当前位置:文档之家› iVuTG分体式图像传感器

iVuTG分体式图像传感器

iVuTG分体式图像传感器
iVuTG分体式图像传感器

多传感器信息融合方法综述

万方数据

万方数据

万方数据

万方数据

万方数据

多传感器信息融合方法综述 作者:吴秋轩, 曹广益 作者单位:上海交通大学电子信息与电气工程学院,上海,200030 刊名: 机器人 英文刊名:ROBOT 年,卷(期):2003,25(z1) 被引用次数:2次 参考文献(5条) 1.周锐;申功勋;房建成基于信息融合的目标图像跟踪 1998(12) 2.张尧庭;桂劲松人工智能中的概率统计方法 1998 3.何友;王国宏;彭应宁多传感器信息融合 2000 4.罗志增;叶明Bayes方法的多感觉信息融合算法及其应用[期刊论文]-传感技术学报 2001(03) 5.张文修;吴伟业;梁吉业粗糙集理论与方法 2001 本文读者也读过(8条) 1.臧大进.严宏凤.王跃才.ZANG Da-jin.YAN Hong-feng.WANG Yue-cai多传感器信息融合技术综述[期刊论文]-工矿自动化2005(6) 2.多传感器信息融合及应用[期刊论文]-电子与信息学报2001,23(2) 3.赵小川.罗庆生.韩宝玲.ZHAO Xiao-chuan.LUO Qing-sheng.HAN Bao-ling机器人多传感器信息融合研究综述[期刊论文]-传感器与微系统2008,27(8) 4.范新南.苏丽媛.郭建甲.FAN Xin-nan.SU Li-yuan.GUO Jian-jia多传感器信息融合综述[期刊论文]-河海大学常州分校学报2005,19(1) 5.咸宝金.陈松涛智能移动机器人多传感器信息融合及应用研究[期刊论文]-宇航计测技术2010,30(2) 6.韩增奇.于俊杰.李宁霞.王朝阳信息融合技术综述[期刊论文]-情报杂志2010,29(z1) 7.肖斌多传感器信息融合及其在工业中的应用[学位论文]2008 8.丁伟.孙华.曾建辉.DING Wei.SUN Hua.ZENG Jian-hui基于多传感器信息融合的移动机器人导航综述[期刊论文]-传感器与微系统2006,25(7) 引证文献(2条) 1.武伟.郭三学基于多传感信息融合的轮胎气压监测系统[期刊论文]-轮胎工业 2006(5) 2.魏东.杨洋.李大寨.宗光华基于多传感器融合的机器人微深度环切[期刊论文]-传感器技术 2005(11) 本文链接:https://www.doczj.com/doc/c1578621.html,/Periodical_jqr2003z1037.aspx

传感器尺寸换算方法

1英寸=2.54厘米 1/2.3英寸CCD相机传感器,对角线约1.1厘米。 宽:8.8mm;高:6.6mm。(近似值,仅供参考) 所谓的1/2.7,1/2.5,1/1.8,1/1.7,1/1.6,2/3等,里面的分子1是一个标准,分母越大,CCD越小。所以,你说的尺寸中2/3英寸是最大的,到底有多大呢? 衡量比例必须有一个标准,这个标准是沿用最早CCD应用在摄像机上的标准,指长 12.8mm×9.6mm的面积,其对角线为16mm,所以1就是指的对角线为16mm。 故可以计算出1/1.8英寸的ccd:(12.8/1.8)x(9.6/1.8)=7.11mm x 5.33mm 同理可以计算2/3英寸即1/1.5英寸的ccd:(12.8/1.5)x(9.6/1.5)=8.53mm x 6.4mm 有了这个标准,相信你自己就可以算出你关心的数码相机的CCD的长和宽了吧。 追问: 哥们这是怎么算的啊?是分母除以分子么? 回答: 是按照1/1英寸为标准的对角线为16mm,而长宽比是4:3,所以标准的长宽就是 12.8mm x 9.6mm。 所以别人对于数码相机的CCD大小,不需要写出具体的长、宽各是多少,而只需要给你个和标准之间差的倍数就可以了。 即1/1.8就是说标准去乘以这个系数,即长宽都乘以1/1.8就可以了。 小尺寸传感器的这种表示方式是指的对角线长度,但是不同长宽比面积是不同的,例如3:2和4:3的传感器面积,就算是同样的对角线长度面积也不同,长宽比越接近1:1面积越大 常见的1/1.63英寸传感器长宽是8.07×5.56毫米,面积是44.8692平方毫米 常见的1/2.3英寸传感器长宽是6.17×4.55毫米,面积是28.0735平方毫米 1/1.63英寸传感器面积大约1/2.3英寸传感器的1.6倍,性能差别还是比较明显的,画质差异肉眼明显可见 当然只看传感器面积也不能完全说明问题,还有像素多少问题,如果1/1.63传感器像素比1/2.3传感器高很多,可能单个像素点的宽度就差不多,那么性能也就差不多,所以单个像素点的宽度才是问题的核心 不过像1/1.63英寸这种数码相机中的大尺寸传感器,一般都是高端机型使用的,强调高画质,所以不会把像素做得太高,高像素小传感器是中低端卡片机用来忽悠不了解技术细节的消费者的 所谓的传感器尺寸是以对角线的尺寸来计算的, 比如1/1.63英寸, 它的尺寸就是对角线的长度为1/1.63 英寸, 不过这个对角线是包含了框架的尺寸的, 所以实际的有效感光部分要比它小一些. 然后传感器的长宽比例, 以对角线长度来标注的话都是4:3的, 这样你就可以计算出他们各自的实际尺寸了

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

(整理)分别列举10种接触、非接触传感器种类及原理

分别列举10种接触、非接触传感器种类及原理 接触式位移传感器: 1位移传感器及其原理:计量光栅是利用光栅的莫尔条纹现象来测量位移的。 “莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图 1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。 (上海德测电子科技有限公司产品) 2螺杆式空压机压力传感器螺杆式空压机压力传感器:是工业实践中最为常用 的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压力传感器。 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石

传感器原理复习提纲及详细知识点(2016)

传感器原理复习提纲第一章绪论 1.检测系统的组成。 2.传感器的定义及组成。 3. 传感器的分类。 4.什么是传感器的静态特性和动态特性。

5.列出传感器的静态特性指标,并明确各指标的含义。 x输入量,y输出量,a0零点输出,a1理论灵敏度,a2非线性项系数 灵敏度传感器在稳态下,输出的变化量与引起该变化量的输入变化量之比。 表征传感器对输入量变化的反应能力 线性传感器非线性传感器 迟滞正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷 所造成的,如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、 紧固件松动等。 线性度传感器的实际输入-输出曲线的线性程度。 4种典型特性曲线 非线性误差 % 100 max? ? ± = FS L Y L γ ,ΔLmax——最大非线性绝对误差,Y FS——满量程输出值。 直线拟合线性化:出发点→获得最小的非线性误差(最小二乘法:与校准曲线的残差平方和最小。) 例用最小二乘法求拟合直线。 设拟合直线y=kx+b 残差△i=yi-(kxi+b) k y x =?? % 100 2 max? ? = FS H Y H γ 最小 ∑? n i2

分别对k 和b 求一阶导数,并令其 =0,可求出b 和k 将k 和b 代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax 即为非线性误差。 重复性 重复性是指传感器在输入量按同一方向作全量程连续多次变化时, 所得特性曲线不一致的程度。重复性误差属于随机误差,常用标准 差σ计算,也可用正反行程中最大重复差值计算,即 或 零点漂移 传感器无输入时,每隔一段时间进行读数,其输出偏离零值,即为零点漂移。 零漂=,式中ΔY0——最大零点偏差;Y FS ——满量程输出。 温度漂移 温度变化时,传感器输出量的偏移程度。一般以温度变化1度,输出最大偏差与满量程的百分比表示, 即温漂=Δmax ——输出最大偏差;ΔT ——温度变化值;YFS ——满量程输出。 6. 一阶特性的指标及相关计算。 一阶系统微分方程 τ:时间常数,k=1静态灵敏度 拉氏变换 )()()1(s X s Y s =+τ 传递函数 s s X s Y s H τ+= = 11 )()()( 频率响应函数 ωτ ωωωj j X j Y j H += = 11 )()()( 误差部分 7. 测量误差的相关概念及分类。 相关概念 (1)等精度测量(2)非等精度测量(3)真值(4)实际值(5)标称值(6)示值(7)测量误差 分类 系统误差 随机误差 粗大误差 %100)3~2(?± =FS R Y σ γ% 1002max ??± =FS R Y R γkx y dt dy =+τ

利用CMOS图像传感器测试成像镜头MTF的实用方法

文章编号:100525630(2006)0620017206 利用CM O S 图像传感器 测试成像镜头M T F 的实用方法 Ξ 张文华,李湘宁 (上海理工大学,上海200093) 摘要:介绍了一种用C M O S 图像传感器测量镜头M T F 的实用方法及其实用实例。该 方法通过引入参考空间频率,利用在C M O S 图像传感器像面上,对被测空间频率与参考空 间频率的像素灰度值的读取,能够便捷并且比较准确地测定镜头的M T F 值。由于参考空间 频率的引入,大体消除了C M O S 图像传感器本身M T F 对测量结果的影响,从而使测量结 果更接近理论运算结果。 关键词:调制传递函数;C M O S 图像传感器;像素灰度值;参考空间频率 中图分类号:TN 402 文献标识码:A A practica l m ethod for m ea sur i ng m odula tion tran sfer function of optica l i m ag i ng syste m by usi ng C MOS i m ager sen sor ZH A N G W en 2hua ,L I X iang 2n ing (U n iversity of Shanghai fo r Science and T echno logy ,Shanghai 200093,Ch ina ) Abstract :T h is p ap er in troduces a p ractical m ethod fo r m easu ring m odu lati on tran sfer functi on (M T F )of an op tical i m aging system by u sing C M O S i m ager sen so r .T h is m ethod b rings in a new con 2cep ti on of reference frequency .B y reading the p ixel values w h ich reference frequency and tested frequen 2cy m ake on the C M O S i m ager sen so r th rough the op tical i m aging system ,th is m ethod can calcu late ou t the M T F of the op tical i m aging system p rom p tly and accu rately .T he reference frequency can eli m inate m o st of the i m p act C M O S i m ager sen so r itself m akes to the system M T F and therefo re m ake the M T F values m o re accu rate . Key words :m odu lati on tran sfer functi on (M T F );C M O S i m ager sen so r ;p ixel value ;reference fre 2quency 1 引 言 调制传递函数(m odu lati on tran sfer functi on ,M T F )是复函数光学传递函数(op tical tran sfer func 2ti on ,O T F )的模,由于其能客观地反映成像系统的频率响应特性,因此早已成为光学成像系统像质评价的重要指标[1]。在光学设计中用M T F 作为评价函数进行优化和像质评价已是常用的手段,但对于实际镜头的质量检测由于受到M T F 测试仪器设备条件的限制,因此实际应用并不广泛。使用C M O S (com p lem en 2 第28卷 第6期 2006年12月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .28,N o.6 D ecem ber,2006 Ξ收稿日期:2006201205 作者简介:张文华(19782),女,河南修武人,工程师,硕士研究生,主要从事光学工程方面的研究。

非接触式液位传感器使用说明分析

XCK-Y25-xxx智能型非接触式 (2016-04-12) 液 位 传 感 器 使 用 说 明 书 深圳市星科创科技有限公司 Shenzhen XingKeChuang Technology Co., Ltd. 电话:86-0755-******** 传真:86-0755-********

一、产品概述 智能型非接触式液位感应器(以下简称液位感应器)采用了先进的信号处理技术及高速信号处理芯片,突破了容器壁厚的影响,实现了对密闭容器内液位高度的真正非接触检测。液位传感器(探头)安装于被测容器外壁的上下方(液位的高位与低位),非金属容器无需对其开孔、安装简易、不影响生产。可实现对高压密闭容器内的各种有毒物质﹑强酸﹑强碱及各种液体的液位进行检测。液位感应器对液体介质和容器的材质无特殊要求,可广泛使用。 智能型非接触式液位感应器分四种信号输出接口,分别为高低电平输出接口、NPN输出接口、PNP输出接口和RS485通信接口;分别对应四种型号: 高低电平输出接口——型号:XKC-Y25-V NPN输出接口——型号:XKC-Y25-NPN PNP输出接口——型号:XKC-Y25-PNP RS485通信接口——型号:XKC-Y25-RS485 二、产品特性 ?非接触式液位传感器,适用于非金属容器外壁而无需与液体直接接触,不会受到强酸强 碱等腐蚀性液体的腐蚀,不受水垢或其他杂物影响。 ?智能化液位基准调整及液位记忆功能,液位状态显示方式,可实现多点串联接线;可支 持高低电平输出、NPN、PNP信号输出和RS485通信接口输出(选型时与厂家说明即可)。 ?检测准确稳定,可检测沸水液面。 ?纯电子电路结构,非机械工作方式,性能稳定寿命耐久。 ?高稳定性,高灵敏度,刚干扰能力强,不受外界电磁干扰,针对工频干扰及共模干扰有 做特殊处理,以兼容市面上所有的5~24V电源适配器。 ?强大兼容性,穿透各种非金属材质的容器,如塑料、玻璃、陶瓷等容器,感应距离可达 20mm;液体、粉末、颗粒物均可检测。 ?开集电极输出方式,电压范围宽(5~24V),适合连接各种电路及产品应用。 三、工作原理 智能型非接触式液位感应器是利用水的感应电容来检测是否有液体存在,在没有液体接近感应器时,感应器上由于分布电容的存在,因此感应器对地存在一定的静态电容,当液面慢慢升高接近感应器时,液体的寄生电容将耦合到这个静态电容上,使感应器的最终电容值变大,该变化的电容信号再输入到控制IC进行信号转换,将变化的电容量转换成某种电信号的变化量,再由一定的算法来检测和判断这个变化量的程度,当这个变化量超过一定的阈值时就认为液位到达感应点。 电话:86-0755-******** 传真:86-0755-********

那些你不知道的扭矩传感器

那些你不知道的扭矩传感器 扭矩传感器主要用来测量各种扭矩、转速及机械效率,它将扭力的变化转化成电信号,其精度关系到所在测试系统的精度。其主要特点在于既可以测量静止扭矩,也可以测量旋转转矩和动态扭矩;并且检测精度高,稳定性好,抗干扰性强;不需反复调零即可连续测量正反转扭矩,没有导电环等磨损件,可以高转速长时间运行;它输出高电平频率信号可直接送计算机处理。下面我们简单了解一下常用的扭矩传感器都有哪些。 非接触式扭矩传感器 非接触式扭矩传感器也是动态扭矩传感器,又叫转矩传感器,转矩转速传感器,旋转扭矩传感器等。它的输入轴和输出轴由扭杆连接,输入轴上有花键,输出轴上则是键槽,当扭杆受到转动力矩作用发生扭转的时候,花键与键槽的相对位置则被改变,它们的相对位移改变量就是扭转杆的扭转量。这样的过程使得花键上的磁感强度变化,通过线圈转化为电压信号。非接触扭矩传感器的特点是寿命长、可靠性高、不易受到磨损、有更小的延时、受轴的影响更小,应用较为广泛。

应变片扭矩传感器 应变片扭矩传感器使用的是应变电测技术。它的原理是利用弹性轴,粘贴应变计,组成了测量电桥,当弹性轴受扭矩作用发生微小形变,电桥的电阻值就会发生变化,进而电信号发生了变化,实现扭矩的测量。 应变片扭矩传感器的特点是分辨能力高、误差较小、测量范围大、价格低廉,便于选择和大量使用。 相位差式转矩转速传感器 相位差时扭转传感器就是扭转角相位差式传感器,它的原理就是根究磁电相位差式转矩测量技术,才弹性轴的两端安装两组齿数、形状及安装角完全相同的齿轮,齿轮外侧安装接近传感器。当弹性轴旋转时,两组传感器的波形产生相位差,从而计算出扭矩。 它的特点主要是实现了转矩信号的非接触传递,检测的信号是数字信号,转速较高。但是这种扭矩传感器体积较大,低转速时的性能不理想,因此应用已不是很广泛。

数码相机常用感元件尺寸对照表

数码相机常用感光元件尺寸对照表 (2013-02-17 15:51:38) 转载▼ 标签: 分类:杂文 娱乐 随着数码技术的发展,出现了新的传感器画幅标准(如刚刚发布的尼康1系列V1/J1、索尼RX100都采用了1英寸的CX画幅),一些单反传感器的尺寸也悄悄的出现了“缩水”。比如当时的佳能30D的CMOS 是22.5×15mm,到了7D/60D变成了22.3×14.9mm,尼康D70s的CCD是23.7×15.6mm,到了D7000/5100变成了23.6×15.6mm。为了适应新的数码相机传感器的尺寸标准,特将目前最新型号数码相机/数码单反经常采用的成像传感器尺寸按比例制作成图片、表格进行对比。 数码相机的感光元件CCD/CMOS相当于传统相机的底片。家用小数码相机(DC)的CCD尺寸通常有1/2.5英寸、1/1.8英寸、2/3英寸等,它们有什么不同?这一尺寸会影响到数码相机的什么功能?

数码相机规格表中的CCD/CMOS一栏经常写着“1/2.5、1/1.8英寸CCD等。这里的“1/2.5英寸”就是CCD的尺寸,实际上就是CCD对角线的长度。不过,这里的1英寸并不等于25.4mm,而是1英吋CCD Size = 长12.8mm×宽9.6mm = 对角线为16mm之对应面积。也就是说1英寸相当于16mm。 因为在CCD/CMOS成像元件问世之前,电视摄像机中采用的是真空管成像元件,那时的传感器尺寸指的是真空管的外径,即包含了外层玻璃管的尺寸,1英吋真空管的内径(成像圆直径)为16mm,已经成了一种行业“规范”,因此,到了CCD/CMOS成像元件问世后,也就沿用了这个“规范”。 真空管影像传感器 有了固定单位的CCD 尺寸就不难了解余下CCD 尺寸比例定义了,例如: 1/2" CCD的对角线就是1"的一半为8mm,面积约为1/4,1/4" 就是1"的1/4,对角线长度即为4mm。 目前市面上消费型数码相机的数量几乎占掉了总产量的7成,这一类型的特色多是轻薄短小,使用感光器件的长宽比皆为4:3,并且清一色都是1" 以下的设计;比较常见的有:1/2.7"、1/2.5"、1/2.3"、1/1.8"、2/3"等。数码单反(DSLR)的CCD 或CMOS 因为所使用的长宽比由4:3改成3:2,就不以对角线“英吋”作为表达方式,而改为与135相机(底片尺寸36×24mm)相同的直接称呼,比这小一号的或称为APS (25.1×16.7mm)/APS-C 尺寸(23.7×15.6mm)也是同样的道理。为了补足APS-C 以下的CCD 尺寸空间,由日本Olympus 主导的4/3 系统(比一般消费型数码相机的1吋型CCD 再大上1/3 (22.5 ÷ 16mm)),但比例不是3:2 而是4:3 ,是故沿用“英吋”的称法,命名为4/3 或是1又1/3 。

扭矩传感器的测量方法

采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号扭矩传感器是对各种旋转或非旋转机械部件上对扭转力矩感知的检测。扭矩传感器将扭力的物理变化转换成精确的电信号。 扭矩传感器可以应用在制造粘度计,电动(气动,液力)扭力扳手,它具有精度高,频响快,可靠性好,寿命长等优点。将专用的测扭应变片用应变胶粘贴在被测弹性轴上,并组成应变桥,若向应变桥提供工作电源即可测试该弹性轴受扭的电信号。这就是基本的扭矩传感器模式。但是在旋转动力传递系统中,最棘手的问题是旋转体上的应变桥的桥压输入及检测到的应变信号输出如何可靠地在旋转部分与静止部分之间传递,通常的做法是用导电滑环来完成。 由于导电滑环属于磨擦接触,因此不可避免地存在着磨损并发热,因而限制了旋转轴的转速及导电滑环的使用寿命。及由于接触不可靠引起信号波动,因而造成测量误差大甚至测量不成功。为了克服导电滑环的缺陷,另一个办法就是采用无线电遥测的方法:将扭矩应变信号在旋转轴上放大并进行v/f转换成频率信号,通过载波调制用无线电发射的方法从旋转轴上发射至轴外,再用无线电接收的方法,就可以得到旋转轴受扭的信号。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/c1578621.html,/

多传感器图像融合算法研究开题报告汇总

毕业(设计)论文 开题报告 系别自动化系 专业自动化 班级 191102 学生姓名 学号 指导教师 报告日期 2015-3-30

毕业(设计)论文开题报告表 论文题目多传感器图像融合算法研究 学生姓名学号114434 指导教师 题目来源(划√)科研√生产□实验室□专题研究□ 论文类型(划√)设计□论文√其他□ 一、选题的意义 数字图像融合是将两个或者两个以上的传感器在同一时间(或不同时间)获取的关于某个具体场景的图像或者图像序列信息加以综合,以生成一个新的有关此场景的解释,而这个解释是从单一传感器获取的信息中无法得到的。图像融合的目的是减少不确定性,其作用包括:(1)图像增强。通过综合来自多传感器(或者单一传感器在不同时间)的图像,获得比原始图像清晰度更高的新图像。(2)特征提取。通过融合来自多传感器的图像更好地提取图像的特征,如线段,边缘等。(3)去噪。(4)目标识别与跟踪。(5)三维重构。 图像融合技术(Image Fusion Technology)作为多传感器信息融合的一个非常重要的分支——可视信息融合,近二十年来,引起了世界范围的广泛关注和研究。图像融合是一门综合了传感器技术、图像处理、信息处理、计算机和人工智能等多种学科的现代高新技术。图像融合的主要思想是采用一定的算法,把来自多个传感器的多幅图像综合成一幅新图像,使融合后的图像具有更高的可信度,较少的不确定性以及更好的可理解性,融合后的图像比原来的图像更加清晰可靠,易于分辨,最终得到在任何一幅单独的原始图像中无法表现的某些特征,可为分类识别系统提供更加完备的数据集。 图像融合的基本原理就是在对同一目标的采用不同传感器所获得的图像,或者同一传感器在不同时间、不同角度所获得的图像在经过像素级配准之后,利用其在信息表达上的互补性和冗余性,根据一定的融合法则合成一幅满足某种要求的新的图像。因此,图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,实现多幅源图像信息的综合,已达到人们的某种需要。 最近这些年来,在军事领域与民事领域的各种各样种类繁多的需求牵引之下,

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

水位传感器结构及工作原理

1、水位传感器组成及工作原理 水位传感器是一种测量液位的压力传感器.静压投入式液位变送器(液位计)是基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号(一般为4~20mA/1~5VDC)。分为两类:一类为接触式,包括单法兰静压/双法兰差压液位变送器,浮球式液位变送器,磁性液位变送器,投入式液位变送器,电动内浮球液位变送器,电动浮筒液位变送器,电容式液位变送器,磁致伸缩液位变送器,侍服液位变送器等。第二类为非接触式,分为超声波液位变送器,雷达液位变送器等。 静压投入式液位变送器(液位计)适用于石油化工、冶金、电力、制药、供排水、环保等系统和行业的各种介质的液位测量。精巧的结构,简单的调校和灵活的安装方式为用户轻松地使用提供了方便。4~20mA、 0~5v、 0~10mA等标准信号输出方式由用户根据需要任选。 利用流体静力学原理测量液位,是压力传感器的一项重要应用。采用特种的中间带有通气导管的电缆及专门的密封技术,既保证了传感器的水密性,又使得参考压力腔与环境压力相通,从而保证了测量的高精度和高稳定性。 是针对化工工业中强腐蚀性的酸性液体而特制,壳体采用聚四氟乙烯材料制成,采用特种氟胶电缆及专门的密封技术进行电气连接,既保证了传感器的水密性、耐腐蚀性,又使得参考压力腔与环境压力相通,从而保证了测量的高精度和高稳定性。 工作原理: 用静压测量原理:当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力公式为:Ρ = ρ . + Po式中: P :变送器迎液面所受压力 ρ:被测液体密度 g :当地重力加速度 Po :液面上大气压 H :变送器投入液体的深度 同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压 Po 与传感器的负压腔相连,以抵消传感器背面的 Po , 使传感器测得压力为:ρ . ,显然 , 通过测取压力 P ,可以得到液位深度。 功能特点:

桥堆型号与参数对照表

桥堆型号与参数对照表 力邦电磁炉故障代码 E1:无锅.每隔3秒一声短笛音报警.连续性分钟转入待机. E2:电源电压过低.两长三短笛音报警.响两次转入待机.(间隔5秒). E3:电源电压过高.两长四短笛音报警.间隔5秒响一次. E4:锅超温.三长三短笛音报警.响两次转入待机.(间隔5秒). E6:锅空烧.两长三短笛音报警.响两次转入待机.(间隔5秒). E0:IGBT超温.四长三短笛音报警.响两次转入待机.(间隔5秒). E7:TH开路(管温传感器).四长五短笛音报警.间隔5秒响一次. E8:TH短路(管温传感器).四长四短笛音报警.间隔5秒响一次. E9:锅传感器开路.三长五短笛音报警.间隔5秒响一次. EE:锅传感器短路.三长四短笛音报警.间隔5秒响一次. E5:VCE过高.无声.重新试探启动. 定时结束:响一长声转入待机. 无时基信号.灯不亮.响两秒停两秒.连续. 美联电磁炉自动保护出错屏显代码: E---0 输入电压过低] E---1 输入电压过高 E---2 IGBT温度传感器开路或温度过低保护 E---3 IGBT温度传感器短路或温度过高保护 E---4 灶面温度传感器开路或温度过低保护 E---5 灶面温度传感器短路或温度过高保护] 开机自动关机:机内超温保护. 澳柯玛电磁炉 数码管显示故障代码及排除故障 (无数码显示的电磁炉不在范围之内) 现象故障原因检修方法 显示E1 炉面温度超过235℃并持续3S 电磁炉炉面温度冷却后再开机 显示E2 IGBT温度超过85℃并持续3S 电磁炉内部温度冷却后再开机 显示E3 检测电流过大检测电压是否正常或负载是否过大 显示E4 输入电压过低调节电源电压或更换主控板 显示E5 输入电压过高调节电源电压或更换主控板 显示E6 炉面上热敏电阻短路检查线路或更换热敏电阻 显示E7 炉面上热敏电阻断路检查线路或更换热敏电阻 显示E8 IGBT处的热敏电阻短路检查线路或更换热敏电阻 显示E9 IGBT处的热敏电阻断路检查线路或更换热敏电阻 注:线路板为PD版本的机型,增加E0代码,缺少E5、E6、E9代码,E0表示内部故障,E4表示电源欠压/过压,E7表示炉面的热敏电阻断路/开路,E8表示IGBT处的热敏电阻短路/短路。数码管显示故障代码及排除故障 苏泊尔电磁炉常见故障代码

扭矩传感器样本

工作原理: 传感器扭矩测量采用应变电测技术。在弹性轴上粘贴应变计组成测量电桥,当弹性轴受扭矩产生微小变形后引起电桥电阻值变化,应变电桥电阻的变化转变为电信号的变化从而实现扭矩测量。下面为扭矩测量的主要工作原理框图,由于采用了能源与信号的无接触传输,完美的解决了旋转状态下的扭矩测量。 电源 当测速码盘连续旋转时,通过光电开关输出脉冲信号,根据码盘的齿数和输出信号的频率,即可计算出对应的转速。 技术指标: 1.测量范围:0.5N·m--5万N·m(分若干档) 2.非线性度:±0.1%--±0.3%(F·S) 3.重复性:±0.1%--±0.2%(F·S) 4.精度:±0.2%--±0.5%(F·S) 5.环境温度:-40℃--70℃ 6.过载能力:150% 7.频率响应:100 μs 8.输出信号: 频率方波 (标准产品),也可以为4-20毫安电流或电压信号 零扭矩: 10 KHz 正向满量程: 15 KHz 反向满量程: 5 KHz 9.输出电平:5V (可以根据客户的要求作出调整),负载电流<10mA 10.信号插座: (1)0. (2)+12V. (3)-12V. (4)转速. (5)扭矩信号. 11.绝缘电阻:大于200MΩ 12.相对湿度:≤90%RH 量程选择: 转矩转速传感器的量程选择应以实际测量的最大转矩来确定,通常情况下应留有一定余量,防止出现过载以至于损坏传感器。 计算公式:M=9550*P/N 1

M:转矩单位(牛.米)P:电机功率单位(千瓦)N:转速单位(转/分钟) 如您使用的电机为三相感应电机,转矩量程应选择为额定扭矩的2-3倍,这是由于电动机的启动转矩较大的缘故。 型号选择 C系列转速转矩传感器 代号类型 4 常规动态测试 5 静态(适用于非旋转场合) 6 小量程(10牛米以下) 4A 为4型换代产品 6A 为6型换代产品 7 可以同时测量轴向力 量程测量范围(NM) 0.5 0—0.5 1 0—1 2 0—2 5 0—5 10 1—10 20 2—20 50 5—50 100 10—100 200 20—200 300 30—300 500 50—500 700 70—700 1000 100—1000 2000 200—2000 5000 500—5000 10000 1000—10000 20000 2000—20000 50000 5000—50000 代号输出形式 1 频率输出 2 4-20mA 3 电压输出 代号精度等级 A 0.2 B 0.5 2

多传感器图像融合应用研究

原野林宏中国人民解放军61855 部队韩晓静中国人民解放军61741 部队 肖舟旻中国人民解放军重庆通信学院邢劭谦中国人民解放军61855 部队 【摘要】多传感器图像融合的应用表现在多个领域中,航空航天、军事、医疗,以及其他高新技术产业,图像融合条件下,多传感器能够将数字化信号反应在图像中,并把图像特征充分的发挥出来。经多维度、多测度空间处理,多源信息图像的应用功能会愈加丰富、多样,不仅图像的信号层、像素层、特征层能够有机的融合在一起,其还会展现出不同种类、风格的融合图像。 【关键词】多传感器图像融合影响因素应用研究 在光学、电子学、摄影技术,以及传感器技术、计算机技术的多重应用表现下,图像融合这一科研课题迅速发展起来。传感器作为一种检测装置,在信息测量、信号编辑方面拥有强大的功能优势,它不但能在复杂环境下接收图像信号,还能将多重信号一一过滤、整合在一起,形成融合型图像。 一、传感器图像融合技术分类 1、信号https://www.doczj.com/doc/c1578621.html,层。传感器接收的是源信号,所以相对于信号层的图像融合,与其他种类相比,其图像质感、表现更好,因为首先信号的误差小、传感器信号处理能力强,微小、弱势的信号都可以被检测、处理到。信号层信号会混有随机噪声影响,该信号在估量过程会发生阶段性改变,因此需要精准确定、对比信号频率才行。 2、像素层。像素层图像代表的是不同程度的像素信息内容,与信号信息不同,它具有一定的特征性,多半以图像的形式展现出来。为了让图像能够最真实、细腻的传输信号,传感器会依靠滤波功能,对同种像素级的图像信息源进行映射处理,以谋求图像信息源在融合后产生交互影响,进而的形成丰富多元的融合图像。如果各传感器参加融合的图像具有不同分辨率,则需要在映射处理的基础上,对图像信号源进行细致、精密的对准和校对,从高到底像素级,一步步提取、融合图像信号源的各特征信息。 3、特征层。特征层体现在传感器信息数据的融合特征,与信号层和像素层存在某种联系,信号的原始特征、图像信息源的特征,都能够透过信息的“特殊含义”所展现出来,也就是说,在某特殊区域、特殊范围、特殊时间内,如果要求传感器信息融合处理,那么首当其冲的便会是特征层的信号内容,因为其在边界提取、同密度或同景深区域表示等方面存在较大差异,亦容易被发觉、应用。 二、多传感器图像融合应用研究 本文选择红外图像与可见光图像融合应用为研究对象,探索多传感器是如何实现图像融合的,红外信号具有感光、感温功能,在不同温度梯度环境中,红外图像所表现出来的信号内容是存在明显差异的。可见光图像与其相比,可以展现、表露出诸多图像上的信息细节,如:局部高度、表征状态,以及光感亮度等等。该项技术应用在军事领域,军人要在夜晚的环境中组织进攻,必博闻新闻须通过红外传感器探索、检测周边环境,在将其与可见光图像融合,展现夜晚环境下真实的地区环境状态,使军人犹如在白天作战。 为了进一步丰富红外图像与可见光图像的融合效果,技术人员选择了特征层图像融合技术,它首先利用红外传感器把周边环境的探索信号、内容搜集过来,再由滤波器、信号编辑器、图像处理装置,将其复制粘贴到传统可见光图像中,使检测到的信号发挥图像编辑、处理能力,通过信号的变化、编辑处理,使图像展现可变的几何图形、方向、位置,以及特征的时域范围情境状态。红外传感器检测到的图像数据是信号翻译过来的,所以准度较高,可达到中级,如果精度要求还有待提升,可通过提高红外传感器检索信号的频率和波长,提高图像数据的精度级别。此外,在把红外传感器中的众多图像信号进行压缩处理的过程中,可见光

CMOS图像传感器的性能

CMOS图像传感器的性能 2.2.1光电转换的原理和性能 当光子入射到半导体材料中,光子被吸收而激发产生电子–空穴对,称为光生载流子,如图2.3(a)所示。量子效率(Quantum Efficiency,QE)被定义为产生光生载流子的光子数占总入射光子数的百分比;或者被定义为η,即每个入射光子激发出来的光生载流子数。 式中,N e为被激发出来的电子数;N v为入射的光子数。不同的半导体材料对入射光的响应随其波长而变化,对于硅材料而言波长覆盖整个可见光范围,截止在 约1.12μm的近红外波长,如图2.3(b)所示。 (a)(b) 图2.3硅半导体材料的光照响应 光电信号的噪声水平决定了能检测到的最小光功率,即光电转换的灵敏度。硅光电传感器的噪声构成包括: ●来源于信号和背景的散粒噪声(shot noise);

●闪烁噪声(flicker noise),即1/f噪声; ●来源于电荷载流子热扰动的热噪声(thermal noise)。 噪声特性用噪声等效功率NEP(Noise Equivalent Power)表达,信号功 率和噪声等效功率的比值,被称为信噪比(Signal Noise Ratio,SNR),是描述传感器性能的重要参数之一。 当入射光子照射在半导体材料的PN结上,如图2.4(a)所示,如果在PN 结上施加电压使光生载流子形成电流,产生如图2.4(b)所示的I-V特性曲线。曲线上V>0的正向偏置一段被称为太阳能电池模式;PN结反向偏置V<0的平直一段曲线,被称为光电二极管模式;I-V特性的反向击穿段被称为雪崩模式。通常在图像传感器中,光电转换元件工作在光电二极管模式,如图2.3(c)所 示。图2.3中PN结的反向电流I leak为 I leak=I ph+I diff (a)(b) 图2.4PN结光电二极管示意图

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

相关主题
文本预览
相关文档 最新文档