当前位置:文档之家› 5.1 多重共线性的定义和后果

5.1 多重共线性的定义和后果

多重共线性的解决之法

第七章 多重共线性 教学目的及要求: 1、重点理解多重共线性在经济现象中的表现及产生的原因和后果 2、掌握检验和处理多重共线性问题的方法 3、学会灵活运用Eviews 软件解决多重共线性的实际问题。 第一节 多重共线性的产生及后果 一、多重共线性的含义 1、含义 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X 1,X 2,……,X k 中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 2、类型 多重共线性包含完全多重共线性和不完全多重共线性两种类型。 (1)完全多重共线性 完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。 如对于多元线性回归模型 i ki k i i i X X X Y μββββ+++++= 22110 (7-1) 存在不全为零的数k λλλ,,,21 ,使得下式成立: X X X 2211=+++ki k i i λλλ (7-2) 则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共线性。 从矩阵形式来看,就是0' =X X , 即1)(-

(2)不完全多重共线性 不完全多重共线性是指线性回归模型中解释变量间存在不严格的线性关系,即近似线性关系。 如对于多元线性回归模型(7-1)存在不全为零的数k λλλ,,,21 ,使得下式成立: X X X 2211=++++i ki k i i u λλλ (7-3) 其中i u 为随机误差项,则可以说解释变量k X ,,X ,X 21 之间存在不完全多重共线性。随机误差项表明上述线性关系是一种近似的关系式,大体上反映了解释变量间的相关程度。 完全多重共线性与完全非线性都是极端情况,一般说来,统计数据中多个解释变量之间多少都存在一定程度的相关性,对多重共线性程度强弱的判断和解决方法是本章讨论的重点。 二、多重共线性产生的原因 多重共线性在经济现象中具有普遍性,其产生的原因很多,一般较常见的有以下几种情况。 (一)经济变量间具有相同方向的变化趋势 在同一经济发展阶段,一些因素的变化往往同时影响若干经济变量向相同方向变化,从而引起多重共线性。如在经济上升时期,投资、收入、消费、储蓄等经济指标都趋向增长,这些经济变量在引入同一线性回归模型并作为解释变量时,往往存在较严重的多重共线性。 (二)经济变量间存在较密切关系 由于组成经济系统的各要素之间是相互影响相互制约的,因而在数量关系上也会存在一定联系。如耕地面积与施肥量都会对粮食总产量有一定影响,同时,二者本身存在密切关系。 (三)采用滞后变量作为解释变量较易产生多重共线性 一般滞后变量与当期变量在经济意义上关联度比较密切,往往会产生多重共线性。如在研究消费规律时,解释变量因素不但要考虑当期收入,还要考虑以往各期收入,而当期收入与滞后收入间存在多重共线性的可能很大。 (四)数据收集范围过窄,有时会造成变量间存在多重共线性问题。 三、多重共线性产生的后果 由前述可知,多重共线性分完全多重共线性和不完全多重共线性两种情况,两种情况都会对模

第六章_线性变换_68180769

第六章 线性变换 映射:,X Y ≠?≠?,如果有一个法则σ,它使得X 中每个元素α,在Y 中有唯一确定的元素β与之对应,则称σ为X 到Y 的一个映射,记作:X Y σ→,()σαβ=,β称为α在σ下的象,α称为β在σ下的原象。 注:()(),X στασατα=??∈=对。 变换:一个集合到自身的映射。 线性变换的定义与性质 定义 设V 是数域F 上的线性空间,σ是V 的一个变换,如果满足条件: (1)()()()βσασβασV,α,β+=+∈?; (2)()()k F,αV,k αk σασ?∈?∈=, 则称σ是V 上的线性变换或线性算子。 (1), (2)等价于条件:,,,k l F V αβ?∈∈ ()()()σk αl βk σαl σβ+=+。 例:设σ:n n R R →,定义为()c αασ=,c 为常数。-----数乘 变换或位似变换。 c =0-----零变换,记为o 。 c =1-----恒等变换,记为ε。 例:设σ是把平面上的向量绕坐标原点逆时针旋转θ角的变换 设()()(),,,T T x y x y ασα''==,则

cos sin sin cos x x y y x y θθ θθ'=-??'=+? 记cos sin sin cos A θθθ θ-?? =??? ? ,则()A σαα=是一个线性变换。 例:判断下列变换是否是线性变换 (1) ()()12323,,1,,T T a a a a a σ=; (2) ()()12323,,0,,T T a a a a a σ=; (3) ()()12312231,,2,,T T a a a a a a a a σ=-+; (4) ()()212312 3,,,,3T T a a a a a a σ=. 线性变换的基本性质 (1)()θθσ=; (2)()()ασασ-=-; (3)线性变换保持向量的线性组合关系不变,即若s s αk αk αk β+++=Λ2211,则1122s s βk αk αk ασσσσ=+++L ; 若θ=+++s s αk αk αk Λ2211,则θσσσ=+++s s αk αk αk Λ2211。 (4)线性变换将线性相关的向量组映成线性相关的向量组。 线性变换的运算 ()V L ----线性空间V 上所有线性变换的集合。

多重共线性问题的几种解决方法

多重共线性问题的几种解决方法 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释 变量之间不存在线性关系,也就是说,解释变量X 1,X 2 ,……,X k 中的任何一个 都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考: 1、保留重要解释变量,去掉次要或可替代解释变量 2、用相对数变量替代绝对数变量 3、差分法 4、逐步回归分析 5、主成份分析 6、偏最小二乘回归 7、岭回归 8、增加样本容量 这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。 逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。具体方法分为两步: 第一步,先将被解释变量y对每个解释变量作简单回归: 对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。

第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别: 1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。 2.如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。 3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。 下边我们通过实例来说明逐步回归分析方法在解决多重共线性问题上的具体应用过程。 具体实例 例1设某地10年间有关服装消费、可支配收入、流动资产、服装类物价指数、总物价指数的调查数据如表1,请建立需求函数模型。 表1 服装消费及相关变量调查数据

多重共线性处理经典例题

理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。为此,收集了中国能源消费总量Y (万吨标准煤)、国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2007年期间的统计数据,具体如表4.2所示。 表4.12 1985~2007年统计数据 资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。 要求: 1)建立对数多元线性回归模型,分析回归结果。 2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?

3)如果有多重共线性,你准备怎样解决这个问题?明确你的假设并说明全部计算。 参考解答: (1)建立对数线性多元回归模型,引入全部变量建立对数线性多元回归模型如下: 生成: lny=log(y), 同样方法生成: lnx1,lnx2,lnx3,lnx4,lnx5,lnx6,lnx7. 作全部变量对数线性多元回归,结果为: 从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,,各变量联合起来对能源消费影响显著。可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5的参数为负值,在经济意义上不合理。所以这样的回归结果并不理想。 (2) 预料此回归模型会遇到多重共线性问题, 因为国民总收入与GDP本来就是一对关联指标;而工业增加值、建筑业增加值、交通运输邮电业增加值则是GDP的组成部分。这两组指标必定存在高度相关。 解释变量国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等很可能线性相关,计算相关系数如下:

2。2线性变换的基本性质

§2.2线性变换的基本性质 教学目标: 一、知识与技能: 会证明定理1和定理2;理解矩阵变换把平面上的直线变成直线,即)(21βλαλ+A = βλαλA A 21+ 二、方法与过程 分析可逆的线性变换将直线变成直线,平行四边形变成平行四边形这一结论,得到定理1和定理 2的证明,寻求线性变换在向量上的作用等式。 三、情感、态度与价值观 感受数学活动充满探索性和创造性,激发学生乐于探究的热情。增强学生的符号意识,培养学生的逻辑推理能力。 教学重点:定理的探究及证明 教学难点:定理的探究 教学过程 一、复习引入: 1、基本概念 (1)二阶矩阵:由四个数a ,b ,c ,d 排成的正方形数表??? ? ??d c b a 称为二阶矩阵。特别地, 称二阶矩阵???? ??0000为零矩阵,简记为0。称二阶矩阵??? ? ??1001为二阶单位矩阵,记为2E 。 (2)向量:向量(y x ,)是一对有序数对,y x ,叫做它的两个分量,且称??? ? ??y x 为列向量,(y x ,)为行向量。同时,向量、点以及有序实数对三者不加区别。 2、败类特殊线性变换及其二阶矩阵 (1)线性变换 在平面直角坐标系中,把形如???+=+=dy cx y by ax x ``(其中a ,b ,c ,d 为常数)的几何变换叫做线性 变换。 (2)旋转变换

坐标公式为???+=-=α αααcos sin sin cos ``y x y y x x ,变换对应的矩阵为??? ? ??-αα αα cos sin sin cos (3)反射变换 ①关于x 的反射变换坐标公式为???-==y y x x ``对应的二阶矩阵为? ??? ??-1001; ②关于y 的反射变换坐标公式为???=-=y y x x ``对应的二阶矩阵为???? ??-1001; ③关于x y =的反射变换坐标公式为???==x y y x ``对应的二阶矩阵为? ?? ? ??0110; (4)伸缩变换 坐标公式为???==y k y x k x 2`1`对应的二阶矩阵为??? ? ??21 0k k ; (5)投影变换 ①投影在x 上的变换坐标公式为???==0``y x x 对应的二阶矩阵为???? ??0001; ②投影在y 上的变换坐标公式为???==y y x ``0对应的二阶矩阵为???? ??1000 (6)切变变换 ①平行于x 轴的切变变换坐标公式为???=+=y y sy x x ``对应的二阶矩阵为???? ??101s ? ??? ??101s ②平行于y 轴的切变变换坐标公式为???+==y sx y x x ``对应的二阶矩阵为??? ? ??101s 二、新课讲解 定理1 设A =??? ? ??d c b a ,???? ??=111y x X ,???? ??=222y x X ,t ,k 是实数。则以下公式成立: (1) A (t 1X )=t (A 1X ) (2) A 1X +A 2X =A (1X +2X ) (3) A (t 1X +k 2X )=t A 1X +k A 2X

第七章 多共线性及其处理

第七章 多重共线性及其处理 第一部分 学习辅导 一、本章学习目的与要求 1.理解多重共线性的概念; 2.掌握多重共线性存在的主要原因; 3.理解多重共线性可能造成的后果; 4.掌握多重共线性的检验与修正的方法。 二、本章内容提要 本章主要介绍计量经济模型的计量经济检验。即多重共线性问题。 多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。模型的多个解释变量间出现完全共线性时,模型的参数无法估计。更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t 统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。 (一)多重共线性及其产生的原因 当我们利用统计数据进行分析时,解释变量之间经常会出现高度多重共线性的情况。 1.多重共线性的基本概念 多重共线性(Multicollinearity )一词由弗里希(Frish )于1934年在其撰写的《借助于完全回归系统的统计合流分析》中首次提出。它的原义是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系。 如果在经典回归模型Y X βε=+中,经典假定(5)遭到破坏,则有()1R X k <+,此时称解释变量k X X X ,,,21ΛΛ间存在完全多重共线性。解释变量的完全多重共线性,也就是解释变量之间存在严格的线性关系,即数据矩阵X 的列向量线性相关。因此,必有一个列向量可由其余列向量线性表示。 同时还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,但是却有近似的线性关系,即解释变量之间高度相关。 2.多重共线性产生的原因 多元线性回归模型产生多重共线性的原因很多,主要有: (1)经济变量的内在联系 这是产生多重共线性的根本原因。 (2)解释变量中含有滞后变量 (3)经济变量变化趋势的“共向性” 必须指出,多重共线性基本上是一种样本现象。因为人们在设定模型时,总是尽量避免将理论上具有严格线性关系的变量作为解释变量收集在一起,因此,实际问题中的多重共线性并不是解释变量之间存在理论上或实际上的线性关系造成的,而是由所收集的数据(解释变量观察值)之间存在近似的线性关系所致。 (二)多重共线性的影响 多重共线性会产生以下问题: (1)增大了OLS 估计量的方差 (2)难以区分每个解释变量的单独影响 (3)回归模型缺乏稳定性 (4)t 检验的可靠性降低 (三)多重共线性的判别 在应用多元回归模型中,人们总结了许多检验多重共线性的方法。 1.系数判定法

解决多元线性回归中多重共线性问题的方法分析

解决多元线性回归中多重共线性问题的方法分析 谢小韦,印凡成 河海大学理学院,南京 (210098) E-mail :xiexiaowei@https://www.doczj.com/doc/bc16027208.html, 摘 要:为了解决多元线性回归中自变量之间的多重共线性问题,常用的有三种方法: 岭回 归、主成分回归和偏最小二乘回归。本文以考察职工平均货币工资为例,利用三种方法的 SAS 程序进行了回归分析,根据分析结果总结出三种方法的优缺点,结果表明如果能够使用 定性分析和定量分析结合的方法确定一个合适的k 值,则岭回归可以很好地消除共线性影 响;主成分回归和偏最小二乘回归采用成份提取的方法进行回归建模,由于偏最小二乘回归 考虑到与因变量的关系,因而比主成分回归更具优越性。 关键词:多重共线性;岭回归;主成分回归;偏最小二乘回归 1. 引言 现代化的工农业生产、社会经济生活、科学研究等各个领域中,经常要对数据进行分析、 拟合及预测,多元线性回归是常用的方法之一。多元线性回归是研究多个自变量与一个因变 量间是否存在线性关系,并用多元线性回归方程来表达这种关系,或者定量地刻画一个因变 量与多个自变量间的线性依存关系。 在对实际问题的回归分析中,分析人员为避免遗漏重要的系统特征往往倾向于较周到地 选取有关指标,但这些指标之间常有高度相关的现象,这便是多变量系统中的多重共线性现 象。在多元线性回归分析中,这种变量的多重相关性常会严重影响参数估计,扩大模型误差, 破坏模型的稳健性,从而导致整体的拟合度很大,但个体参数估计值的t 统计量却很小,并 且无法通过检验。由于它的危害十分严重,存在却又十分的普遍,因此就要设法消除多重线 性的不良影响。 常用的解决多元线性回归中多重共线性问题的模型主要有主成分回归、岭回归以及偏最 小二乘回归。三种方法采用不同的方法进行回归建模,决定了它们会产生不同的效果。本文 以统计职工平均货币工资为例,考察一组存在共线性的数据,运用SAS 程序对三种回归进 行建模分析,并对结果进行比较,总结出它们的优势与局限,从而更好地指导我们解决实际 问题。 2. 共线性诊断 拟合多元线性回归时,自变量之间因存在线性关系或近似线性关系,隐蔽变量的显著性, 增加参数估计的方差,导致产生一个不稳定的模型,因此共线性诊断的方法是基于自变量的 观测数据构成的矩阵T x x 进行分析,使用各种反映自变量间相关性的指标。共线性诊断常 用统计量有方差膨胀因子VIF (或容限TOL )、条件指数和方差比例等。 一般认为:若VIF>10,说明模型中有很强的共线性关系;若条件指数值在10与30间 为弱相关,在30与100间为中等相关,大于100为强相关;在大的条件指数中由方差比例 超过0.5的自变量构成的变量子集就认为是相关变量集[1]。 3. 三种解决方法 岭回归基本思想: 当出现多重共线性时,有0T X X ≈,从而使参数的1?()T T X X X Y β ?=很不稳定,出现不符合含义的估计值,给T X X 加上一个正常数矩阵(0)KI K >,则T X X KI +等

计量经济学多重共线性

2014-8-8 商学院 王中昭 教学内容 一、多重共线性 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的办法和实例 §4.3 多重共线性

2014-8-8商学院 王中昭 对于模型Y i =β0+ β1x 1i + β2x 2i +…… βk x ki +μi 如果某两个或多个解释变量之间出现相关性,即:C 1x 1i +C 2X 2i +……C k X ki =0 其中C i 不全为0,即某一个解释变量是其他解释变量的线性组合,则称为完全多重共线性。 完全多重共线性的情况并不多见,一般是出现不同程度的多重共线性。 注意多重共线性不 是指因变量与解释 一、多重共线性概念

2014-8-8商学院 王中昭 Y=Xβ+μ完全共线性:∣X′X ∣=0,(X′X)-1不存在, 使B ^=(X′X)-1X′Y 无法求解。 例如:, 0)(0020 1631084104213211 x x x 3213322113 21≠'=+-=++??????? ??=X X x x x X i i i i i i x c x c x c 这里,完全多重共线性

2014-8-8商学院 王中昭完全多重共线性的情况不多,一般出现不同程度的多重共线性。 多重共线性:∣X′X∣≈0,(X′X)-1存在,但 (X′X)-1主对角线上的元素很大。 ????? ?='≈'?≈+??????? ??=400300000300000100040030000030000010002100010004X)X ( ,0)( 0,0x x - x 199 .2993001001.4004001099.1992001101.1001001 x x x 1 -3i 2i 1i 3 21||这里,X X X 近似多重共线性

最新多重共线性的解决之法

多重共线性的解决之 法

第七章多重共线性 教学目的及要求: 1、重点理解多重共线性在经济现象中的表现及产生的原因和后果 2、掌握检验和处理多重共线性问题的方法 3、学会灵活运用Eviews软件解决多重共线性的实际问题。 第一节多重共线性的产生及后果 一、多重共线性的含义 1、含义 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,X k中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 2、类型 多重共线性包含完全多重共线性和不完全多重共线性两种类型。 (1)完全多重共线性 完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。 如对于多元线性回归模型

i ki k i i i X X X Y μββββ+++++= 22110 (7- 1) 存在不全为零的数k λλλ,,,21 ,使得下式成立: 0X X X 2211=+++ki k i i λλλ (7-2) 则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共 线性。 从矩阵形式来看,就是0'=X X , 即1)(-

三维线性变换及其应用

三维线性变换 陈祥科 1、线性空间 (2) 1.1、线性空间的代数定义 (2) 1.2 线性空间的基和维度 (2) 2、线性变换 (2) 2.1、变换的定义 (2) 2.2、线性变换的定义 (2) 2.3线性变换的性质 (3) 2.4、线性变换下的坐标变换 (3) 2.5、线性变换的矩阵表示: (3) 3、三维图形的几何变换 (4) 3.1平移变换 (5) 3.2缩放变换 (5) 3.3绕坐标轴的旋转变换 (5) 3.4绕任意轴的旋转变换 (6) 4、三维线性变换的应用实例 (7) 4.1 三维图形变换理论 (7) 4.1.1 三维图形的几何变换 (7) 4.1.2 组合三维几何变换 (8) 4.1.3 围绕任意轴的旋转矩阵的推导 (9) 4.1.4 三维图形的轴侧投影变换 (9) 4.2 叉车稳定性试验的仿真 (10) 4.2.1 纵向稳定性试验的仿真 (10) 4.2.2 横向稳定性试验的仿真 (11) 4.3 结论 (12)

1、线性空间 1.1、 线性空间的代数定义 一个定义了加法与数乘运算,且对这些运算封闭,空间中任意向量都属于数域P ,并满足八条算律的集合为数域P 上的线性空间。 1.2 线性空间的基和维度 对于一个数域上的线性空间R ,由n 个属于R 的元素组成的一个线性无关组,如果R 中的任意一个元素都是这n 个元素的线性组合,那么这个线性空间的维度为n ,且这个线性无关组为R 的一组基。显然,三维空间的基有3个元素组成。三维线性空间的的两组基分别为(0,0,1)和(1,0,0)、(0,1,0)。 2、线性变换 2.1、变换的定义 变换是广义概念的函数,它是这样定义的,如果存在2个非空集合A 、B ,α是A 中的任意元素,如果在集合B 中必定有一个元素β与集合A 中的α元素对应,则称这个对应关系是集合A 到集合B 的一个变换,变换也称为映射,记为T ,即有等式 β=T(α) 称β为α在T 变换下的象,称α为β在T 变换下的源,集合A 称为变换T 的源集,A 在变换T 下的所有象称为象集,显然象集是B 的子集。 2.2、线性变换的定义 R 是数域F 上的线性空间,σ是R 的一个变换,并且满足 ()()()()() a k ka b a b a σσσσσ=+=+ 其中a,b ∈R ,k ∈F 则称σ是R 的一个线性变换(这是由R 到R 自身的一个映射)。线性变换定义的意义是,将R 的任意2个元素的和进行变换等同于将这2个元素分别进行变换后再求和,将R 的任意元素的数乘进行变换等同于将这个元素先进行变换再数乘。下面是线性变换的另一种表述方式: )()()(βσασβασl k l k +=+ F l k R ∈∈?,,,βα

第七章线性变换总结篇

第 7章 线性变换 7、1知识点归纳与要点解析 一.线性变换的概念与判别 1、线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。 2、线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3、线性变换的性质 设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈L 。 性质1、 ()()00,σσαα==-; 性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。 性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL 也线性无关。 注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L L L L L 记: ()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? L L L L M M M L 于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换, 12,,,m βββL 就是V 中任意一组向量,如果:

多重共线性题目的检验和处理

山西大学 实 验 报 告 实验报告题目:多重共线性问题的检验和处理 学 院: 专 业: 课程名称: 计量经济学 学 号: 学生姓名: 教师名称: 崔海燕 上课时间: 题电源备,检查料试卷资料试

一、实验目的: 熟悉和掌握Eviews在多重共线性模型中的应用,掌握多重共线性问题的检 验和处理。 二、实验原理:1、综合统计检验法; 2、相关系数矩阵判断; 3、逐步回归法; 三、实验步骤: (一)新建工作文件并保存 打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存。 (二)输入并编辑数据 在主菜单栏点击Quick键,选择empty\group新建空数据栏,根据理论和 经验分析,影响粮食生产(Y)的主要因素有农业化肥施用量(X1)、粮食播种面 积(X2)、成灾面积(X3)、农业机械总动力(X4)和农业劳动力(X5),其中成灾 面积的符号为负,其余均应为正。下表给出了1983——2000中国粮食生产的相关 数据。点击name键进行命名,选择默认名称Group01,保存文件。 Y X1X2X3X4X5 1983387281660114047162091802231151 1984407311740112884152641949730868 1985379111776108845227052091331130 1986391511931110933236562295031254 1987402081999111268203932483631663 1988394082142110123239452657532249 1989407552357112205244492806733225 1990446242590113466178192870838914 1991435292806112314278142938939098 1992442642930110560258953030838669 1993456493152110509231333181737680 1994445103318109544313833380236628 1995466623594110060222673611835530 1996504543828112548212333854734820 1997494173981112912303094201634840 1998512304084113787251814520835177 1999508394124113161267314899635768 2000462184146108463343745257436043 2001452644254106080317935517236513 2002457064339103891273195793036870 200343070441299410325166038736546

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

线性变换

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:+是V的线性变换. 二. 数乘运算 定义2(P311) 显然k也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握 与 ()关于同一个基的坐 标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. 与 ()关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

多重共线性的检验与处理

实验名称:多重共线性的检验与处理 实验时间:2011.12.10 实验要求: 主要是学习多重共线性的检验与处理,主要是研究解释变量与其余解释变量之间有严重多重共线性的模型,分析变量之间的相关系数。通过具体案例建立模型,然后估计参数,求出相关的数据。再对模型进行检验,看数据之间是否存在多重共线性。最后利用所求出的模型来进行修正。 实验内容: 实例:我国钢材供应量分析 通过分析我国改革开放以来(1978-1997)钢材供应量的历史资料,可以建立一个单一方程模型。根据理论及对现实情况的认识,影响我国钢材供应量 Y(万吨)的主要因素有:原油产量X1(万吨),生铁产量X2(万吨),原煤产量X3(万吨),电力产量X4(亿千瓦小时),固定资产投资X5(亿元),国内生产总值 X6(亿元),铁路运输量X7(万吨)。 (一)建立我国钢材供应量的计量经济模型: (二)估计模型参数,结果为: Dependent Variable: Y Method: Least Squares Date: 11/02/09 Time: 16:09 Sample: 1978 1997 Included observations: 20 Variable Coefficient Std. Error t-Statistic Prob. C 139.2362 718.2493 0.193855 0.8495 X1 -0.051954 0.090753 -0.572483 0.5776 X2 0.127532 0.132466 0.962751 0.3547 X3 -24.29427 97.48792 -0.249203 0.8074 X4 0.863283 0.186798 4.621475 0.0006 X5 0.330914 0.105592 3.133889 0.0086 X6 -0.070015 0.025490 -2.746755 0.0177 X7 0.002305 0.019087 0.120780 0.9059 R-squared 0.999222 Mean dependent var 5153.350 Adjusted R-squared 0.998768 S.D. dependent var 2511.950 S.E. of regression 88.17626 Akaike info criterion 12.08573 Sum squared resid 93300.63 Schwarz criterion 12.48402 Log likelihood -112.8573 F-statistic 2201.081 Durbin-Watson stat 1.703427 Prob(F-statistic) 0.000000 由此可见,该模型可绝系数很高,F检验值2201.081,明显显著。但当,系数的t检验不显著,而且系数的符号与预期的相反,这表明很可能存在严重的多重共线性。 (三)计算各解释变量的相关系数,选择数据,得相关系数矩阵(表3.1)。

线性变换的定义

第七章 线 性 变 换 § 1 线性变换的定义 上一章我们看到,数域 P 上任意一个 n 维线性空间都与n P 同构,因之,有限维线性空间的同构可以认为是完全清楚了.线性空间是某一类事物从量的方面的一个抽象.我们认识客观事物,固然要弄清它们单个的和总体的性质,但是更重要的是研究它们之间的各种各样的联系.在线性空间中,事物之间的联系就反映为线性空间的映射.线性空间到自身的映射通常称为的一个变换.这一章中要讨论的线性变换就是最简单的,同时也可以认为是最基本的一种变换,正如线性函数是最简单的和最基本的函数一样. 线性变换是代数的一个主要研究对象. 下面如果不特别声明,所考虑的都是某一固定的数域P 上的线性空间. 定义 1 线性空间 V 的一个变换 A 称为线性变换,如果对于V 中的任意的元素αβ,和数域中任意数k ,都有 ()()A A αβαβ+=+ ()()A k kA αα= (1) 以后我们一般用黑体答谢拉丁字 A , B ,…代表 V 的变换,()A k α或()A α代表 元素α在变换下的象. 定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量乘法. 问题1: 线性变换与线性同构有什么异同? 下面我们来看几个简单的例子 ,它们表明线性变换这个概念是有丰富的内容的. 例 1 平面上的向量构成实数域上的二维线性空间 . 把平面围绕坐标原点按反时针方向旋转θ角,就是一个线性变换,我们用I θ表示。如果平面上一个向量α在直角坐标系下的坐标是(,)x y ,那么象I θα()的坐标,即旋转θ角之后的坐标是(,)x y ''按照公式 cos sin sin cos x x y y θθθ θ'-??????= ? ???'?????? 来计算的.同样地,空间中绕轴的旋转也是一个线性变换. 例 2 设α是几何空间中一固定的非零向量,把每个向量ξ变到它在α上的内映射的变换也是一个线性变换,以α∏表示它.用公式表示就是 (,)()(,) ααξξααα∏= 这里(,)αξ表示内积. 例 3 线性空间 V 中的恒等变换或称单位变换 E ,即 ()E αα= ()V α∈ 以及零变换0,即 0()0α= ()V α∈ 都是线性变换. 例 4 设V 是数域P 上的线性空间,k 是P 中某个数 ,定义V 的变换如下: ,k αα→ ()V α∈ 不难证明,这是一个线性变换,称为由数 k 决定的数乘变换,可用k 表示.显然,当k=1时,我们便得恒等变换,当k=0时,便得零变换. 例 5 在线性空间[]P x 或者[]n P x 中,求微商是一个线性变换.这个变换通常用D 代表,即11220r r k k k ααα+++=, (())()D f x f x '= 例 6 定义在闭区间[a,b ]上的全体连续函数组成实数域上一线性空间,以C (a,b )代表.在这个空间中,变换

相关主题
文本预览
相关文档 最新文档