最右 方A 点后團^-3

简谐运动典型例题

一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在内的振动图象,下列正确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6 )cm 则该振子振动的振幅和周期为 ( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 1 2 3 4 5 x/cm t/s 1 2 4 -2

6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) A .mg +k A B .mg -Ka C .kA D .kA -mg 4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以某时刻作为计时起点,即t =0,其振动图象如图所示,则( ) A .t =14T 时,货物对车厢底板的压力最大 B .t =1 2T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =3 4T 时,货物对车厢底板的压力最小 5.弹簧振子的质量为,弹簧劲度系数为,在振子上放一质量为m 的木块,使两者一起振动,如图。木块的回复力是振子对木块的摩擦力,也满足,是弹簧的伸长(或压缩)量,那么为( ) A . B . C . D . 6、一个弹簧振子,第一次被压缩x 后释放做自由振动,周期为T 1,第二次被压缩2x 后释放做自由振动,周期为T 2,则两次振动周期之比T 1∶T 2为 ( ) A .1∶1 B .1∶2 C .2∶1 D .1∶4

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

课时分层作业 8 简谐运动的回复力和能量

课时分层作业(八)简谐运动的回复力 和能量 (建议用时:25分钟) 考点一简谐运动的回复力 1.简谐运动的回复力() A.可以是恒力 B.可以是方向不变而大小变化的力 C.可以是大小不变而方向改变的力 D.一定是变力 D[由F=-kx可知,由于位移的大小和方向在变化,因此回复力的大小和方向也在变化,一定是变力.] 2.如图所示,能正确反映做简谐运动的物体所受回复力与位移关系的图像是() A B C D B[由F=-kx可知,回复力F与位移大小x成正比,方向与位移方向相反,故选项B正确.] 3.关于简谐运动的回复力F=-kx的含义,下列说法正确的是() A.k是弹簧的劲度系数,x是弹簧的长度 B.k是回复力跟位移的比值,x是做简谐运动的物体离开平衡位置的位移 C.根据k=-F x,可以认为k与F成正比 D.表达式中的“-”号表示F始终阻碍物体的运动 B[对弹簧振子来说,k为劲度系数,x为质点离开平衡位置的位移,对于

其他简谐运动k不是劲度系数,而是一个比例系数,故A错误,B正确;该系数由系统本身结构决定,与力F和位移x无关,C错误;“-”只表示回复力与位移反向,回复力有时是动力,D错误.] 4.如图所示,在一倾角为θ的光滑斜板上,固定着一根原长为l0的轻质弹簧,其劲度系数为k,弹簧另一端连接着质量为m的小球,此时弹簧被拉长为l1.现把小球沿斜板向上推至弹簧长度恰好为原长,然后突然释放,求证小球的运动为简谐运动. [解析]松手释放,小球沿斜板往复运动——振动.而振动的平衡位置是小球开始时静止(合外力为零)的位置. mg sin θ=k(l1-l0) 小球离开平衡位置的距离为x,受力如图所示,小球受三个力作用,其合力F合=k(l1-l0-x)-mg sin θ,F合=-kx.由此可证小球的振动为简谐运动.[答案]见解析 考点二简谐运动的能量 5.(多选)一弹簧振子在水平方向上做简谐运动,其位移x与时间t的关系曲线如图所示,在t=3.2 s时,振子的() A.速度正在增大,加速度沿正方向且正在减小

高中物理-简谐运动的回复力和能量练习题

高中物理-简谐运动的回复力和能量练习题 基础夯实 一、选择题(1~3题为单选题,4、5题为多选题) 1.(黑龙江鹤岗一中高二下学期期中)物体做简谐运动的过程中,下述物理量中保持不变的是( B ) A.速度B.振幅 C.势能D.动能 解析:做简谐运动的物体,振幅保持不变,速度、动能、势能随时变化,故选B。 2.(沈阳铁路实验中学下学期期中)如图所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是( A ) A.物块A受重力、支持力及B对它的大小和方向都随时间变化的摩擦力 B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力 C.物块A受重力、支持力及B对它的回复力 D.物块A受重力、支持力及弹簧对它的恒定的弹力 解析:物块A受到重力、支持力和摩擦力的作用。重力和支持力二力平衡,摩擦力提供A做简谐运动所需的回复力,由F=-kx知,摩擦力随时间其大小和方向都变化,故A正确。 3.一个质点做简谐运动的图像如图所示,在t1和t2这两个时刻,质点的( B ) A.加速度相同B.速度相同 C.回复力相同D.位移相同 解析:在t1和t2时刻,质点的加速度、回复力和位移大小相等方向相反,而速度的大小和方向相同,故选B。 4.(北京大学附中河南分校高二下学期期中)关于水平弹簧振子做简谐运动时的能量,下列说法正确的是( ABC ) A.振动能量等于在平衡位置时振子的动能 B.振动能量等于任意时刻振子动能与弹簧弹性势能之和 C.振动能量保持不变 D.振动能量做周期性变化

解析:弹簧振子做简谐运动时的能量等于任意时刻振子动能与弹簧弹性势能之和,根据机械能守恒可知总能量等于在平衡位置时振子的动能,也等于在最大位移时弹簧的弹性势能,故AB 正确。振子在振动过程,只有弹力做功,其机械能守恒,保持不变,故C 正确,D 错误。 5.(河北衡水中学高二上学期调研)如图所示的弹簧振子(以O 点为平衡位置在B 、C 间振动),取水平向右的方向为振子离开平衡位置的位移的正方向,得到如图所示的振动曲线。由曲线所给的信息可知,下列说法正确的是( AD ) A .t =0时,振子处在 B 位置 B .t =4s 时振子对平衡位置的位移为10cm C .t =2.5s 时振子对平衡位置的位移为5cm D .如果振子的质量为0.5kg ,弹簧的劲度系数为20N/cm ,则振子的最大加速度大小为400m/s 2 解析:由振动图象可知t =0时,振子的位移为负向最大,说明振子处于B 位置,故A 正确;由图看出,t =4s 时振子对平衡位置的位移为-10cm ,故B 错误;由于振子做的是变加速直线运动,不是匀速直线运动,所以t =2.5s 时振子对平衡位置的位移不是5cm ,故C 错误;k =20N/cm =2000N/m ,振幅A =10cm =0.1m ,振子的最大加速度在最大位移处,由弹簧受力和牛顿第二定律可得最大加速度大小为:a m =kA m = 2000×0.10.5=400m/s 2,故D 正确。 二、非选择题 6.(湖南长沙市高二下学期检测)如图所示,水平弹簧振子在光滑水平杆上以O 点为平衡位置,在A 、B 两点之间做简谐运动,A 、B 相距20cm 。某时刻振子处于B 点,经过0.5s ,振子首次到达A 点,则 (1)振子的振幅为__10cm___; (2)振动的周期为__1s___; (3)振子在B 点跟在距O 点4cm 处的P 点的加速度大小之比为多少。 答案:(3)5︰2 解析:(1)由题意可知,振子的振幅为A =10cm 。 (2)振动的周期为T =2×0.5s=1s (3)振子在B 点的位移大小x B =10cm ,距O 点4cm 处的P 点的位移大小为x P =4cm ,由a =-kx m ,得振子在B 、P 两点的加速度大小之比a B ︰a P =5︰2。 7.如图所示,物体m 系在两弹簧之间,弹簧劲度系数分别为k 1和k 2,且k 1=k ,k 2=2k ,两

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律F=?kX,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a=dv dt =d2X dt2 =F m =-k m x(1) 可令k m =ω2 代入(a),得 d2X dt2=?ω2X或d2X dt2 +ω2X=0 显然,想求出位移X与时间t的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’= dX "dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 udu =?ω2 Xdx 得 12u 2=? 12ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’= 2 x 2 =dx dt 再次分离变量, C1? ω2 x 2=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= C1ωcos z (7)式左边化为 d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω=t+C2 由此可得, X= C1ωcos(ωt+ωC2),

简谐运动和图象练习题

二、简谐运动和图象练习题 一、选择题 1.一质点作简谐运动,其位移x与时间t关系曲线如图1所示,由图1可知 [ ] A.质点振动的频率是4Hz B.质点振动的振幅是2cm C.在t=3s时,质点的速度为最大 D.在t=4s时,质点所受的合外力为零 2.弹簧振子做简谐运动的图线如图2所示,在t1至t2这段时间内 [ ] A.振子的速度方向和加速度方向都不变 B.振子的速度方向和加速度方向都改变 C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变 3.摆长为L的单摆做简谐运动,若从某时刻开始计时(取作t=0), [ ] 4.如图4所示,做简谐运动的质点,表示加速度与位移的关系的图线是[ ] 5.如图5所示,下述说法正确的是[ ]

A.第2s末加速度为正,最大速度为0 B.第3s末加速度为0,速度为正最大 C.第4s内加速度不断增大 D.第4s内速度不断增大 6.一质点作简谐运动,图象如图6所示,在0.2s到0.3s这段时间内质点的运动情况是 [ ] A.沿负方向运动,且速度不断增大 B.沿负方向运动的位移不断增大 C.沿正方向运动,且速度不断增大 D.沿正方向的加速度不断减小 二、填空题 7.图7(a)为单摆的振动图象,图7(b)为单摆简谐运动的实际振动图示,试在(b)图中标出t时刻摆球所在的位置___________ . 8 .如图8所示,是一个质点的振动图像,根据图像回答下列各问: (1)振动的振幅__________. (2)振动的频率____________. (3)在t=0.1s、0.3s、0.5s、0.7s时质点的振动方向; (4)质点速度首次具有最大负值的时刻和位置;_____________. (5)质点运动的加速度首次具有最大负值的时刻和位置;________. 9.一个做简谐运动的质点,先后以相同的动量通过a、b两点历时0.1s,再经过0.1s质点第二次(反向)通过b点。若质点在这0.2s内经过的路程是8cm,则此简谐运动的周期为_______s,振幅为________ cm。

《11.3--简谐运动的回复力和能量》教学设计

《11.3 简谐运动的回复力和能量》

回忆前面学的判断物体是否做简谐运动的方法? 课件展示:两种判断物体是否做简谐运动的条件: ①x-t 图像为正弦曲线 ②F-x 满足 F=-k x的形式 下面用第二种方法来判断竖直的弹簧拉一个小球的 振动是不是简谐运动? 提醒:先找平衡位置。因为x为振子到平衡位置的位 移。 规定向下为正方向 平衡位置:0kx mg = 振子在C 点受到的弹力为:()0' x x k F += 振子受的回复力 ()kx kx kx mg x x k mg F mg F -=--=+-=-=00' 回复力与位移的关系符合简谐运动的定义 问:此时弹簧振子的回复力还是不是弹簧的弹力?(不是)那是什么?指点受到的合力 重力和弹力的合力 所以说:回复力不一定是弹力可能是几个力的合力。 振动具有周期性和重复性,在振动过程中,相关物理量的变化情况分析:x ;a;F;v 三、简谐运动的能量 因不考虑各种阻力,因而振动系统的总能量守恒。(用CAI 课件模拟弹簧振子的振动,分别显示分析x 、F 、a 、v、E k 、E p 、E 的变化情况) 观察振子从A →O→B →O →A的一个循环,这一循环可分为四个阶段:A →O 、O →B 、B →O、O→A ,分析在这四个阶段中上述各物理量的变化,并将定性分析的结论填入表格中。 分析:弹簧振子由C →O的变化情况 分步讨论弹簧振子在从C →O运动过程中的位移、回复力、加速度、速度、动能、势能和总能量的变化规律。 ①从C到O 运动中,位移的方向如何?大小如何变化? 由C 到O 运动过程中,位移方向由O →C ,随着振子不断地向O 靠近,位移越来越小。 ②从C 到O 运动过程中,小球所受的回复力有什么特点? 小球共受三个力:弹簧的拉力、杆的支持力和小球的重力,而重力和支持力已相互平衡,所以回复力由弹簧弹力提供。

简谐运动的回复力和能量

简谐运动的回复力和能量 一、简谐运动的回复力 1.简谐运动 如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 2.回复力 使振动物体回到平衡位置的力。 3.回复力的方向 总是指向平衡位置。 4.回复力的表达式 F=-kx。即回复力与物体的位移大小成正比,“-”表明回复力与位移方向始终相反,k是一个常数,由简谐运动系统决定。 二、简谐运动的能量 1.振动系统(弹簧振子)的状态与能量的对应关系:弹簧振子运动的过程就是动能和势能互相转化的过程。 (1)在最大位移处,势能最大,动能为零。 (2)在平衡位置处,动能最大,势能最小。 2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型。 1.回复力的来源 (1)回复力是指将振动的物体拉回到平衡位置的力,同向心力一样是按照力的作用效果来命名的。 (2)回复力可以由某一个力提供,如水平弹簧振子的回复力即为弹簧的弹力;也可能是几个力的合力,如竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;还可能是某一力的分力。归纳起来,回复力一定等于振动物体在振动方向上所受的合力。分析物体的受力时不能再加上回复力。 2.关于k值:公式F=-kx中的k指的是回复力与位移的比例系数,而不一定是弹簧的

劲度系数,系数k由振动系统自身决定。 3.加速度的特点:根据牛顿第二定律得a =F m=-k m x,表明弹簧振子做简谐运动时,振 子的加速度大小与位移大小成正比,加速度方向与位移方向相反。 4.回复力的规律:因x=A sin(ωt+φ),故回复力F=-kx=-kA sin(ωt+φ),可见回复力随时间按正弦规律变化。 1.根据水平弹簧振子图,可分析各个物理量的变化关系如下: 图11-3-4 振子的运动A→O O→A′A′→O O→A 位移方向向右向左向左向右大小减小增大减小增大 回复力方向向左向右向右向左大小减小增大减小增大 加速度方向向左向右向右向左大小减小增大减小增大 速度方向向左向左向右向右大小增大减小增大减小 振子的动能增大减小增大减小 弹簧的势能减小增大减小增大 系统总能量不变不变不变不变 当堂达标 1、(多选)如图11-3-2所示,物体系在两弹簧之间,弹簧劲度系数分别为k1和k2,且k1=k,k2=2k,两弹簧均处于自然状态。现在向右拉动物体,然后释放,物体在B、C间振动,O 为平衡位置(不计阻力),设向右为正方向,物体相对O点的位移为x,则下列判断正确的是() 图11-3-2 A.物体做简谐运动,OC=OB

波动图像习题

波动图像练习题 一、选择题 1.(2013·濮阳高二检测)下列关于简谐波的说法正确的是( ) ①波中各质点的振动频率是相同的 ②质点开始振动时的速度方向与波源的起振方向相同 ③介质中质点随波由近及远地迁移 ④波源的能量随振动形式由近及远地传播 A.①②③ B.②③④ C.①③④ D.①②④ 【解析】选D。波中各质点都做受迫振动,振动频率与振源频率相同,①正确;各质点的起振方向都相同,②正确;机械波传播过程中,传递的是振动形式、能量和信息,介质中的质点不随波迁移,③错误,④正确,所以D正确。 2.一列沿x轴正方向传播的简谐横波,某时刻的波形如图所示。P为介质中的一个质点,从该时刻开始的一段极短时间内, P的速度v和加速度a的大小变化情况是( ) A.v变小,a变大 B.v变小,a变小 C.v变大,a变大 D.v变大,a变小 【解析】选D。由波的传播方向及P点位置,可知P点此时正向平衡

位置振动,速度增大,加速度减小。 3.(多选)如图所示是一列波t时刻的图像,图像上有a、b、c三个质点,下列说法中正确的是( ) A.a、b两质点此时刻速度方向相同 B.a、c两质点此时刻加速度方向相同 C.c质点此时速度方向沿y轴负方向 D.a质点此时速度方向沿y轴正方向 【解析】选A、B。a、b两质点在相邻的波峰与波谷之间,振动方向相同,A选项正确;a、c两质点都位于x轴下方,加速度方向均指向y轴正方向,B选项正确;由于波的传播方向不定,故C、D选项不确定。 4.(2014·福建高考)在均匀介质中,一列沿x轴正向传播的横波,其波源O在第一个周期内的振动图像如图所示,则该波在第一个周期末的波形图是( )

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

简谐振动练习题(含详解)

简谐运动练习题 一、基础题 1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时( ) O y/m Q x/m P N A.质元Q和质元N均处于加速运动过程中 B.质元Q和质元N均处于减速运动过程中 C.质元Q处于加速运动过程中,质元N处于减速运动过程中 D.质元Q处于减速运动过程中,质元N处于加速运动过程中 2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B 点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为() A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm 3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则 A.当平台振动到最高点时,物体对平台的正压力最大 B.当平台振动到最低点时,物体对平台的正压力最大 C.当平台振动经过平衡位置时,物体对平台的正压力为零 D.物体在上下振动的过程中,物体的机械能保持守恒 4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知( ) A.这列波的周期是0.2 s B.质点P、Q此时刻的运动方向都沿y轴正方向 C.质点P、R在任意时刻的位移都相同 D.质点P、S在任意时刻的速度都相同 5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受回复力逐渐减小 B.振子位移逐渐减小 C.振子速度逐渐减小 D.振子加速度逐渐减小 6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是 F F F F

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

简谐运动及其图象(习题)

简谐运动及其图象 一、选择题 1.弹簧上端固定在O 点,下端连结一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,下列说法正确的是( ). A .球的最低点为平衡位置 B .弹簧原长时的位置为平衡位置 C .球速为零的位置为平衡位置 D .球原来静止的位置为平衡位置 2.如图所示为某物体做简谐运动的图像,下列说法中正确的是( ). A .由P→Q 位移在增大 B .由P→Q 速度在增大 C .由M→N 速度是先减小后增大 D .由M→N 位移始终减小 3.如图所示为质点P 在0~4 s 内的振动图像,下列叙述正确的是( ). A .再过1 s ,该质点的位移是正的最大值 B .再过1 s ,该质点回到平衡位置 C .再过1 s ,该质点的速度方向向上 D .再过1 s ,该质点的速度方向向下 4.一水平弹簧振子的振动周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ). A .正在向右做减速运动 B .正在向右做加速运动 C .正在向左做减速运动 D .正在向左做加速运动 5.一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到2 A x =处所经最短时间为t 1,第一次从最大正位移处运动到2 A x = 处所经最短时间为t2(如图).关于t 1与t 2,以下说法正确的是( ). A .t 1=t 2 B .t 1<t 2 C .t 1>t 2 D .无法判断 6.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( ). A .3 810sin(4)m 2x t π π-=?+ B .3810sin(4)m 2 x t π π-=?- C .13810sin()m 2x t ππ-=?+ D .1810sin()m 42 x t ππ-=?+ 7.一弹簧振子在振动过程中,振子经a 、b 两点的速度相同,若它从a 到b 历时0.2 s ,从b 再回 到a 的最短时间为0.4 s ,则振子的振动频率为( ). A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 8.一个质点在平衡位置O 点附近做简谐运动,如图所示,若从O 点开始计时,经过3 s 质点第一次经过M 点,再继续运动,又经过2 s 它第二次经过M 点,则该质点第三次经过M 点还需的时间是( ). A .8 s B .4 s C .14 s D . 10 s 3 9.如图(a )是演示简谐运动图像的装置,当盛沙漏斗下面的薄木板N 被匀速地拉出时,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO '代表时间

《简谐运动、简谐运动的描述》检测题

《简谐运动、简谐运动的描述》练习 一、选择题 1.如图1所示,弹簧振子以O 为平衡位置在B 、C 间做简谐运动,则( ) A 、从 B →O → C 为一次全振动 B 、从O →B →O → C 为一次全振动 C 、从C →O →B →O →C 为一次全振动 D 、从D →C →D →O → B 为一次全振动 2.下列关于简谐运动的周期、频率、振幅的说法正确的是( ) A 、振幅是矢量,方向是从平衡位置指向最大位移处 B 、周期和频率的乘积是个常数 C 、振幅增大,周期也必然增大,而频率减小 D 、弹簧振子的频率只由弹簧的劲度系数决定 3.一弹簧振子的振动周期为0. 20 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ) A 、正在向右做减速运动 B 、正在向右做加速运动 C 、正在向左做减速运动 D 、正在向左做加速运动 4.如图2所示为弹簧振子的振动图象,关于振子的运动描述正确的是( ) A 、振子沿如图的曲线运动 B 、图象描述的是振子在任意时刻的位移 C 、振幅是8cm D 、若0.25 s 时刻弹簧处于伸长状态,弹簧未形变时振子处于平衡位置,则在0.75 s 时刻处于压缩状态 5.一弹簧振子作简谐运动,下列说法中正确的有 ( ) A . 若位移为负值,则速度一定为正值. B .振子通过平衡位置时,速度最大. C .振子每次通过平衡位置时,速度一定相同 D .振子每次通过同一位置时,其速度不一定相同. 6.弹簧振子在振动过程中,振子经a 、b 两点的速度相等,且从a 点运动到b 点最短历时为0.2 s ,从b 点再到b 点最短历时0.2 s ,则这个弹簧振子的振动周期和频率分别为( ) A 、0.4 s 2.5 Hz B 、0.8 s 2.5 Hz C 、0.4 s 1.25 Hz D 、0.8 s 1.25 Hz 7.弹簧振子做简谐运动时,从振子经过某一位置A 开始计时,则 ( ) A .当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B .当振子再次经过A 时,经过的时间一定是半周期 C .当振子的位移再次与零时刻的位移相同时,一定又到达位置A D .一定还有另一个位置跟位置A 有相同的位移 C D O B 图1 2 t/s x/cm 4 -4 0.5 1 1.5 图2

简谐振动及其周期推导与证明

简谐振动及其周期公式的推导与证明 简谐振动:如果做机械振动的物体,其位移与时间的关系遵从正弦(或余弦)函数规律, 这样的振动叫做简谐振动。 位移:用x 表示,指振动物体相对于平衡位置的位置变化,由简谐振动定义可以得出x 的 一 般式:)cos(?ω+=t A x (下文会逐步解释各个物理符号的定义); 振幅:用A 表示,指物体相对平衡位置的最大位移; 全振动:从任一时刻起,物体的运动状态(位置、速度、加速度),再次恢复到与该时刻完 全相同所经历的过程; 频率:在单位时间内物体完成全振动的次数叫频率,用f 表示; 周期:物体完成一次全振动所用的时间,用T 表示; 角频率:用ω表示,频率的2π倍叫角频率,角频率也是描述物体振动快慢的物理量。角频 率、周期、频率三者的关系为:ω=2π/T =2πf ; 相位:?ωφ+=t 表示相位,相位是以角度的形式出现便于讨论振动细节,相位的变化率 就是角频率,即dt d φω=; 初相:位移一般式中?表示初相,即t =0时的相位,描述简谐振动的初始状态; 回复力:使物体返回平衡位置并总指向平衡位置的力。(因此回复力同向心力是一种效果力) 如果用F 表示物体受到的回复力,用x 表示小球对于平衡位置的位移,对x 求二阶导即得: )cos(2?ωω+-=t A a 又因为F=ma ,最后可以得出F 与x 关系式: kx x m F -=-=2ω 由此可见,回复力大小与物体相对平衡位置的位移大小成正比。 式中的k 是振动系统的回复力系数(只是在弹簧振子系统中k 恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。 简谐振动周期公式:k m T π 2=,该公式为简谐振动普适公式,式中k 是振动系统的回复力 系数,切记与弹簧劲度系数无关。 单摆周期公式:首先必须明确只有在偏角不太大的情况(一般认为小于10°)下,单摆的运 动可以近似地视为简谐振动。 我们设偏角为θ,单摆位移为x ,摆长为L ,当θ很小时,有关系式: L x ≈≈≈θθθtan sin , 而单摆运动的回复力为 F=mgsin θ,

简谐运动的回复力和能量

《简谐运动的回复力和能量》教学案 北京 蔡雨翔 2013.04 教学目标: 1.掌握简谐运动回复力的特征。 2.对水平的弹簧振子,能定量地说明弹性势能与动能的转化。 教学过程: 一、简谐运动的回复力 在已学的知识当中,我们知道不同的运动受的力也是不同的,例如:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向时刻都在改变,但方向总指向圆心。那么物体简谐运动时,所受合力有何特点呢 ? 当把弹簧振子从它静止的位置O 拉开一小段距离到A 再放开后,它会在A -O -B 之间振动。为什么会振动? 物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,我们把这个 力叫做简谐运动的回复力。 1、定义:受到总能使振动物体回到平衡位置,且始终指向平衡位置的力 2、方向:始终指向平衡位置 3、特点:回复力是根据力的效果命名的,不是什么新的性质的力, 4、来源:振动方向的合力,可以是重力,弹力,摩擦力,还可以是几个力的合力或某个力的分力 ,对于水平方向的弹簧振子,回复力就是弹簧的弹力。 振子由于惯性而离开平衡位置,当振子离开平衡位置后,振子所受的回复力总是使振子回到平衡位置,这样不断地进行下去就形成了振动。振动的平衡位置O 也可以说成是振动物体振动时受到的回复力为零的位置。 5.回复力与位移关系 弹簧振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,位移可以用振子的位置坐标x 来表示,方向始终从平衡位置指向振子(外侧)。回复力的方向始终指向平衡位置,因而回复力的方向与振子的位移方向始终相反。对于水平方向的弹簧振子,回复力就是弹簧的弹力。在弹簧发生弹性形变时,弹簧振子的回复力F 跟振子偏离平衡位置的位移x 成正比,方向跟位移的方向总是相反。 二、简谐运动的动力学特征: F=-kx 式中F 为回复力,x 为偏离平衡位置的位移,k 是劲度系数,负号表示回复力与位移的方向总相反。 大量理论研究表明:如果质点所受的力与它偏离平衡位置的位移大小成正比,并且总指向平衡位置,质点的运动就是简谐运动。 做简谐运动的质点,回复力总满足F=-kx 的形式。式中k 是比例常数。这就是简谐运动的动力学特征。 这也是判断物体是否做简谐运动的方法。

相关主题
文本预览
相关文档 最新文档