煤制氢装置工艺说明书

  • 格式:doc
  • 大小:206.00 KB
  • 文档页数:26

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X X X X X X有限公司培训教材煤制氢装置工艺说明书

二○一○年九月

第一章概述

1 设计原则

1.1 本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm3/h工业氢气。

1.2 本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。

1.3 认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。

1.4 采用DCS集散型控制系统。

2 装置概况及特点

2.1装置概况

本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附VPSA脱碳和(PSA)提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。

本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。

2.2装置组成

原料煤储运→造气→气柜→水煤气脱硫→水煤气压缩→全低温变换→变换气脱硫→变压吸附脱碳→变压吸附提氢

2.3生产规模

制氢装置的生产规模为30000Nm3/h,其中0.6MPa产品氢7000 Nm3/h,1.3 MPa产品氢23000 Nm3/h。装置的操作弹性为30—110%,年生产时数为8000小时。

2.4物料平衡简图

本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。

煤造气气柜变换压缩脱硫VPSA 脱碳

VPSA 氢提纯余 热 回 收 系 统

动力站界外蒸汽管网硫回收

脱硫循环水造气循环水煤栈桥原料煤库

循环水站界外界外吹风气

粉煤

炉渣蒸汽VPSA 解析气

CO2气界外

界外外卖炉渣硫磺

硫泡沫

上水回水

0.6MPa 产品氢 1.3MPa 产品氢

变脱水煤气水煤气水煤气水煤气变脱气变换气P-63上水回水空气吹风气蒸汽

蒸汽

块煤

块煤蒸汽

飞灰烟气灰渣 注:以上所有虚线框内的单元均属于本装置的界区。

2.5装置特点:

本装置选用国内研制成功的新型催化剂和先进的工艺流程及设备,能有效的降低生产成本和能耗,提高了装置运转的可靠性。

2.5.1煤储运装置的特点

2.5.1.1贮煤方式:

本装置以干煤棚贮煤与露天堆场贮煤相结合,其中干煤棚可贮煤约5000吨,可供气化装置连续运行约10天,再考虑露天堆场的贮煤量,总贮煤量可供运行15天左右。同时干煤棚的半封闭结构有利于空气流通,其内部的倒运设备连续的运行操作均大大降低了煤堆自燃发生的可能性。

2.5.1.2运煤系统及筛分设备:

⑴输煤系统采用单路输送气化用煤;

⑵系统采用集中操作方式,同时在控制室显示。系统的主要设备之间采用联锁方式控制,逆流开车,顺流停车。也可切换为单机操作,在系统线路上设置判断故障保护装置。各调设备兼有就地手动开关,以便单机调试。

⑶在带式输送机沿线每隔40米安装一组有能复位的双向拉绳开关,置于带式输送机沿运行通道内侧的适当位置。当带式输送机出现故障时,操作人员可在带式输送机的任何部位拉动拉绳开关,切断电源使设备停车;此外当发出开车信号后,如现场不允许开车,也可以拉动拉绳开关,制止起动,避免发生设备和人身事故。

⑷运煤系统的带式输送机选用Y 系列三相异步电动机与DCY 型硬齿面圆锥圆柱减速机配合的驱动装置,优点为转动惯量大,强度高,且维修时更换零部件方便。

⑸煤的计量通过在带式输送机上安装的电子皮带秤来完成,便于正常生产时成本等技术经济指标的统计和核算。

⑹在煤栈桥中转站的筛分楼顶面设置了除尘系统,既改善了现场的操作环境,排放气质量也达到了环保要求。

2.5.2造气装置的特点

2.5.2.1造气炉炉型:

根据用气量、制氢成本等因素,本装置选择φ2.8米的固定床间歇煤气炉。9台炉子(8开1备)可满足生产30000Nm3/h氢气的要求。

2.5.2.2造气流程的选用:

制气工艺流程等同于一般煤化工企业造气流程,九台φ2800造气炉以四炉为一组,中间位置的5#炉可切换并入任何一个炉组。每个炉组共用一台风机、一台煤气显热回收器(热管式锅炉),水煤气经由显热回收器、煤气总管和洗气塔进入气柜;共三台空气鼓风机,可相互切换替用;共两组油泵站,每炉组配置一套;原料自煤库、筛分装置由输送带送到四楼,经输送带皮带秤计量后入各炉的料仓,由各炉的加煤机加入炉中;气柜采用容积一万方的三节钟罩式的湿式气柜,三节钟罩全升起时气柜静压约400mm 水柱。

为提高入炉蒸汽的分解率,降低蒸汽和煤消耗,所有入炉蒸汽均采用过热蒸汽,蒸汽的过热热源来自煤气本身的热量。

2.5.2.3造气三位一体DCS综合控制系统的应用

造气工序采用先进的三位一体DCS综合控制系统:

⑴采用“机电一体化自动加煤技术”,每天可减少因人工加煤造成的单炉停炉时间约60分钟,既增加了造气炉的有效制气时间又减少或避免了造气炉的显热损失,使造气生产的安全得到了保证;同时应用自动加煤后可使造气生产中每个循环减少纯吹风时间约3秒钟左右,这既能节煤,又能增加产气量。另外机电一体化自动加煤改人工集中大量加煤(1200kg左右)为每个循环下吹阶段少量加煤(每次75kg 左右),这样使煤燃烧更充分,灰渣的残炭量大幅下降,降低了煤耗。

⑵采用造气生产综合优化控制技术,实现煤造气生产过程的程序控制、阀位检测和报警连锁,实现自动加煤的炭层高度和加煤量控制,实现自动下灰及炉盘转速和下灰量的控制,实现吹风时间及上、下吹制气时间和入炉蒸汽流量及蒸汽分解率的优化控制,实现水夹套及汽包液位自动调节,实现鼓风机和油压系统的管理、报警和联锁,最终达到煤造气整个系统的稳产、高产、低耗和安全,确保了造气炉况的优化与稳定,降低了单位产品的煤耗,节能效果明显。

⑶采用完善可靠的油压控制系统,实现油压控制阀门的快速切换,延长了有效的制气时间,提高了单炉的产气量。

2.5.2.4加煤方式的选择

造气原料煤的输送采用皮带自动输送,上煤输送中转站设置筛分装置,确保造气用煤质量的同时,实现造气煤仓加煤的自动化。考虑到装置的连续稳定运行,同时设计了人工吊碳加煤装置,确保在自动化加煤装置出现故障时能实现制气过程的连续稳定。

2.5.2.5造气装置安全设施设计技术的综合利用

⑴造气装置最大的危险是系统中氧含量高。系统工作时处于正压状态,氧含量高的原因只能是制气工序阀门内漏窜气、罗茨机抽负、压缩机抽负。为了防止阀门内漏造成氧高,设计了油压安全联锁的吹风防过氧阀和下行防过氧阀,排除了因设备故障造成氧高的安全隐患。

⑵造气装置采用安全可靠、性能稳定的液压驱动阀门,主要液压阀都采用阀门阀位监测装置,同时油压系统采用油压和油位报警装置。

⑶造气除尘器各排灰口油压圆盘阀设计为手控油压阀控制,操作位置在一楼,防止出灰时因联络出错而发生误操作。