当前位置:文档之家› 离心泵的串并联讲义

离心泵的串并联讲义

离心泵的串并联讲义
离心泵的串并联讲义

离心泵的串并联实验讲义

、实验目的

1?了解离心泵结构与特性,学会离心泵的操作 2. 测量不同转速下离心泵的特性曲线。 3?测量离心泵串联时的压头和流量的关系。 4?测量离心泵并联时的压头和流量的关系。

二、实验原理

1?单台离心泵的特性曲线

离心泵的特性曲线是选择和使用离心泵的重要依据之一,

其特性曲线是在恒定转速下泵

的扬程H 、轴功率N 及效率n 与泵的流量 V 之间的关系曲线,它是流体在泵内流动规律的外 部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线, 只能依靠实验

测定。

1)扬程H 的测定与计算

在泵进、出口取截面列柏努利方程:

H

p

2 p i

g

Z 2乙

2

U 2 L 2

11 2g

式中:P 1,P 2――分别为泵进、出口的压强

N/m 2 P

-流体密度 kg/m 3 U 1,U 2 分别为泵进、出口的流量

m/s g

-重力加速度 m/s 当泵进、出口官径一样,且压力表和真空表安装在同

-高度,

上式简化为:

P 2 P i

g

由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

2)轴功率N 的测量与计算

轴的功率可按下式计算:

N 0.94?w

式中,N —泵的轴功率,W

w —电机输出功率,W

由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。

3)效率n 的计算

泵的效率n 是泵的有效功率

Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体自泵

得到的功,轴功率N 是单位时间内泵从电机得到的功, 两者差异反映了水力损失、容积损失

和机械损失的大小。

泵的有效功率Ne 可用下式计算:

Ne=HV p g 故 n =Ne/N=HV p g/N

4)离心泵性能参数的换算

泵的特性曲线是在指定转速下的数据, 就是说在某一特性曲线上的一切实验点, 其转速

都是相同的。但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变

化,多个实验点的转速将有所差异, 速下的数据。换算关系如下:

因此在绘制特性曲线之前, 须将实测数据换算为平均转 流量

V V —

扬程

H

H (n )2

n

n n o 轴功率

N

N(—)3 N

效率

V H g VH g

n

N N

2.离心泵在不同转速下的性能参数

打开变频开关,调节离心泵的转速, 在新转速条件下测定离心泵的特性曲线。

3?离心泵串并联的压头和流量的关系

在实际的工业生产过程中,往往单台泵无法满足流体输送任务, 此时需要采用离心泵的

串并联操作。

对于两台相同的离心泵进行串联操作时,由于每台泵的压头和流量均相同,因此在同 一流量下,两台串联的压头为单台泵的两倍。

因此根据单台离心泵特性曲线,

在保持横坐标

(Q )不变的情况下,使纵坐标(H )加倍,由此得到离心泵的串联特性曲线。

对于两台相同的离心泵进行并联操作时,在同一压头下,两台并联泵的流量等于单台 泵的两。因此根据单台离心泵特性曲线,在保持纵坐标( H )不变的情况下,使横坐标(Q )

加倍,由此得到离心泵的并联特性曲线。

三、实验装置与流程

离心泵性能特性曲线测定系统装置工艺控制流程图如图

2-1 :

图2-1离心泵实验装置流程示意图

图2-2流体力学综合实验装置仪表面板

1、空气开关

2、

3、4电源指示灯5、流量控制仪6、6路巡检仪(单位m3/ h):第一通道

测量离心泵进口压力(单位:kpa),第二通道测量离心泵出口压力(单位:kpa),第三通道测量离心泵转速(单位:r/ min)第四通道测量流体阻力压差(单位:pa)第五通道测量流

体温度(单位:摄氏度),第六通道没用,7、功率表(单位:KW)8、仪表电源指示灯、9、仪表电源开关,10、变频器电源指示灯,11、变频器电源开关,12、离心泵电源指示灯、13、离心泵直接或变频器运行转换开关,14、离心泵启动按钮,15、离心泵停止按钮。

四、实验步骤

1.灌泵

储水箱中出水到适当位置(大概三分之二处)关闭阀1、阀2、阀3、阀4、阀5、打开

离心泵出口排气阀和进口灌水阀,用水杯从灌水阀灌水,气体从排汽阀排出,直到排水阀有水排出并且没有气泡灌水完毕,关闭排气阀和灌水阀。

2?启动水泵

打开控制柜上1空气开关,打开9仪表电源开关,仪表指示灯10亮,仪表上电,显示被测数据。

3. 调节离心泵出口阀的开度,测量在不同的流量下离心泵进出口的压力值,功率表读数,作出离心泵的特性曲线。

4. 打开变频器开关,调节离心泵转速至2500rpm,测定离心泵在新转速下的离心泵特性

曲线。

5. 打开离心泵的串联阀门,将两台离心泵串联在一起,测定串联离心泵在不同流量下的

扬程。

6. 打开离心泵的并联阀门,将两台离心泵并联在一起,测定并联离心泵在不同流量下的扬程。

五、实验内容

1. 单台离心泵特性曲线

2. 离心泵串联时的扬程和流量关系图

3. 离心泵并联时的扬程和流量关系图

离心泵性能测定实验报告

离心泵性能测定 一、实验目的: 1、了解离心泵的构造与特性,掌握离心泵的操作方法; 2、测定并绘制离心泵在恒定转速下的特性曲线。 二、实验原理: 离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。 实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。 泵的扬程He有下式计算: 而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N 测定时,流量Q可用涡轮流量计或孔板流量计来计量。轴功率N可用马达-天平式测功器或功率来表测量。 离心泵的性能与其转速有关。其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。换算公式如下: 时, 三、装置与流程: 水由水箱1,经泵进口 阀2、离心泵4、出口阀8 9

涡轮流量计9,最后 流 10 8 6 回水 箱 7 3 5 4 2 1 四、操作步骤: 1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车 数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。 2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。在 操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。 3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功 率测定器示值。 数据取全后,先关闭泵出口阀,再停泵。 五、实验数据记录和数据处理:

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1. 2.1实验目的 1).了解离心泵结构与特性,学会离心泵的操作。 2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。 6).学会轴功率的两种测量方法:马达天平法和扭矩法。 7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。 8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。 1.2.2基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1 ) 流量V 的测定与计算 采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。 2) 扬程H 的测定与计算 在泵进、出口取截面列柏努利方程: g u u Z Z g p p H 22122121 2-+ -+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3 u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: g p p H ρ1 2-= (1—10) 由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。 本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。 3) 轴功率N 的测量与计算 轴功率可按下式计算: N=M ω=M 60 281.9602n PL n ππ.. = (1—11)

离心泵串并联在长输管道水试压施工中的作用

离心泵串并联在长输管道水试压施工中的作用 摘要:本文通过综合分析相同性能的离心泵串并联时所产生的不同的注水效果,结合不同试压段的地势情形,来选择离心泵的组合方式,以提高试压注水的工作效率。 abstract: through analysis on different injection effects of centrifugal pump series-parallel with the same property,the paper selects the combination forms of centrifugal pump according to terrain situations of different pressure test section, so as to increase pressure test water injection efficiency. 关键词:长输管道;离心泵;串并联;试压施工 key words: long-distance pipeline;centrifugal pump;series-parallel;pressure test construction 中图分类号:u175 文献标识码:a 文章编号:1006-4311(2013)13-0062-02 0 引言 长输管道工程具有线路长、地貌复杂和高差不一的特点,在向管道中注水的过程中,通常采用设置多台上水泵串联或并联的工作方式来适应不同地势条件下管道中的注水速度和注水量[1]。 1 离心泵特性曲线及应用 在长输管道水试压施工中,离心泵是指叶轮出水的水流方向是径向流的水泵,是叶片式水泵的一种,液体质点在叶轮中流动时主要

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

泵的性能曲线测定实验汇总

离心泵的特性曲线的测定 2010-11-28 00:12:33| 分类:默认分类|字号订阅 实验四、离心泵的特性曲线的测定 一、实验目的: 1.掌握离心泵操作,了解离心泵的结构和性能; 2.测定离心泵在一定转速下的特性曲线的测定。 3.测定离心泵的管路特性曲线 4.了解离心泵的工作点与流量调节 二、实验原理: 1.离心泵的特性曲线 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论扬程与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-23的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,例如摩擦损失、环流损失等,因此,实际扬程比理论扬程小,且难以通过计算求得,因此通常采用实验方法,直接测定扬程、功率、效率与流量的关系,并将测得:H e~Q、N~Q和η~Q三条曲线称为离心泵的特性曲线。另外,根据此曲线可以得出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。 图2-23 离心泵的理论压头与实际压头 (1)泵的扬程He 在离心泵进出口管装设真空表和压力表的管截面列出柏努利方程式,(以单位重量液体为衡算标准)

则: (2-23) 由于两取压口紧靠离心泵进出口,因此直管段摩擦损失很小,其阻力损失归入离心泵的效率,故=0。 (2 -24)若离心泵进出口管径相同,则 u1=u2 上式可写成为: (2-25) (2-26) 式中:H压强表、H真空表——分别为压强表和真空表所测得的表压和真空度,以(m液柱)表示的数值。 h0——压强表和真空表中心之垂直距离。 (2)泵的轴功率N轴 离心泵从电机获得的实际功率(即单位时间内电机向离心泵输入的功)称离心泵的轴功率。 泵的轴功率和电机的电功率之间有如下的关系: N轴=N电·η电·η传(2-27)式中:N电——电动机的电功率,由功率表测得(KW); η电——电动机效率,取0.9; η传——传动效率,η传=1.0。 (3)泵的效率η 离心泵的有效功率Ne与轴功率之比称为效率。

化工原理实验报告_离心泵

离心泵特性曲线的测定 一、实验目的 1.学习离心泵的操作。 2.测定单级离心泵在固定转速下的特定曲线。 二、实验原理 离心泵的性能一般用三条特性曲线来表示,分别为H-Q 、N-Q 和-Q 曲线,本实验利用 如图1所示的实验装置进行测定工作。 泵的压头用下式计算 g u u h H H H 22 1 220-+++=真空表压力表 其中压力表H 及真空表H 分别表示离心泵出口压力表和进口真空表的读数换算成米液柱的数值,0h 表示进、出口管路两测压点间的垂直距离,可忽略不计,21u u =,故 真空表压力表H H H += g QH N e ρ=/(36001000) 效率%100?= N N e η, 式中:e N ——泵的有效功率,kW ; N ——电机的输入功率,由功率表测出,kW ; Q ——泵的流量,-13h m ?。

图1. 实验装置流程图 1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀 6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱 离心泵入口和出口管的规格为 1#~2#装置,入口内径为,出口内径为 3#~8#装置,入口内径为41mm,出口内径为48 三、实验步骤 1.打开充水阀向离心泵泵壳内充水。 2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。 3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。 4.调节出口阀,流量从最大到最小测取8次,再由最小到最大测取8次,记录各次实验数据,包括压力表读数、真空表读数、涡轮流量计的读数、功率表的读数。 5.测取实验用水的温度。 6.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。 注意事项:离心泵禁止在未冲满水的情况下空转。 四、数据处理与讨论 水温:℃,离心泵型号规格: 序流量泵入口压力(表压)泵出口压力(表压)电机功率扬程效率

离心泵特性曲线测定实验

离心泵特性曲线测定实验 一、实验目的 1. 了解离心泵的结构特性,掌握离心泵的操作方法; 2. 了解无纸记录仪及压力、流量等传感器的使用方法; 3. 测定离心泵在恒定转速下的运行特性,测定特性曲线。 二、实验装置与流程 实验装置如图1所示,由水箱、离心泵、涡轮流量计、电动调节阀、压力表、真空表、转速传感器、功率表和不锈钢进、出管道等组成。 1-底阀; 2-引水阀; 3-离心泵; 4-真空表前切断阀; 5-真空表; 6-负压传感器;7-压力表前切断阀; 8-压力表; 9-压力传感器; 10-温度传感器; 11-涡轮流量传感器;12-电动调节阀; 13-切断阀; 14-旁路阀; 15-转速表; 16-功率表 ; 17-水箱 图1 离心泵特性曲线测定实验装置流程示意图 水从水箱17经泵底阀1吸入,流过吸入管路到离心泵3,经离心泵增压后,流经涡轮流量计11、电动调节阀12返回水箱,循环使用。在泵的进、出口管线上分别装有真空表5、负压传感器6、压力表8和压力传感器9,在它们的进口管线上分别装有真空表前切断阀4和压力表前切断阀7。管路内流量由涡轮流量计11测量,并由出口电动调节阀12调节流量。 所用离心泵型号为 IT-6,涡轮流量传感器型号为LWGY-40,电动调节阀的开度和流量均 可在无纸记录仪上操作和读数。 三、原理和方法 在转速n 固定不变的情况下,离心泵的实际扬程H 、功率消耗N 及总效率 与泵送液 2 1 1

能力(即流量)Q 之间的关系以曲线表示,称为离心泵的特性曲线,它能反映出泵的运行性能,可作为选择离心泵的依据。 离心泵的特性曲线可用下列三个函数关系表示: H = f 1 (Q ) N = f 2 (Q ) η = f 3 (Q ) ( 1 ) 这些函数关系均可由实验测得,其测定方法如下: 1.流量Q (l/s ) 流体在管内的流量由涡轮流量计测量,并在无纸记录仪上读取。 Q= Q ’×1000/3600 (l/s ) 式中: Q ’—无纸记录仪上的泵流量读数, m 3/h 。 2.实际扬程H (mH 2O ) 在泵进、出口真空表及压力表处列柏努利方程可得: f H g u g p z H g u g p z +++=+++222 2222 111ρρ ( 2 ) 因两截面间的管长很短,通常可忽略阻力损失项H f ,则: g u u g p p z z H 2)(2 12 21212-+-+-=ρ ( 3 ) 式中: h 0 = z 2 - z 1,指真空表、压力表接口间垂直距离,本装置h 0=0.1m ; P 1 —由真空表读出的真空度(读数为负数),Pa ; P 2 —由压力表读出的压力,Pa ; ρ —流体(水)的密度,可近似取 ρ=1000 kg/m 3 g —重力加速度,g = 9.807m/s 2 。 u 1 —泵进口处液体流速,m/s ;本装置进口处内径d 1=0.040m ; 112 4 3600'd Q u ?? = π u 2 —泵出口处液体流速,m/s ;本装置出口处内径d 2=0.031m 。 222 4 3600'd Q u ?? = π 3.轴功率N (W ) 传电电ηη??=N N ( 4 ) 式中: N 电 —电动机的输入功率,由功率表测得,W ; η电 —与电动机的输入功率N 电相对应的电机效率,根据电动机的输入功率N 电的大小, 查实验室提供的电机效率曲线图可得到; η传 —传动效率,本装置为联轴节传动,故η传 =1 。 4.总效率η

离心泵性能测定实验

离心泵性能测定实验

离心泵性能测定实验 一、实验目的: 1、 了解离心泵的构造,掌握其操作和调节方法; 2、 测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围; 3、 测量管路特性曲线及双泵并联时特性曲线; 4、 了解工作点的含义及确定方法; 5、 测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。 二、基本原理: 1、离心泵特性曲线测定 离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。 在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。泵的扬程可由进、出口间的能量衡算求得: He = H 压力表 + H 真空表 + H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H 0为两测压口间的垂直距离,H 0= 0.3m 。 N 轴 = N 电机?η电机?η传动 [ kw ] 其中:η电机—电机效率,取0.9; η传动—传动装置的效率,取1.0; 102 ρ ??=He Q N [ kw ] 因此,泵的总效率为: 轴 N Ne = η 2、孔板流量计孔流系数的测定 孔板流量计孔板孔径处的流速u 0可以简化为: u 0=C 0(2gh )1/2 根据u 0和S 0,即可算出流体的体积流量Vs 为: Vs=u 0S 0=C 0S 0(2gh )1/2 或: Vs= C 0S 0(2△p/ρ)1/2 式中Vs ——流体的体积流量,m 3/s ; △ p ——孔板压差,Pa ; S 0——孔口面积,m 2; ρ——流体的密度,kg/m 3; C 0——孔流系数。

离心泵特性曲线实验报告

化工原理实验报告 实验名称:离心泵特性曲线实验报告:克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、 实验目的 1. 了解离心泵的结构与特征,熟悉离心泵的使用。 2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作围。 3. 熟悉孔板流量计的构造与性能以及安装方法。 4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。 5. 测量管路特性曲线。 二、 基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵流动规律的宏观表现形式。由于泵部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+ P 1ρg +U 12 2g +H=z 2+ P 2 ρg +U 22 2g +∑h f (1-1) 由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有 H=(z 1-z 2)+ p 1?p 2ρg =H 1+H 2(表值)+H 3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N 的测量与计算 N=N 电k(w) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间流体经过泵时所获得的实际功率,轴功率N 是单位时间泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: N e =HQ ρg (1-4) η= HQρg N ×100% (1-5)

离心泵性能实验

实验名称:离心泵性能试验 一、实验目的及任务: 1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.测定管路的特性曲线。 4.熟悉个孔板流量计的构造、性能和安装方法。 5.测定孔板流量计的孔流系数。 二、实验原理: 1. 离心泵特性曲线的测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系可以通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可不免的会产生阻力损失,如摩擦损失、环流损失等,实际压头小于理论压头,且难以计算。因此,通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q、η-Q三条曲线称为离心泵的特性曲线。根据曲线可以找到最佳操作范围,作为选择泵的依据。 (1)泵的扬程 由伯努利方程,泵的实际压头He如下: 其中,动能项相比于压头项数量级很小,可以忽略;损失项由于管路较短,损失较小,可以忽略,因此得到:

式中——泵出口处的压力,mH2O ——泵入口处的压力,mH2O ——出口压力表和入口压力表的垂直距离,m (2)泵的有效功率和效率 泵在运转过程中存在能量损失,因此泵的实际和流量较理论低,而输入功率又比理论值高,有泵的总效率: 轴 轴电电转 式中——泵的有效功率,kW ——流量,m3/s ——扬程,m ——流体密度,kg/ m3 N轴——泵轴输入离心泵的功率,kW N电——电机的输入功率,Kw η电——电机效率,取0.9 η转——传动装置的效率,取1.0 2. 孔板流量计孔流系书的测定 孔板流量计的结构如图1所示。

图1 孔板流量计构造原理 在水平管路上装有一块孔板,其两侧接测压管,分别与压力传感器的两端连接。孔板流量计是根据流通通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压差作为测量依据。若管路的直径为d 1,锐孔的直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体的密度为ρ,孔板前测压导管截面处与缩脉截面处的速度和压强分别为u 1、u 2和p 1、p 2,根据伯努利方程,不考虑能量损失可得: 或 由于缩脉的位置随流速的变化而变化,缩脉处的截面积S 2难以知道,而孔口的面积已知,且测压口的位置不变,因此可以用孔口处的u 0代替u 2,考虑流体因局部阻力造成的能量损失,用校正系数C 校正后,有: 对不可压缩流体,根据连续性方程有: 整理得: 令 ,则可简化为: u d d

离心泵串并联实验讲义

离心泵串并联实验讲义 一、 实验目的 1. 增进对离心泵并、串联运行工况及其特点的感性认识。 2. 绘制单泵的工作曲线和两泵并、串联总特性曲线。 二、 实验原理 在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。组合方式可以有串联和并联两种方式。下面讨论的内容限于多台性能相同的泵的组合操作。基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。 1. 泵的并联工作 当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式,如图所示。离心泵I 和泵II 并联后,在同一扬程(压头)下,其流量Q 并是这两台泵的流量之和,Q 并=Q I +Q Ⅱ。并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线()I H Q -和()II H Q -上的对应的流量相加,得到并联后的各相应合成流量Q 并,最后绘出()并H Q -曲线如图所示。图中两根虚线为两台泵各自的特性曲线()I H Q -和()II H Q -;实线为并联后的总特性曲线()并H Q -,根据以上所述,在()并H Q -曲线上任一点M ,其相应的流量Q M 是对应具有相同扬程的两台泵相应流量Q A 和Q B 之和,即Q M =Q A +Q B 。 图 泵的并联工作

图 两台性能曲线相同的泵的并联特性曲线 上面所述的是两台性能不同的泵的并联。在工程实际中,普遍遇到的情况是用同型号、同性能泵的并联,如图所示。()I H Q -和()II H Q -特性曲线相同,在图上彼此重合,并联后的总特性曲线为()并H Q -。本实验台就是两台相同性能的泵的并联。 进行教学实验时,可以分别测绘出单台泵I 和泵II 工作时的特性曲线()I H Q -和 ()II H Q -,把它们合成为两台泵并联的总性能曲线()并H Q -。再将两台泵并联运行,测出并 联工况下的某些实际工作点与总性能曲线上相应点相比较。 2. 泵的串联工作 当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式工作。离心泵串联后,通过每台泵的流量Q 是相同的,而合成压头是两台泵的压头之和。串联后的系统总特性曲线,是在同一流量下把两台泵对应扬程叠加起来就可得出泵串联的相应合成压头,从而可绘制出串联系统的总特性曲线()串H Q -如图所示。串联特性曲线()串H Q -上的任一点M 的压头H M ,为对应于相同流量Q M 的两台单泵I 和II 的压头H A 和H B 之和,即H M =H A + H B 。 教学实验时,可以分别测绘出单台泵泵I 和泵II 的特性曲线()I H Q -和()II H Q -,并将它们合成为两台泵串联的总性能曲线()串H Q -,再将两台泵串联运行,测出串联工况下的某些实际工作点与总性能曲线的相应点相比较。

离心泵性能测定实验报告doc

离心泵性能测定实验报告 篇一:离心泵性能测定实验报告 化工原理实验 实验题目: ——离心泵性能实验 姓名:沈延顺 同组人:覃成鹏 臧婉婷 王俊烨 实验时间:XX.11.21 一、实验题目:离心泵性能实验。 二、实验时间:XX.11.21 三、姓名:沈延顺 四、同组人:覃成鹏、臧婉婷、王俊烨 五、实验报告摘要: 通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。 六、实验目的及任务:

1、了解离心泵的构造,掌握其操作和调节方法。 2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 七、基本原理: 1、离心泵特性曲线的测定。 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。 由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。 图 (1)、泵的扬程He 式中: ——泵出口处的压力。 ——泵入口处的真空度。——压力表和真空表测压口

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 即:电N N 95.0= (4)

离心泵的串并联讲义

离心泵的串并联实验讲义 一、实验目的 1.了解离心泵结构与特性,学会离心泵的操作 2.测量不同转速下离心泵的特性曲线。 3.测量离心泵串联时的压头和流量的关系。 4.测量离心泵并联时的压头和流量的关系。 二、实验原理 1.单台离心泵的特性曲线 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1)扬程H 的测定与计算 在泵进、出口取截面列柏努利方程: g u u Z Z g p p H 221221212-+-+-=ρ 式中:p 1,p 2——分别为泵进、出口的压强 N/m 2 ρ——流体密度 kg/m 3 u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: g p p H ρ'1'2-= 由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。 2)轴功率N 的测量与计算 轴的功率可按下式计算: w N ?=94.0 式中,N —泵的轴功率,W w —电机输出功率,W

由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。 3)效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: Ne=HV ρg 故η=Ne/N=HV ρg/N 4)离心泵性能参数的换算 泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。换算关系如下: 流量 n n V V '=' 扬程 2)(n n H H '=' 轴功率 3)( n n N N '=' N 效率 ηρρη=='''='N g VH N g H V 2.离心泵在不同转速下的性能参数 打开变频开关,调节离心泵的转速,在新转速条件下测定离心泵的特性曲线。 3.离心泵串并联的压头和流量的关系 在实际的工业生产过程中,往往单台泵无法满足流体输送任务,此时需要采用离心泵的串并联操作。 对于两台相同的离心泵进行串联操作时,由于每台泵的压头和流量均相同,因此在同一流量下,两台串联的压头为单台泵的两倍。因此根据单台离心泵特性曲线,在保持横坐标(Q )不变的情况下,使纵坐标(H )加倍,由此得到离心泵的串联特性曲线。 对于两台相同的离心泵进行并联操作时,在同一压头下,两台并联泵的流量等于单台泵的两。因此根据单台离心泵特性曲线,在保持纵坐标(H )不变的情况下,使横坐标(Q )加倍,由此得到离心泵的并联特性曲线。

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

离心泵的串并联实验-

流体输送系统实训离心泵的串并联输送

班级: 学号: 姓名: 组成员: 指导老师: 一、实训目的: ①.熟悉工艺生产过程中离心泵的串并联工作流程、工作原理; ②.熟悉离心泵的工作原理; ③.了解离心泵串并联流量不同的原因。 二、实训装置:

高位槽、低位槽、离心泵A、离心泵B、流量计 三、实训操作流程 1、离心泵串联输送操作步骤 开机前准备 ①.打开高位槽罐顶进口阀、溢流阀及放空阀; ②.打开低位槽出口阀、溢流阀及放空阀; ③.检查并调整低位槽液位不低于25 cm(液位计的一半); ④.检查并调整高位槽液位不高于10 cm(若高于 10 cm,打开高位槽底阀和低位槽进口阀;当高位槽液位低于10 cm时,关闭高位槽底阀和低位槽进口阀); ⑤.选择一种流量计,全开计前阀和旁路阀; ⑥.打开A泵的泵前阀; ⑦.打开A泵、B泵的前真空表、后压力表;

⑧.打开A泵和B泵之间的串联阀。 开机 ①.启动A泵开关; ②.打开A泵的泵后阀; ③.启动B泵开关; ④.打开B泵的泵后阀; ⑤.调节流量计的旁路阀至流量为800 L/h; ⑥.等高位槽液位到达20 cm时,开始停机。 停机 ①.全开流量计的旁路阀,至主路上没有流量; ②.先关B泵泵后阀,再关B泵; ③.先关A泵泵后阀,再关A泵; ④.恢复其他阀门至初始状态(包括A、B泵前真空

表、后压力表,A、B泵之间的串联阀,A泵的泵前阀,流量计的计前阀和旁路阀); ⑤.关闭低位槽出后阀、溢流阀及放空阀; ⑥.关闭高位槽进口阀、溢流阀及放空阀。 2、离心泵并联输送操作步骤 开机前准备 ①.打开高位槽罐顶进口阀、溢流阀及放空阀; ②.打开低位槽出口阀、溢流阀及放空阀; ③.检查并调整低位槽液位不低于25 cm(液位计的一半); ④.检查并调整高位槽液位不高于10 cm(若高于 10 cm,打开高位槽底阀和低位槽进口阀;当高位槽液位低于10 cm时,关闭高位槽底阀和低位槽进口阀);

离心泵特性测定实验报告

离心泵特性测定实验报告 姓名:刘开宇 学号:1410400g08 班级:14食品2班 实验日期:2016.10.10 学校:湖北工业大学 实验成绩: 批改教师:

一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和 ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (W ) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 3.效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体经过泵时所获得的实际功,

离心泵实验

离心泵实验(第6组)——工程楼102&104 摘要 本实验以水为介质,使用IHG32-125型离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re大于某值时,C0为一定值,使用该孔板流量计时,应使其在C0为定值的条件下。 一、实验目的 1、熟悉离心泵的结构、性能铭牌及配套电机情况 2、了解孔板流量计的结构、使用及变频器的作用 3、了解计算机数据采集和控制系统 4、掌握最小二乘法回归管路特性方程、扬程方程中的参数A、B 5、学会选择、使用离心泵(由物性+泵特性+管路特性等决定) 二、实验内容 1、测定某一转速条件下的离心泵特性曲线 2、测定阀门处于某一开度条件下的管路特性曲线 3、测定孔板流量计的孔流系数C0随Re d变化关系 二、实验原理 1,离心泵特性曲线测定 由于流体流经泵时,不可避免的会遇到种种损失,产生能量损失和摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验直接测定其参数间的关系,并将测出的He—Q,N—Q,和η—Q三条曲线称为离心泵的特性曲线,根据此曲线也可求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程 He He = H压力表+ H真空表+ H0 H压力表——泵出口处的压力,mH2o;H真空表——泵入口处的真空度,mH2o;H0——压力表和真空表测压口之间的垂直距离,H0=0.85m (2)泵的有效功率和效率 由于泵在运转过程中存在能量损失,使泵的实际压头和流量较理论值低,而输入功率又比理论值高,所以泵的总效率为 η=N e N 轴 N e=QH 102 e Ne—泵的有效功率,Kw; Q—流量,m3/s; He—扬程,m;ρ—液体密度,kg/m3 由泵轴输入离心泵的功率为 N轴= N电*η电*η转 N电—电机的输入功率,Kw;η电—电机效率,取0.9;η—传动装置的传动效率;一般取1.0 2,孔板流量计孔流系数的测定 孔板流量计的构造原理如下图所示。

水泵的串联和并联

水泵的串联运行 有时一台水泵的扬程不够,更换一台扬程高一点的离心泵又没有合适的,这时可以用两台扬程较低的水泵串联起来工作,所谓两台水泵串联就是第一台水泵的出口接第二台水泵的入口,但不是随便两台泵都能串联工作的,兴崛供水设备水泵的串联运行必须具备以下条件: 1 两台泵的流量基本上相等,至少两台水泵的最大流量基本上相等。 2 后一台泵的强度应能承受两台泵的压力总和。 串联运行后的总扬程是两台泵扬程的总和,其流量还是一台泵的流量。串联对应把扬程低的那一台放在前面,扬程高的那一台放在后面,这样有利于泵对压力的承受,若串联的两台泵扬程都很高,后一台泵的强度不能承受两台泵的扬程总和时,可采取第一台泵将水送到一定高度后,再接第二台泵。 水泵的并联运行 水泵的并联运行就是一台泵的流量不够,或者输水管道流量变化很大时,可以用两台或几台泵的出水管合用一条输水管道,水泵并联运行也并不是随便几台泵都能并联工作的。水泵并联运行的条件是:并联运转的几台水泵的扬程基本上相等,并且扬程曲线是下降的,不然的话,扬程低的水泵不能发挥作用,甚至从扬程低的那台泵倒流。并联运行后,水泵的扬程不变,流量是几台并联泵流量的总和。 并联运行安装时,在汇合点前各台泵的管路阻力最好都一样,各台泵的出口均应安装一个闸阀,以便一台泵有故障时,其他泵还可以运行。 泵并联运行时,不但可以节省输水管用量,缩小占地面积,而且当一台泵有故障时,送水不中断,还可以用开泵的台数调节流量。

李白写的“举头望明月,低头思故乡”,看月亮,必须得抬头看,不然你看见的月只是水中月,而思故乡,必须得低头,看着脚下的土地,土地连结深情,传递的思念感应才会自然。可见,李白对抬头和低头,有看似经典的认识,只是李白的脖颈不听使唤,该低头时却抬头,该抬头时却低头,搞得李白一辈子光碰头,有时被摔的鼻青脸肿的,但这时的李白爱喝酒,喝了酒就疯疯癫癫的,于是,李白就借着痛感籍着癫意把一肚子的酒吐出来,成就了“君不见黄河之水天上来……”的诗句。 元萨都剌《北人冢上》诗:“低头下拜襟尽血,行路人情为惨切。”可见,古人从心里是不喜欢低头的,喜欢的是抬头。 记得我以前在学校操场里喜欢低头,体育老师说我是一个没有自信的学生,还说我是一个没有阳光心态的人。记得体育老师说过这样的一句话:“瓜子之所以长的粒粒饱满,那是因为向日葵始终抬头向着太阳。” 记得我第一次去应聘工作,应聘的工作人员看我低着头,直接就叫我回去了。 那我就抬起头吧,进家门的时候,由于我抬起头,我的头一下子就被碰出了血来,搞得我在家里好几天就不想出门的。 我走下坡的时候,依然是抬起头,这样显得自己有自信,冷不防,我一连向下栽了好几个跟斗,摔的我头破血流的。 我的头招谁惹谁了?干嘛都跟我的头过不去呢? 我究竟是该抬头做人还是该低头做人呢? 有人说走下坡路就必须低头,言下之意就是人走背时运的时候要低着头,就像罪犯低着头接受审判一样。那当年毛泽东同志遭到王明等人的排挤时干嘛就不低头呢?那当年红军第五次反围剿失败后被迫长征干嘛就不低头举起手来呢?那赵一曼和江姐被敌人抓去明知只有无尽的酷刑干嘛就不低头屈服呢?那当年的灾荒岁月里全中国人民饿的吃粗糠啃树皮干嘛就不低头消沉下去呢?那有人第九次高考依然名落孙山干嘛就不低头认命了呢?有人写文章写了一百篇写了一千零一夜依然是没有读者依然是没有一个读者看好时干嘛就不低头呢?李嘉诚当初做生意是做一次亏一次时干嘛就不低头呢?你、我、他经过了这么多的困苦折磨干嘛还要坚强的活下去呢?我们的人类和整个社会经常就处在风雨飘摇里干嘛还要坚定不移向前进呢? 人的一生,几乎有过半的时候是在走下坡路,低着头走下坡路确实是不摔跟斗,但低着头只能看见脚下的一方寸路,却看不见天上的太阳和高空的明月,特别是最容易忽视身边的风景。 有人说走上坡路低着头最好,言下之意就是人走好运的时候要低调要谦虚谨慎。确实低着头走上坡路由于身体前倾走起路来更有劲而且更能看清脚下的路,但太阳会照在低头者的脸上吗?天上的神仙们真的就喜欢这些整天低着头的人吗?你看,孙悟空低着头只能做弼马温,但孙悟空抬起头来就成了齐天大圣;你看,刘邦把头低着,低了48年,只能是个混混,但刘邦把头一抬起来,三五年之后就开创了汉朝;你看,朱元璋低着头只能做乞丐,因为抬起头来是讨不到饭的,但朱元璋后来把头索性抬起来,结果就建立了明朝;当年美国有核武器,而中国没有,但毛泽东领导的中国人民就是不低头,中国人民就是要把头抬起来,抬起头的中国人民没有多久也有了属于自己的核武器……

相关主题
文本预览
相关文档 最新文档