当前位置:文档之家› 基于FPGA的二阶广义积分器锁相环研究与实现

基于FPGA的二阶广义积分器锁相环研究与实现

基于FPGA的二阶广义积分器锁相环研究与实现
基于FPGA的二阶广义积分器锁相环研究与实现

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与部的振荡信号同步,利用锁相环 路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

锁相环分析

几种常见锁相环分析 并网变换器对锁相环的基本要求: (1)电网电压经常发生跌落、闪变等动态电能质量问题,并且这些异常的出现均是不可预计而且需要及时补偿的。所以要求并网变换器能够对电网电压相位的变化在ms级的时间内能做出快速的响应,即要求并网变换器的锁相方法要有良好的动态性能,保证当电压跌落和骤升时不对锁相性能造成太大影响。 (2)三相电压不平衡时,要求电力电子装置的锁相方法能够捕获正序基波分量的相位,对三相不平衡情况有很强的抑制作用。 (3)锁相环应该能快速检测到电网电压发生相位、频率突变等问题。 (4)要求锁相方法对畸变电压要有很强的抑制作用。 (5)对于一些电力补偿装置如动态电压恢复器,锁相方法不仅要实时检测网侧电压的相位,而且要实时监测网侧电压的幅值变化状况用来判断并决定电力补偿装置的工作模式 1、基于低通滤波器的锁相方法 Karimi-Ghartemani.M和Reza Iravani.A提出了基于低通滤波器的锁相方法,其原理如图所示。三相电网电压从三相静止坐标系转换为两相静止坐标系,利用常见的低通滤波器滤除电网中的谐波干扰,然后对信号进行标么化处理,从而得到电网电压的相位,旋转矩阵R用于补偿滤波器所造成的相位滞后。 原理及R 优点:避免检测过零点带来的问题 缺点:1、在设计低通滤波器时,需要在系统滤波器的鲁棒性和动态响应之间做出折中的选择,较低的截止频率可以抑制系统谐波对相位检测的干扰,但是也相应的降低了系统的响应速度。2、这种方法需求得反三角函数值,计算速度较慢,尤其在系统频率变动和三相电压不平衡时,对畸变电压的抑制作用弱,因此无法正确锁相。 参考文献Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency 2、基于空间矢量滤波器(SVF)的锁相方法 空间矢量滤波器是一种用于空间矢量滤波的新型滤波器,它是基于电网电压的αβ分量相互关系相互影响的基础上提出的。这时候电压矢量可以视为以恒定的幅值和频率旋转,有两个输入量 原理

锁相环pll工作原理及verilog代码

锁相环的组成和工作原理 #1 1.锁相环的基本组成 . 许多电子设备要正常工作, 通常需要外部的输入信号与内部的振荡信 许多电子设备要正常工作, 号同步,利用锁相环路就可以实现这个目的。 号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路, 锁相环路是一种反馈控制电路,简称锁相环 )。锁相环的特点是 (PLL)。锁相环的特点是:利用外部输入的 )。锁相环的特点是: 参考信号控制环路内部振荡信号的频率和相 位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪, 所以锁 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪, 相环通常用于闭环跟踪电路。锁相环在工作的过程中, 相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出 于闭环跟踪电路 信号的频率与输入信号的频率相等时, 信号的频率与输入信号的频率相等时,输出电压与输入电压保 持固定的相位差值,即输出电压与输入电压的相位被锁住,这 持固定的相位差值,即输出电压与输入电压的相位被锁住, 就是锁相环名称的由来。 就是锁相环名称的由来。 ( ) 锁相环通常由鉴相器 PD) 环路滤波器 LF) 、 ( ) 和压控振荡器 VCO) ( ) 三部分组成, 所示。 三部分组成,锁相环组成的原理框图如图 8-4-1 所示。 锁相环中的鉴相器又称为相位比较器, 它的作用是检测输入信号和输 锁相环中的鉴相器又称为相位比较器, 出信号的相位差,并将检测出的相位差信号转换成 uD(t)电压信号 出信号的相位差, ) 输出, 该信号经低通滤波器滤波后形成压控振荡器的控制电压 u(t) 输出, , C ) 对振荡器输出信号的频率实施控制。 对振荡器输出信号的频率实施控制。 施控制 2.锁相环的工作原理 . 锁相环中的鉴相器通常由模拟乘法器组成, 利用模拟乘法器组成的鉴 锁相环中的鉴相器通常由模拟乘法器组成, 相器电路如图 8-4-2 所示。 所示。

锁相环应用电路仿真

高频电子线路实训报告锁相环路仿真设计 专业 学生姓名 学号 2015 年 6 月24日

锁相环应用电路仿真 锁相环是一种自动相位控制系统,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环及其应用电路是“通信电子电路”课程教学中的重点容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真电路引入课堂教学和课后实验。实践证明,这些仿真电路可以帮助学生对相关容的理解,并为进行系统设计工作打下良好的基础。锁相环的应用电路很多,这里介绍锁相环调频、鉴频及锁相接收机的Multisim仿真电路。 1.锁相环的仿真模型 首先在Multisim软件中构造锁相环的仿真模型(图1)。基本的锁相环由鉴相器(PD)、环路滤波器(I P)和压控振荡器(VCO)三个部分组成。图中,鉴相器由模拟乘法器A 实现,压控振荡器为V3,环路滤波器由R1、C1构成。环路滤波器的输出通过R2、R3串联分压后加到 压控振荡器的输入端,直流电源V2用来调整压控振荡器的中心频率。仿真模型中,增加R2、R3及的目的就是为了便于调整压控振荡器的中心频率。 图1 锁相环的仿真模型 2.锁相接收机的仿真电路 直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图2所示。

图2 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输人调制信号的变化,振荡频率可以发生很大偏移。 图3 锁相环调频的仿真电路 根据图2建立的仿真电路如图3所示。图中,设置压控振荡器V1在控制电压为0时,输出频率为0;控制电压为5V时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz,为此设定直流电压V3为2.5V。调制电压V4通过电阻Rs接到VCO的输人端,R实际上是作为调制信号源V4的阻,这样可以保证加到VCO输人端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。 VCO输出波形和输人调制电压的关系如图4所示。由图可见,输出信号频率随着输人信号的变化而变化,从而实现了调频功能。

【2019年整理】微积分上考试大纲

《微积分》上考试大纲 试卷题型: 一、填充题(每题3分,共15分) 二、选择题(每题3分,共18分) 三、计算下列极限(每题6分,共12分) 四、求下列函数的导数或积分(每题6分,共36分 五、解下列各题(共19分) 第一章:函数 基本内容: 1.函数:定义域、表示法、分段函数 2 .函数的4个常见性态:有界性、单调性、奇偶性、周期性 3.反函数 4.复合函数 5.基本初等函数 6.初等函数题型: 1.求函数的定义域(具体、抽象) 2.求复合函数 (1)已知f(x),(X)求f〔(x)l f〔f(X),〔(X)】(2)已知f I (x)1求f (x) 3.求函数的反函数 4.函数的奇偶性的判断

第二章:极限与连续 基本内容: 1.数列极限 ⑴定义 (2)收敛数列的重要性质:收敛—有界 2. 函数X 一;:=的极限 3. 函数x >X o的极限 (1) 定义 (2) 单侧极限 (3) 充要条件 (4) 保号性定理 4. 无穷大量与无穷小量 (1)定义 ⑵无穷小的运算 ⑶无穷大与无穷小的关系 ⑷无穷小量的阶 5.极限运算及性质(+,- ,X,十,u n及无穷小运算) 6.重要极限 7. f(X)在X o处连续的定义 8.初等函数的连续性 9.闭区间上连续函数性质(有界、最值、介值) 题型:

1?求极限(包括数列极限) 方法:(1 )用连续函数性质、定义 (2)用罗比塔法则(注意条件) (3)利用重要极限 (4)等价无穷小代换 (5)分段函数分段点用充要条件 2.已知极限求待定系数 3.无穷小阶的比较(包括找无穷小,无穷大) 4.求连续区间 (1)间断点的判断(第几类什么名称) (2)已知连续求待定系数 第三章:导数、微分、边际与弹性 基本内容: 1?导数的定义 2?可导与连续的关系 4.导数公式 5.导数运算法则(+ , -,X,宁,复合,隐函数,对数求导法) 6.高阶导数(二阶) 7.微分定义dy二f(x)dx 8.微分公式 题型:

基于matlab的二阶锁相环仿真设计

1 绪论 1.1 课题背景及研究意义 在现代集成电路中,锁相环(Phase Locked Loop)是一种广泛应用于模拟、数字及数模混合电路系统中的非常重要的电路模块。该模块用于在通信的接收机中,其作用是对接收到的信号进行处理,并从其中提取某个时钟的相位信息。或者说,对于接收到的信号,仿制一个时钟信号,使得这两个信号从某种角度来看是同步的(或者说,相干的)。其作用是使得电路上的时钟和某一外部时钟的相位同步,用于完成两个信号相位同步的自动控制,即锁相。它是一个闭环的自动控制系统,它将自动频率控制和自动相位控制技术融合,它使我们的世界的一部分有序化,它的输出信号能够自动跟踪输入信号的相位变化,也可以将之称为一个相位差自动跟踪系统,它能够自动跟踪两个信号的相位差,并且靠反馈控制来达到自动调节输出信号相位的目的。其理论原理早在上世纪30年代无线电技术发展的初期就已出现,至今已逐步渗透到各个领域。伴随着空间技术的出现,锁相技术大力发展起来,其应用范围已大大拓宽,覆盖了从通信、雷达、计算机到家用电器等各领域。锁相环在通信和数字系统中可以作为时钟恢复电路应用;在电视和无线通信系统中可以用作频率合成器来选择不同的频道;此外,PLL还可应用于频率调制信号的解调。总之,PLL已经成为许多电子系统的核心部分。 锁相环路种类繁多,大致可分类如下]1[。 1.按输入信号特点分类 [1]恒定输入环路:用于稳频、频率合成等系统。 [2]随动输入环路:用于跟踪解调系统。 2.按环路构成特点分类 [1]模拟锁相环路:环路部件全部采用模拟电路,其中鉴相器为模拟乘法器,该类型的锁相环也被称作线性锁相环。 [2]混合锁相环路:即由模拟和数字电路构成,鉴相器由数字电路构成,如异或门、JK触发器等,而其他模块由模拟电路构成。 [3]全数字锁相环路:即由纯数字电路构成,该类型的锁相环的模块完全由数字电路构成而且不包括任何无源器件,如电阻和电容。 [4]集成锁相环路:环路全部构成部件做在一片集成电路中。

模拟锁相环实验报告

实验一 模拟锁相环模块 一、实验原理和电路说明 模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。在系统工作中模拟锁相环将接收端的256KHz 时钟锁在发端的256KHz 的时钟上,来获得系统的同步时钟,如HDB3接收的同步时钟及后续电路同步时钟。 f 0=256K H z 64K H z U P 04U P 03B U P 02 U P 01512K H z 分频器÷4 分频器÷8 H D B 3 环路 滤波器 放大器图 2.1.1 模拟锁相环组成框图 T P P 02T E S T 跳线器K P 02V C O T P P 03T P P 06 T P P 04T P P 05 256K b itp s T P P 07带通滤波器 T P P 01 U P 03A 64K H z 该模块主要由模拟锁相环UP01(MC4046)、数字分频器UP02(74LS161)、D 触发器UP04(74LS74)、环路滤波器和由运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz )组成。在UP01内部有一个振荡器与一个高速鉴相器组成。该模拟锁相环模块的框图见图2.1.1。因来自发端信道的HDB3码为归零码,归零码中含有256KHz 时钟分量,经UP03B 构成中心频率为256KHz 有源带通滤波器后,滤出256KHz 时钟信号,该信号再通过UP03A 放大,然后经UP04A 和UP04B 两个除二分频器(共四分频)变为64KHz 信号,进入UP01鉴相输入A 脚;VCO 输出的512KHz 输出信号经UP02进行八分频变为64KHz 信号,送入UP01的鉴相输入B 脚。经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器滤波送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO 锁定在外来的256KHz 频率上。 模拟锁相环模块各跳线开关功能如下:

数字锁相环研究

数字锁相环研究 刘飞雪 摘要:全数字锁相环路,所谓全数字化,就是环路部件全部数字化,采用数字鉴相器(DPD)、数字环路滤波器(DLF)和数控振荡器(DCO)构成的锁相环路。同步是通信系统中的一个重要实际问题。在数字通信系统中,位同步(又称码元同步)提取是更为重要的一个环节。因为确定了每一个码元的起始时刻,便可以对数字信息做出正确判决。利用全数字锁相环(DPLL)便可以直接从所接收的数字信号中提取位同步信号。用来实现位时钟同步提取的主要是超前—滞后型数字锁相环(LL-DPLL)。本文通过对全数字锁相环的种类及其相应实现功能的研究,确定了对位同步全数字锁相环路的设计方案,设计位同步全数字锁相环各个模块,本文中设计了3个模块,其中第2块包含2个小模块,第3块又包含3 个小模块,用Verilog HDL硬件描述语言对系统中的每个模块进行描述、仿真,然后将三个模块连接成反馈环路系统,使用仿真工具QuartusⅡ6.0进行编译、仿真,调试输出正确波形,最后分析电路性能。 关键词:全数字锁相环路,位同步数字锁相环路,超前-滞后型数字锁相环,数字鉴相器,数字滤波器,数控振荡器 Abstract All Digital Phase-Locked Loop is called because every module is digital. The loop contains these modules such as Digital Phase Discriminator (DPD), Digital Loop Frequency (DLF), Digital Control Oscillator (DCO). The synchronization is the key part of application in communication systems. In the field of digital communication systems, pick-up bit synchronization (also called code synchronization) is a more important part., because the definition of originate time of every code could make correct judgement. The usage of Digital Phase-Locked Loop (DPLL) could pick-up bit synchronous signal from digital signal directly. We use Lead-Lag Digital Phase-Locked Loop (LL-DPLL) to realize bit synchronous clock. This paper first introduced DPLL kinds and function. Then it designed the theory and every modules of DPLL. This paper designed three modules. In it, the second contained 2 modules and the third contained 3 modules. Using Verilog HDL to describe and simulate every module of the system, then connecting these modules to realize the system and using simulator named QuartusⅡ6.0 to compile and simulate correct wave. Key word: DPLL, bit synchronous DPLL, LL-DPLL,DPD, DLF, DCO 第一章绪论 1.1 全数字锁相环的背景及发展状况 锁相环路已经在模拟和数字通信及无线电电子学的各个领域得到了极为广泛的应用。伴随着大规模、超高速数字集成电路的发展及计算机的普遍应用,在传统的模拟锁相环路(APLL)应用领域中,一部分已经被数字锁相环路(DPLL)所取代。从六十年代起,人们就开始对数字锁相环路研究。起初,只是把模拟锁相环路中的部分部件数字化。比如,引进数控振荡器(DCO)代替模拟锁相环路中的压控振荡器(VCO)。这样做的优点是能在不牺牲压控振荡器频率稳定度的情况下,加大频率牵引的范围。从而提高整个环路的工作稳定性和可靠性。另外,用数字集成电路制作的鉴相器非常广泛的被应用在模拟锁相环路中,使环路性能大大提高。 此后,出现了全数字化锁相环。所谓全数字化,就是环路部件全部数字化,采用数字鉴相器(DPD)、数字环路滤波器(DLF)和数控振荡器(DCO)构成的锁相环路。目前,全数字锁相环路的研究日趋成熟,无论在理论研究还是在硬件实现方面,国内外均有大量的文献报道。并已经制成全数字化锁相环路FSK信号解调器、PSK信号解调器、位时钟提取器以及同步载波提取器等。国外已有单片全数字化锁相环路商品。全数字化锁相环路的共同特点是: 它们都具有一切数字系统所特有的显著优点,即电路完全数字化,使用逻辑门电路和触发器电路。因此,

基于锁相环的频率合成电路设计

基于锁相环的频率合成电路设计 0 引言 锁相环简称PLL,是实现相位自动控制的一门技术,早期是为了解决接收机的同步接收问题而开发的,后来应用在电视机的扫描电路中。由于锁相技术的发展,该技术已逐渐应用到通信、导航、雷达、计算机到家用电器的各个领域。自从20 世纪70年代起,随着集成电路的发展,开始出现集成的锁相环器件、通用和专用集成单片锁相环,使锁相环逐渐变成一个低成本、使用简便的多功能器件。如今,PLL 技术主要应用在调制解调、频率合成、彩电色幅载波提取、雷达、FM立体声解码等各个领域。随着数字技术的发展,还出现了各种数字PLL器件,它们在数字通信中的载波同步、位同步、相干解调等方面起着重要的作用。随着现代电子技术的飞快发展,具有高稳定性和准确度的频率源已经成为科研生产的重要组成部分。高性能的频率源可通过频率合成技术获得。随着大规模集成电路的发展,锁相式频率合成技术占有越来越重要的地位。由一个或几个高稳定度、高准确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。 1 锁相环及频率合成器的原理 1.1 锁相环原理 PLL是一种反馈控制电路,其特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因PLL可以实现输出信号频率对输入信号频率的自动跟踪,所以PLL通常用于闭环跟踪电路。PLL在工作的过程中,当输出信号的频率与输入信号的频率相同时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是PLL名称的由来。PLL通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,PLL组成的原理框图如图1所示。 PLL中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图2所示。

参数与锁相环性能分析

1. 环路的相位模型 1.1 鉴相器(PD ) 鉴相器是一个相位比较装置,用来检测输入信号相位)(1t θ与反馈信号相位)(2t θ之间的相位差)(t e θ。输出的相位误差信号)(t u d 是相差)(t e θ的函数,常用的是正弦型的鉴相器,如图 1 (a )所示。 (a ) (b ) 图 1 正弦型鉴相器模型 设相乘器的相乘系数为m K (单位为1/V ) 输入信号)(t u i 与反馈信号)(t u o 经相乘器作用 )()(t u t u K o i m =)](cos[)](sin[21t t U t t U K o o o i m θωθω++ =)]()(2sin[2 121t t t U U K o o i m θθω++ +)]()(sin[2 121t t U U K o i m θθ- 再经过低通滤波器(LPF )滤除2o ω成分之后,得到误差电压 )(t u d =)]()(sin[2 121t t U U K o i m θθ- 令d U =o i m U U K 2 1 为鉴相器的最大输出电压,则 )(t u d =)(sin t U e d θ 这就是正弦型鉴相器的数学模型,这个模型可表示为图 1(b ) 1.2 环路滤波器 环路滤波器具有窄带低通特性,鉴相器输出的误差信号通过环路滤波器,仅输出其中的直流分量。常用的环路滤波器有RC 积分滤波器、无源比例积分滤波器和有源比例积分滤波器三种,这里使用具有理想积分特性的有源比例积分滤波器,其数学模型为 1 21)(ττp p p F += 式中p 表示表示时域微分运算

1.3 压控振荡器 压控振荡器是一个电压—频率变换装置,它的振荡频率应随输入控制电压)(t u c 线性地变化: )(t v ω=)(t u K c o o +ω 式中)(t v ω是压控振荡器的瞬时角频率,o K 为控制灵敏度或称增益系数,单位是V s rad ?/ 由于压控振荡器的输出反馈到鉴相器上,对鉴相器输出误差电压)(t u d 起作用的不是其频率,而是其相位 ?t v d 0)(ττω=?+t c o o d u K t 0)(ττω 即 )(2t θ=?t c o d u K 0)(ττ=)(t u p K c o 压控振荡器的这个数学模型 1.4 环路相位模型 前面已分别得到了环路的三个基本部件的模型,综合起来即得到环路的相位模型,如图 2。 图 2锁相环路的相位模型 由图2 的环路相位模型不难导出其动态方程 e θ=)()(21t t θθ- 2θ=)(sin )(t p p F U K e d o θ ∴)(t p e θ=)(sin )()(1t p F U K t p e d o θθ- 令环路增益d o U K K =得 )(t p e θ=)(sin )()(1t p KF t p e θθ- (1)

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。 关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块 1引言 1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。 1.1选题背景与意义 Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

简述锁相环

南京机电职业技术学院 毕业设计(论文) 题目 40MHz简易锁相环的设计 系部电子工程系专业电子信息技术工程 姓名王鑫学号 G1210145 指导教师吕彬森 2015 年 04 月09日

摘要 在无线收发信机电路中,除了发射机和接收机外,还有一个非常重要的部分就是本地振荡电路。为了保证本地振荡模块输出信号的频率稳定性和较低的相位噪声,通常本振采用锁相环技术来实现,特别在无线通信领域。 本文阐述了锁相环的基本结构和工作原理,从锁相环稳定性的角度出发,给出了无线通信电路中使用40MHz 锁相环的电路设计,并且将方案中锁相环电路进行了仿真,最终满足40MHz 锁相环的设计要求。 关键词:锁相环;鉴相器;压控振荡器

Abstract(外语专业的需要) 【英文摘要正文输入】 In the wireless transceiver circuit, in addition to the transmitter and the receiver, there is a very important part of the local oscillator circuit is. In order to ensure the stability of the local oscillator module, output signal frequency and low phase noise, the vibration by using phase locked loop technique, especially in the field of wireless communications. This paper introduces the basic structure and working principle of the phase-locked loop PLL, starting from the stability of the 40MHz PLL circuit design is given of the use of wireless communication circuit, and the scheme of PLL circuit simulation, and ultimately meet the design requirements of 40MHz phase locked loop. Keywords: Attenuation network; Attenuation quantity; Amplifier; broadband

全数字锁相环毕业设计之开题报告

青岛大学 毕业论文(设计)开题报告 题目:全数字锁相环的设计与实现 院系:自动化工程学院电子工程系 专业:电子信息工程 班级:2007级2班 姓名:张景楠 指导教师:董介春 2011年3月14日

1 数字锁相环的研究现状及发展趋势 锁相环路(PLL)是一个输出信号能够跟踪输入信号相位的闭环自动控制系统。它在无线电技术的各个领域得到了很广泛的应用。 早在30年代无线电技术发展的初期,锁相环技术就已出现,1930年已建立了同步控制理论的基础,1932年贝尔赛什(Bellescize)提出了同步检波理论,第一次公开发表了锁相环路的数学描述,用锁相环路提取相干载波来完成同步检波。早期的锁相环路采用电子管,且价格昂贵,只能用在实验装置中,未得到广泛应用。 到了40年代,在电视接收机的同步扫描电路中,开始广泛的应用锁相技术,使电视图像的同步性能得到很大改善。 进入50年代,随着空间技术的发展,由杰费(Jaffe)和里希廷(Rechtin)利用锁相环路作为导弹信标的跟踪滤波器获得成功,并首次发表了包含噪声效应的锁相环路理论分析的文章,同时解决了锁相环路最佳化设计问题。一种最简单的遥测方式就是信标跟踪,在卫星上装一台低功率的连续波发射机,地面上就可以接收到信号的频率,由于卫星的径向运动而产生多普勒频移,测出多普勒频移大小,就可以算出卫星的径向运动速度,从而测定它的运行轨道。但是,由于卫星上发射机功率小(毫瓦级),而接收机相距几千乃至几万公里以上,因而接收到的信号异常微弱,加之存在多普勒频移及振荡器的频率漂移,接收机的带宽必须足够的宽才行。噪声强度与带宽成正比的,这样在接收点的信号噪声功率比必然很低,通常在-10~-30dB的数量级,即所需信号被深深地埋在噪声之中,在此情况下,普通接收机是无能为力的,而只有采用具有锁相环路的窄带锁相跟踪接收机才能把埋在噪声中的信号提取出来。所以空间技术的发展,促进人们对锁相环路理论及其应用的进一步探讨。 在60年代,维特毕(Viterbl)研究了无噪声锁相环路的非线性理论问题,并发表了“相干通信原理”一书。到70年代林特赛(Lindscy)和查利斯(Charles)进行了由噪声的一阶、二阶及高阶锁相环路的非线性理论分析,并做了大量实验以充实理论分析。随着对锁相技术的理论和应用进行广泛深入地研究,目前,锁相技术已经成为一门比较系统的理论科学。 由于锁相环路具有许多优良特性,它可用于频率合成与变换、自动频率调谐跟踪、模拟和数字信号的相干解调、AM波信号的同步检波、数字通信中的位同步提取、锁相稳频、锁相倍频和分频、锁相测速与测距、锁相FM(PM)调制与解调、微波锁相频率源以及微波锁相功率放大器等。所以,锁相技术的应用已遍及无线电领域,从空间探测、卫星与导弹的跟踪测距、雷达、导航、通信、计算机、激光到电子仪器。近几年来,冶金、水文地质、电力、机械加工、生产自动化等方面都有广泛应用。甚至今天锁相环路已出现在每个家庭的电视机接收机和立体声收录机中。随着半导体集成电路技术的迅速发展,从60年代后期起,已相继试制成功集成化的锁相环路部件及单片集成锁相环路。今天集成锁相环路的商品种类日益繁多,这将使锁相技术得到更广泛的应用。 我国早在50年代就有许多科学工作者开展了对锁相技术的研究和应用工作。特别是

射频锁相环剖析

射频锁相环 基础理论 环路的性能 电路实解 锁相环在手机中的应用 一.基础理论 锁相环路(Phase Locked Loop)是一个闭环的相位控制系统,它的输出信号的相位能自动跟踪输入信号相位。系统框图如下: 当)(1t ? θ与)(2t ? θ相等时,两矢量以相同的角速度旋转,相对位置,即夹角维持不变,通常数值又较小,这就是环路的锁定状态。 从输入信号加到锁相环路的输入端开始,一直到环路达到锁定的全过程,称为捕获过程。设系统最初进入同步状态[]ωθεεπ?±,2e n 的时间为a t 。那么从0t t =的起始状态到达进入同步状态的全部过程就称为锁相环路的捕获过程。捕获过程所需的时间0t t T a p -=称为捕获时间。显然,捕获时间p T 的大小不但与环路的参数有关,而且与起始状态有关。 对一定的环路来说,是否能通过捕获而进入同步完全取决于起始频差01)(ωθ?=? t e 。若0ω?超过某一范围,环路就不能捕获了。这个范围的大小是锁相环路的一个重要性能指标,称为环路的捕获带p ω?。 捕获状态终了,环路的状态稳定在 ωεθ?? ≤)(t e e e n t θεπθ≤-2)( (1-1) 这就是同步状态的定义。只要在整个变化过程中一直满足(1-1)式,那幺仍称环路处于同步状态。由上可知,在输入固定频率信号的条件之下,环路进入同步状态后,输出信号与输入信号之间频差等于零,相差等于常数,即 0)(=? ?t e θ =)(t e θ常数 这种状态就称为锁定状态。

锁相环路的组成 锁相环路为什幺能够进入相位跟踪,实现输出与输入信号的同步呢?因为它是一个相位的负反馈控制系统。这个负反馈控制系统是由鉴相器(PD )、环路滤波器(LF )和电压控制振荡器(VCO )三个基本部件组成的,基本构成如图: )(2t θ 实际应用中有各种形式的环路,但它们都是由这个基本环路演变而来的。下面逐个介绍基本部件在环路 中的作用 鉴相器(PD ) 是一个相位比较装置,用来检测输入信号相位与反馈信号相位之间的相位差。输出 的误差信号是相差的函数,即鉴相特性可以是多种多样的,有正弦形特性、三角形特性、锯齿形特性等等。常用的正弦鉴相器可用模拟相乘器与低通滤波器的串接作为模型。 环路滤波器(LP ) 具有低通特性,它可以起到图中低通滤波器的作用,更重要的是它对环路参数 调整起差决定性的作用。 压控振荡器(VCO ) 是一个电压—―频率变换装置,在环中作为被控振荡器,它的振荡频率应随 输入控制电压)(t u c 线性地变化。实际应用中的压控振荡器的控制特性只有有限的线性控制范围,超出这个范围之后控制灵敏度将会下降。 压控振荡器应是一个具有线性控制特性的调频振荡器,对它的基本要求是:频率稳定度好(包括长期稳定度与短期稳定度);控制灵敏度0K 要高;控制特性的线性度要好;线性区域要宽等等。这些要求之间往往是矛盾的,设计中要折衷考虑。 压控振荡器电路的形式很多,常用的有LC 压控振荡器、晶体压控振荡器、负阻压控振荡器和RC 压控振荡器等几种。前两种振荡器的频率控制都是用变容管来实现的。由于变容二极管结电容与控制电压之间具有非线性的关系,所以压控振荡器的控制特性肯定也是非线性的。为了改善压控特性的线性性能,在电路上采取一些措施,如与线性电容串接或并接,以背对背或面对面方式连接等等。在有的应用场合,如频率合成器等,要求压控振荡器的开环噪声尽可能低,在这种情况下,设计电路时应注意提高有载品质因素和适当增加振荡器激励功率,降低激励级的内阻和振荡管的噪声系数。 二. 环路的性能 环路的基本性能 如上所述,环路有两种基本状态。 其一是捕获过程。评价捕获过程性能有两个主要指标。一个是环路的捕获带P ω?,即环路能通过捕获过程而进入同步状态所允许的最大固有频差max o ω?。若p o ωω?>?,环路就不能通过捕获进入同步状态。

604-高等数学二 (自命题)

604-《高等数学二(自命题)》考试大纲 一、考试性质 《高等数学二(自命题)》是为招收大气科学和地球物理学两个一级学科硕士研究生而设置的选拔考试。它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。考试对象为参加全国硕士研究生入学考试、并报气象学、大气物理学与大气环境、固体地球物理学、空间物理学等专业的考生。 二、考试要求 要求考生系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。 三、考试方法和考试时间 采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。 四、试题结构 计算题或证明题。 五、考试内容 (一)函数、极限、连续 1. 函数的基本性质

2. 极限的定义、性质及计算 3. 无穷小、无穷大的定义及比较方法 4. 连续、间断的定义,闭区间上连续函数的性质 (二)一元函数微分学 1. 导数和微分的定义与几何意义 2. 复合函数、隐函数和参数方程所确定的函数的求导 3. 高阶导数、分段函数的导数、微分 4. 罗尔定理、拉格朗日中值定理和泰勒定理 5. 函数的极值与最值 6. 凹凸性、拐点及渐近线 7. 洛必达法则 (三)一元函数积分学 1. 原函数、不定积分和定积分的概念 2. 不定积分的换元积分法与分部积分法 3. 定积分的性质、积分中值定理和牛顿-莱布尼茨公式 4. 定积分的换元积分法与分部积分法 5. 有理函数、三角函数有理式和简单无理函数的积分 6. 变上限积分函数的导数 7. 广义积分(无穷限积分、瑕积分) 8. 定积分的应用,包含计算平面图形的面积、质心、平面曲线 的弧长、旋转体的体积及侧面积、截面面积为已知的立体体

锁相环基本原理及其应用

锁相环及其应用 所谓锁相环路,实际是指自动相位控制电路(APC),它是利用两个电信号的相位 误差,通过环路自身调整作用,实现频率准确跟踪的系统,称该系统为锁相环路,简 称环路,通常用PLL表示。 锁相环路是由鉴相器(简称 PD)、环路滤波器(简称 LPF或LF)和压控振荡器(简 称 VCO)三个部件组成闭合系统。这是一个基本环路,其各种形式均由它变化而来 PLL概念 设环路输入信号v i= V im sin(ωi t+φi) 环路输出信号v o= V om sin(ωo t+φo)——其中ωo=ωr+△ωo 通过相位反馈控制,最终使相位保持同步,实现了受控频率准确跟踪基准信号频率的自动控制系统称为锁相环路。 PLL构成 由鉴相器(PD)环路滤波器(LPF)压控振荡器(VCO)组成的环路。

PLL原理 从捕捉过程→锁定 A.捕捉过程(是失锁的) a. φi┈φi均是随时间变化的,经相位比较产生误差相位φe=φi-φo,也是变化的。 b. φe(t)由鉴相器产生误差电压v d(t)=f(φe)完成相位误差—电压的变换作用。v d(t)为交流电压。 c. v d(t)经环路滤波,滤除高频分量和干扰噪声得到纯净控制电压,由VCO产生控制角频差△ω0,使ω0随ωi变化。 B.锁定(即相位稳定) a. 一旦锁定φe(t)=φe∞(很小常数)v d(t)= V d(直流电压) b. ω0≡ωi输出频率恒等于输入频率(无角频差,同时控制角频差为最大△ω0max, 即ω0=ωr+△ω0max。ωr为VCO固有振荡角频率。) 锁相基本组成和基本方程(时域) 各基本组成部件 鉴相器(PD)

锁相环发展现状

1.1 锁相环的发展及国内外研究现状 锁相环(PLL-Phase Locked L00P)是自动频率控制和自动相位控制技术的融合。人们对锁相环的最早研究始于20世纪30年代,其在数学理论方面的原理,30年代无线电技术发展的初期就己出现。1930年建立了同步控制理论的基础,1932年法国工程师贝尔赛什(Bellescize)发表了锁相环路的数学描述和同步检波论,第一次公开发表了对锁相环路的数学描述【1】。锁相技术首先被用在同步接收中,为同步检波提供一个与输入信号载波同频的本地参考信号,同步检波能够在低信噪比条件下工作,且没有大信号检波时导致失真的缺点,因而受到人们的关注,但由于电路构成复杂以及成本高等原因,当时没有获得广泛应用。 到了1943年锁相环路第一次应用于黑白电视接收机水平同步电路中,它可以抑制外部噪声对同步信号的干扰,从而避免了由于噪声干扰引起的扫描随机触发使画面抖动的象,使荧光屏上的电视图像稳定清。随后,在彩色电视接收机中锁相电路用来同步彩色脉冲串。从此,锁相环路开始得到了应用,迅速发展。 五十年代,随着空间技术的发展,由杰费(Jaffe)和里希廷(Rechtin)研制成功利用锁相环路作为导弹信标的跟踪滤波器,他们第一次发表了含有噪声效应的锁相环路线性理论析文章,并解决了锁相环路最佳设计化问题【2】。空间技术的发展促进了人们对锁相环路及其理论的进一步探讨,极大地推动了锁相技术的发展。 六十年代初,维特比(Viterbi)研究了无噪声锁相环路的非线性理论问题,发表了相干通信原理的论文。最初的锁相环都是利用分立元件搭建的,由于技术和成本方面的原因,所以当时只是用于航天、航空等军事和精密测量等领域。集成电路技术出现后,直到1965年左右,随着半导体技术的发展,第一块锁相环芯片出现之后【3】,锁相环才作为一个低成本的多功能组件开始大量应用各种领域。最初的锁相环是纯模拟的(APLL),所有的模块都由模拟电路组成,它大多由四象限模拟乘法器来构建环路中的鉴相器,环路滤波器为低通滤波器(由电阻R电容C组成),压控振荡器的结构多种多样。由于APLL在稳定工作时,各模块都可以认为是线性工作的,所以也称为线性锁相环LPLL(Linear Phase.hckedbop)。APLL对正弦特性信号的相位跟踪非常好,它的环路特性主要由鉴相器的特性决

模拟锁相环实验报告

实验十四模拟锁相环实验 一、实验目的 1、了解用锁相环构成的调频波解调原理。 2、学习用集成锁相环构成的锁相解调电路。 二、实验容 1、掌握锁相环锁相原理。 2、掌握同步带和捕捉带的测量。 三、实验仪器 1、1号模块1块 2、6号模块1块 3、5号模块1块 4、双踪示波器1台 四、锁相环的构成及工作原理 1、锁相环路的基本组成 锁相环由三部分组成,如图14-1所示,它由相位比较器PD、低通滤波器LF、压控振荡器VCO三个部分组成一个闭合环路,输入信号为V i(t),输出信号为V0(t),反馈至输入端。下面逐一说明基本部件的作用。 图14-1 锁相环组成框图 一、压控振荡器(VCO) VCO是本控制系统的控制对象,被控参数通常是其振荡频率,控制信号为加在VCO上的电压,故称为压控振荡器,也就是一个电压-频率变换器,实际上还有一种电流-频率变换器,但习惯上仍称为压控振荡器。 二、鉴相器(PD)

PD 是一个相位比较装置,用来检测输出信号V 0(t)与输入信号V i (t)之间的相位差θe (t),并把θe (t)转化为电压V d (t)输出,V d (t)称为误差电压,通常V d (t)作为一直流分量或一低频交流量。 三、环路滤波器(LF ) LF 作为一低通滤波电路,其作用是滤除因PD 的非线性而在V d (t)中产生的无用的组合频率分量及干扰,产生一个只反映θe (t)大小的控制信号V e (t)。 按照反馈控制原理,如果由于某种原因使VCO 的频率发生变化使得与输入频率不相等,这必将使V 0(t)与V i (t)的相位差θe (t)发生变化,该相位差经过PD 转换成误差电压V d (t),此误差电压经LF 滤波后得到V c (t),由V c (t)去改变VCO 的振荡频率使趋近于输入信号的频率,最后达到相等。环路达到最后的这种状态就称为锁定状态,当然由于控制信号正比于相位差,即 )()(t t V e d θ∝ 因此在锁定状态,θe (t)不可能为零,换言之在锁定状态V 0(t)与V i (t)仍存在相位差。 2、 锁相环锁相原理 锁相环是一种以消除频率误差为目的的反馈控制电路,它的基本原理是利用相位误差电压去消除频率误差,所以当电路达到平衡状态后,虽然有剩余相位误差存在,但频率误差可以降低到零,从而实现无频差的频率跟踪和相位跟踪。 当调频信号没有频偏时,若压控振荡器的频率与外来载波信号频率有差异时,通过相位比较器输出一个误差电压。这个误差电压的频率较低,经过低通滤波器滤去所含的高频成份,再去控制压控振荡器,使振荡频率趋近于外来载波信号频率,于是误差越来越小,直至压控振荡频率和外来信号一样,压控振荡器的频率被锁定在与外来信号相同的频率上,环路处于锁定状态。 当调频信号有频偏时,和原来稳定在载波中心频率上的压控振荡器相位比较的结果,相位比较器输出一个误差电压,如图14-2,以使压控振荡器向外来信号的频率靠近。由于压控振荡器始终想要和外来信号的频率锁定,为达到锁定的条件,相位比较器和低通滤波器向压控振荡器输出的误差电压必须随外来信号的载波频率偏移的变化而变化。也就是说这个误差控制信号就是一个随调制信号频率而变化的解调信号,即实现了鉴频。

相关主题
文本预览
相关文档 最新文档