当前位置:文档之家› TD-SCDMA用户终端射频收发信机性能指标分析及测试

TD-SCDMA用户终端射频收发信机性能指标分析及测试

TD-SCDMA用户终端射频收发信机性能指标分析及测试
TD-SCDMA用户终端射频收发信机性能指标分析及测试

摘要:

射频收发信机是移动通信系统中的一个重要组成部分,射频收发信机性能对整个移动通信系统的性能有着重要的影响。本文基于第三代移动通信标准TD-SCDMA系统用户终端设备射频收发信机的研究开发,分析了TD-SCDMA用户终端射频收发信机的主要性能指标要求,并对射频收发信机主要指标的测试进行了论述。

1、引言:

在ITU最终确定的5种RTT(无线传输技术)建议中,TD-SCDMA是由中国标准化组织(CWTS)代表中国向ITU提交的。TD-SCDMA提案是在SCDMA无线本地环路(SCDMA-WLL)先进技术以及成功应用的基础上提出的。它采用时分双工(TDD)方式,运用了多项先进的技术,如:

智能天线(Smart Antenna)技术、多用户检测(Joint Detection)技术、同步码分多址(SCDMA)技术、软件无线电(Software Radio)技术等。

前不久,大唐电信中央研究院与重庆邮电学院联合成功开发了TD-SCDMA 试验系统用户终端设备。TD-SCDMA终端无线接口的相关特性指标与射频收发信机息息相关。本文介绍分析了TD-SCDMA系统用户终端收射频收发信机的主要性能指标,并对一些收发信机射频指标的测试进行了论述。

2、指标分析

下面结合TD-SCDMA相关标准文档,对TD-SCDMA用户终端收发信机的一些指标参数进行分析,并作为射频收发信机设计的重要依据。这里主要分析如下几个指标参数:

1.接收灵敏度;

2.邻道选择性(ACS)与干扰;

3.线性和动态范围。

接收灵敏度

接收灵敏度(P

sen)是TD-SCDMA终端射频收信机重要的指标参数,合理地确定接收灵敏度直接地决定了TD-SCDMA终端射频收发信机的性能及其可实现性。

接收灵敏度是指在确保误比特率(BER)不超过某一特定值的情况下,在用户终端天线端口测得的最小接收功率,这里BER通常取为0.001。

接收灵敏度表征着TD-SCDMA终端接收机接收能力的强弱。CDMA系统接收机的接收灵敏度可以用下式来表示:

邻道选择性(ACS)与干扰

TD-SCDMA终端在接收到有用信号的同时还会接收到邻道上的信号(视为干扰),为了能够正确地接收有用信号,射频收信机必须要对邻道干扰进行有效的抑制。射频收信机的这一特性可以用邻道选择性来衡量。

邻道选择性是指在相邻信道信号存在的情况下,接收机在其指定信道频率上接收有用信号的能力,该相邻信道信号的频率偏离指定信道中心频率一个特定的频率偏移量(1.6MHz)。

邻道选择性定义为接收机滤波器在指定信道频率上的衰减与在相邻信道频率上的衰减的比值。邻道选择性的强弱,直接影响着射频收信机的接收性能。邻道干扰主要是由射频收信机中的窄带滤波器抑制的,如中频声表面波滤波器、基带滤波器等。线性和动态范围

TD-SCDMA 终端采用QPSK调制方式,属于非恒定包络的调制方式。同时,为了支持高速率的数据传输,TD-SCDMA系统采用的是多码道的传输方式。因此,TD-SCDMA 终端收发的信号具有很高的峰值-平均功率比(高达12dB以上),为了使信号保持良好的线性特性,要求TD-SCDMA 终端射频收发信机具有很好的线性特性。

TD-SCDMA系统是一个CDMA系统,也就是一个自干扰系统。在基站端为了防止部分移动台因为信号电平太高而使其它移动台发送的信号不能被正确地接收,希望每个移动台发送的信号功率电平在到达基站时是相当的,即克服“远近

效应”的影响。同时,考虑到小区覆盖范围的要求,TD-SCDMA终端射频发信机的发射功率应该具有一定的动态范围(DR

RF_Tx)。

基于TD-SCDMA系统仿真的假设条件,可以确定终端射频发信机发射功率的动态范围DR

RF_Tx为:

DR

RF_Tx=P

Tx_max-MCL

BS-UE-P

sen_BS=80dB

其中:PTx_max表示终端的最大发射功率,为30dBm;

MCL

BS-UE表示终端和基站之间最小的耦合损耗,为60 dB;Psen_BS表示基站的接收灵敏度,为-110dBm/1.28MHz。

即:

TD-SCDMA终端射频发信机发射功率需要有80dB的动态范围。

3、指标测试

射频收发信机的整机测试包括射频收信机测试、射频发信机测试两大部分,射频收信机的测试,归纳起来主要包括以下几个方面:

接收灵敏度的测试、抗阻塞特性的测试、互调响应特

性的测试、接收机响应时延的测试、射频收信机动态范围的测试等;射频发信机的测试,归纳起来主要有如下几个方面:

关闭功率的测试、输出功率及线性特性的测试、发信机杂散特性的测试、发信机响应时延的测试、发信机动态范围的测试等。总的说来测试项目很多,这里重点介绍一些主要性能指标的测试。

收信机接收灵敏度的测试

接收灵敏度是射频收信机的一项重要指标。根据设计要求,在保证

BER≤0.001时,射频收信机接收灵敏度要求能够达到-108dBm。接收灵敏度测试的测试方法如下:

在完成对TD-SCDMA终端整机正确的设置(如跳线、通电等)以后,把向射频收信机输入的射频信号的功率电平P

RF-in设置为一个初始值(如-90dBm),借助物理层程序分析计算,求出信-噪比。如果信-噪比大于BER=0.001对应的E

b/n

0值,则通过PC机控制射频信号源,使输入信号的功率电平减小1dB或2dB,重复上述步骤,直到信-噪比开始小于。此时向射频收信机输入信号的功率电平P

RF-in即为射频收信机的接收灵敏度。

收信机邻道选择性(ACS)的测试

邻道选择性的好坏体现了射频收信机抑制邻道干扰能力的强弱。根据设计要求,当邻道干扰电平为-54dBm,在保证BER≤0.001时,射频收信机最小接收电平不得低于-91dBm。射频收信机邻道选择性测试的方法如下:

通过射频合路器向射频收信机输入TD-SCDMA射频通带信号和邻道调制干扰信号,邻道干扰信号与有用信号的中心频率相差1.6MHz,调制方式和有用信号的调制方式相同,功率电平P

AC为-54dBm。把射频有用信号的功率电平P

RF-in设置为一个初始值(如-80dBm),借助物理层程序分析计算,求出信-噪比。通过PC机的控制改变输入射频有用信号的功率电平P

RF-in,找到使BER开始小于0.001对应的输入信号的功率电平。

收发信机动态范围的测试

射频收信机的接收动态范围要求有80dB。对射频收信机动态范围的测试比较简单,通过PC机控制射频信号源,使输入射频收信机的功率电平P

RF-in从-25dBm到-108dBm之间变化,借助物理层程序分析计算,检验射频收信机的动态范围是否达到设计要求。射频发信机动态范围的测试与射频收信机动态范围的测试类似。

发信机关闭功率的测试

关闭功率是射频发信机的一项重要指标,它是指射频发信机在关断的情况下在天线口处测得的功率。一方面,关闭功率会通过天线辐射出去,对其它用户造成影响;另一方面,部分功率会耦合到本用户的射频收信机,对射频收信机造成影响。测试时将射频发信机关断,在天线口处测试其功率的大小。

发信机输出功率及线性特性的测试

输出功率及线性特性是射频发信机重要的指标。进行输出功率及线性特性的测试,可以借助频谱分析仪。在正确设置发送的射频信号相关参数(如带宽等)后即可测试其通带内功率和ACLR的大小。发信机杂散特性的测试

射频发信机杂散分量过大,不但对其它无线通信系统造成影响,而且也会影响本系统。射频发信机杂散特性的测试方法如下:

按照的要求设置测试带宽和相关的频段,借助频谱仪进行测试。

发信机响应时延的测试

射频发信机响应时延的测试与射频收信机响应时延的测试类似。由于发信机输出的是射频信号,不能够用一般的示波器来测量,可以用频谱分析仪来测量(设置频谱仪的带宽为零)。

4、总结

本文首先基于标准对TD-SCDMA用户终端射频收发信机主要性能指标进行了分析,由于TD-SCDMA系统是一个CDMA系统,因此这些指标表现出许多与GSM系统不同的地方。

然后本文对射频收发信机的指标测试作了介绍,由此读者可以更多了解TD-SCDMA标准本身及其用户终端设备射频收发信机设计中需要考虑的多种要求。

基于无线通信射频收发机系统的设计毕业设计

摘要:近年来,射频(RF)无线通信技术的迅速发展增加了人们对低电压高性能射频前端的需求,无线通讯系统中的关键模块-RFIC 成为当前的研究热点,如:蜂窝式个人通信与基站、无线接入系统、卫星通信、全球卫星定位系统、无线局域网等。经过三代移动通信的发展,通信系统发展成了支持多媒体的通信系统,系统的速度更快,误码率更低。射频收发机是通信系统的前端部分,负责信号的接收和发射部分,是无线通信系统中不可缺少的一部分,它决定了通信距离和影响着通信质量通信系统的发展也带动了射频收发机的发展。本论文探讨了收发机的基本结构,射频收发机的发展,然后介绍了射频收发机的一些关键指标,然后根据重要指标计算出射频系统的主要技术指标,最后仿真整个收发机的主要技术指标。 关键词:移动通信;射频收发机;系统指标 RF transceiver system design based on wireless communication In recent years,the rapid development of radio frequency (RF) wireless communication increase the RF front-end needs of low-voltage and high-performance.The key modules-RFIC of Wireless communication systems become research focus,such as cellular personal communications and base station, wireless access systems, Satellite Communications,GPS, wireless lan,etc. After the development of three generations of mobile communications, communications system developed into a multimedia communication system and the system has faster rate and lower BER. RFtransceiver which is front of the communication system is responsible for receiving and transmitting the signal part and that is an integral part the wireless communication system. RF transceiver determines the distance of communication and affects the communication s quality. The development of communication system has also led to thedevelopment of the RF transceiver. The paper discussed transceiver's basic structure and radio frequency transceiver's development and some key indicators. Then according to these important target, it has calculated the radio frequency system's major technique target. Finally it simulated entire transceiver's major technique target. Keywords: mobile communication RF transceiver system specifications 1引言 射频是指该频率的载波功率能通过天线发射出去(反之亦然),以交变的电磁场形式在自由空间以光速传播,碰到不同介质时传播速率发生变化,也会发生电磁波反射、折射、绕射、穿透等,引起各种损耗。在金属线传输时具有趋肤效应现象[1]。 该频率在各种无源和有源电路中R, L, C各参数反映出是分布参数。因此说所谓射频RF (Radio Frequency)是指频率较高,可用于发射无线电频率,一般常指几十到几百兆赫的频

收发信机试验方法

1.简述 专用高频收发信机一般为单频制。即发信和收信为同一频率信号,且能够自发自收。线路对端的收发信机与本侧收发信机型号、频率完全相同。因此,本侧的收发信机除能够自发自收外,也能够接收对端的信号。 发信部分包括:晶体振荡、前置放大、功率放大、输出滤波等收信部分包括:收信滤波、混频、变频、放大、检波、收信输出等 对于LFX—912型收发信机,测试项目不多,对于有些收发信机,则需要测试较多项目,如许昌继电器厂生产的SF—600型收发信机,还要测试收信带宽、混频变频输出等一些项目。现在只以LFX—912为例,叙述它的测试项目和方法。 2.测试项目和方法 发信输出电平测试: 收发信机的输出就是指高频信号的输出。输出信号的单位用“dB”或“dBm”即:电压电平或功率电平。收发信机高频信号输出端子为装置背面的“38”和“40”号端子。“38”为高频电缆的“芯”,“40”为高频电缆的“地(即屏蔽层)”。测试输出电平时,用选频电平表的“∞”档,测试档位要放的大些(防止撞表针),测试线加在“38”和“40”上,也可以将测试线插在装置前面的测试插孔上。如果没有接入通道,则要将收发信机背面的插头选择在“本机—负载”上。选频表频率选在收发信机的工作频率上。然后启动发信。读选频表的指针读数。所读的选频表读数为电压电平。 高频收发信机的输出阻抗为75Ω,因此,若要将所读的电压电平换算为功率电平,则应按下列公式换算: 式中:Pu:电压电平 Pg:功率电平 对于与RCS—901A组屏的LFX—912收发信机,在测试发信电平时(未接入通道,选择“本机—负载”),应短接发信机背面“10”和“12”端子,使发信机发信。 收信灵敏电平测试: 收信灵敏电平也称为收信启动电平。即能使收信回路正常工作的最小电平,称为收信启动电平。 正确的测试方法按下图接线:

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

通信系统建模与仿真课程设计

1 任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号, 发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高 斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps , 要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据 与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功 率谱进行估计。假设接收定时恢复是理想的。 2 基带系统的理论分析 2.1基带系统传输模型及工作原理 基带系统传输模型如图1所示。 发送滤波器 传送信道 接收滤波器 {an} n(t) 图1 基带系统传输模型 1)系统总的传输特性为(w)()()()H GT w C w GR w ,n (t )是信道中 的噪声。 2)基带系统的工作原理:信源是不经过调制解调的数字基带信号, 信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加

性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样 判决器进一步去噪恢复基带信号,从而完成基带信号的传输。 2.2 基带系统设计中的码间干扰及噪声干扰 码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基 带系统工作性能。 1)码间干扰及解决方案 a ) 码间干扰:由于基带信号受信道传输时延的影响,信号波形 将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。 b) 解决方案: ① 要求基带系统的传输函数H(ω)满足奈奎斯特第一准则: 2(),||i i H w Ts w Ts Ts ππ+ =≤∑ 不出现码间干扰的条件:当码元间隔T 的数字信号在某一理想低通 信道中传输时,若信号的传输速率位Rb=2fc (fc 为理想低通截止频 率),各码元的间隔T=1/2fc ,则此时在码元响应的最大值处将不 产生码间干扰。传输数字信号所要求的信道带宽应是该信号传输速 率的一半:BW=fc=Rb/2=1/2T ② 基带系统的系统函数H(ω)应具有升余弦滚降特性。 如图2所示:滚降系数:a=[(fc+fa)-fc]/fc

射频收发信机的校准(AGC,AFC,APC)

射频收发信机的校准 终端射频性能的优劣直接取决于射频收发信机的校准,这是生产测试中最重要的环节。 终端收发信机的校准包括对AGC(收信机自动增益控制电压)、AFC(自动频率控制电压)和APC(发信机自动增益控制电压)三个核心参数的校准;校准的过程包括对应测试、校验值计算(校验值调整)和校准后数值写入三个步骤。 1. AGC校准 射频收信机接收的信号具有很大的功率范围,通过AGC电压的调整,可以使采样前的基带信号幅度维持在一个恒定的范围。AGC电压的校准就是对控制电压和接收信号功率的对应关系进行测量,并将这种对应关系写入到存贮介质如E2 ROM。实际应用中,AGC的控制电压可能包括1~3级,分别表示为AGC1、A GC2、AGC3等,同时,AGC的校准可能还包括对低噪声放大器(LNA)开关的操作。 AGC的校准需要的测试仪器是射频信号源,该信号源能为被测终端提供较大功率范围的连续波(CW)或特定调制信号。 TD-SCDMA模式AGC校准操作步骤: 1. 通过物理层信控制命令使手机进入TD-SCDMA测试模式,打开TD-SCD MA接收机通道; 2. 根据AGC算法要求,通过信号源列表模式依次发射一组频率和功率组合 的下行TD-SCDMA RMC12.2k 调制信号; 3. 配合步骤2,通过芯片厂商提供的AGC参数读取指令读取AGC参数; 4. 计算调整AGC参数,通过芯片厂商提供的AGC参数写入指令将调整后 的AGC参数值写回E2ROM。 其它模式,如GSM,AGC校准的步骤与TD-SCDMA类似,所不同的是要求终端芯片厂商提供其它模式的物理层(L1)信令模拟软件和控制接口(并口、串口或USB口)。 2. AFC校准 AFC校准是调整振荡器的参考频率,是手机发射出的信号具有正确的载波频率。 校准的方法是设置手机在一系列特定的频率上发射信号,使用信号分析仪测试该信号的频率误差,然后计算AFC的补偿电压,并将调整后的AFC电压写入存贮介质如E2ROM。 TD-SCDMA模式AFC校准操作步骤: 1. 通过物理层控制命令使终端进入TD-SCDMA测试模式,打开TD-SCDM A发射机通道; 2. 通过物理层信令模拟指令设定手机发射信号的频率和功率;

基站射频收发信机指标分解

美信Maxim技术文档《基站收发信机设计》,以WCDMA为例进行讲解基站收发信机射频前端指标分解和设计。虽然文档以WCDMA为例进行讲解,但宽带收发信机射频前端原理基本一致,因此适用于LTE等其他制式的设计。以下为学习笔记和总结。 1.接收机 接收机主要射频指标包括Reference Sensitivity Level,Adjacent Channel Selectivity(ACS),Blocking(In-Band和Out-of-Band),Receiver Inter-modulation。其中带内blocking指标和ACS 分析类似,考量的都是工作带内信道外干扰信号对接收机影响的分析,因此Bolcking指标支队Out-of-band指标进行了讲解和说明。 1.1Reference Sensitivity Level 接收机的最小可接收电平(接收机灵敏度)= -174dBm/Hz + 10logBW + NF + Eb/N0 1.Eb/No由基带解调能力决定,与射频前端无关; 2.BW由无线系统协议标准定义; 3.-174dBm/Hz及总的热噪声; 因此针对某一无线系统设计,灵敏度指标的分解即根据协议灵敏度指标要求来设计接收机的噪声系数(Noise Figure)要求,以保证满足灵敏度指标允许的最大输入噪声(总噪声,包括输入热燥和引入的系统噪声) 上图说明如下: Step1:系统要求灵敏度指标为-121dBm/3.84MHz; Step2:Eb/No = 5dB ——不考虑编码增益允许的总输入噪声=-121dBm – 5dB = -126dBm Step3:12.2Kbps数据速率到3.84Mcps码片速率的扩频增益为:10*log(3.84M/12.2K) ≈25dB,考虑扩频增益后总的输入噪声要求为-101dBm; Step4:3.84MHz带内总的热噪声= -174dBm + 10log3.86MHz/1Hz = -108.1dBm 所以为满足灵敏度指标要求,系统接收机连续噪声系数需要≤-101dBm+108.1dBm

光纤收发器测试方案

北京瑞斯康达科技发展有限公司RC系列光纤收发器设备 测试方案建议书 日期:2005年 4 月 26日 北京瑞斯康达科技发展有限公司

RC系列光纤收发器测试报告 此测试报告是关于10/100M自适应收发器的性能、功能测试以及对网管软件平台的功能。其中RC513/514-FE-XX具有N*32kbps带宽可控,支持远端网管功能单纤收发器。测试分四部分。 一、常规性能测试 二、收发器与交换机、路由器配合实现交换机、路由器链路备份功能 三、带宽限制与FTP测试 四、结合网管功能的测试 一、常规性能测试 1、测试内容及目的 本测试方案的主要目的是测试10/100M自适应以太网光纤收发器的稳定性、灵活性及恶劣环境下的传输能力。 ◆稳定性测试:在标准传输环境及恶劣传输环境下系统运行的稳定性。实现 方式是在系统测试时,100Base-T 的RJ-45接口使用60米~100米长的标准五类双绞线,100Base-FX的光接口在光路上模拟15dB~20dB的衰减,在此环境下测试系统运行效果。 ◆灵活性测试:测试系统对各种不同应用环境及不同网络设备联接的互联能 力。实现方式是测试时将网络设备的端口模拟成100Mbps全双工、自适应等各种模式,在此环境下测试系统的运行效果。 ◆传输能力:测试系统的有效传输能力。实现方式是在光纤收发器两端设备上模拟80% 的双向数据流量,在此负载下测试系统的丢包率。 2、测试环境

测试设备连接图: 3、测试过程 固定流程: ?PC机A:向B最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机B:向A最大限度发出数量流量。使用Sinffer/Netxray中的Packets generate 工具,数据流间隔0ms,数据包大小1500Byte,连续发送。从仪表盘上统计每秒 钟综合数据流量。 ?PC机A:进入DOS环境,ping B的IP地址,64K字节,500次,统计丢包率。 ?PC机B:进入DOS环境,ping A的IP地址,64K字节,500次,统计丢包率。 ?填写测试记录表,如表1 1)、将PC机A的网卡配置为100Mbps,全双工;将PC机B的网卡配置为100Mbps,

Ethernet信 测试方法

Ethernet信号测试方法 一、Ethernet物理层测试 1、简介 在PC和数据通信等领域中,以太网的应用非常广泛。以太网的技术从1990年10Base-T标准推出以来,发展非常迅速,目前普及的是基于双绞线介质的10兆/百兆/千兆以太网,同时10G以太网的技术也逐渐开始应用。 为了保证不同以太网设备间的互通性,就需要按照规范要求进行响应得一致性测试。测试所依据的标准主要是IEEE802.3和ANSI X3.263- 1995中的相应章节。根据不同的信号速率和上升时间,要求的示波器和探头的带宽也不一样。对于10Base-T/100Base-Tx/1000Base-T的测试需要1GHz带宽。对于10G以太网的测试,由于其标准非常多,如10GBase-CX、10GBase-T、10GBase-S等,有的是电接口,有的是光接口,不同接口的信号速率也不一样。10GBase-CX、XAUI、10GBase-T的测试至少需要8G带宽的实时示波器,10GBase-S等光接口的测试,根据不同速率则需要相应带宽的采样示波器。 要进行一致性测试,首先要保证的是测量的重复性,由于以太网信号的摆幅不大,如1000Base-T的信号幅度只有670~820mv,XAUI信号最小摆幅只有200mv,如果测量仪器噪声比较大,就会造成比较大的测量误差。

2、10M/100M/1000M以太网测试方法 对于10M/100M/1000M以太网的信号测试,可以选择Agilent 9000系列示波器,也可以选择90000系列示波器。 要进行Ethernet信号的测试,只有示波器是不够的,为了方便地进行以太网信号的分析,还需要有测试夹具和测试软件。测试夹具的目的是把以太网信号引出,提供一个标准的测试接口以方便测试,测试夹具的型号是N5395B。下图是夹具的图示。 在N5395B测试夹具上划分了不同的区域,可以分别进行10Base-T/100Base-Tx/1000Base-T的测量。另外还有专门区域可以连接网络分析仪进行回波损耗的测量。夹具附带的短电缆可以连接夹具和被测件,附带的小板用于回波损耗的测量时进行网络仪校准。 IEEE802.3规定了很多以太网信号的参数,对于10Base-T/100Base-Tx/1000Base-T的电气参数,可以分别参考IEEE802.3规范的14、25和40节。如果不借助相应的软件,要完全手动进行这些参数的测量是一件非常烦琐和耗时耗力的工作,为了便于用户完成以太网信号的测量,Agilent在8000/90000系列的Infiniium系列示波器上都提供了以太网的一致性测试软件N5392A。 下图是N5392A 以太网一致性测试软件提供的测试项目。

收发信机概述

收发信机概述 一、概述 在当前航空通信突飞猛进的今天,从小型的驻留气球、无人机、歼击机到大型的专业飞机,装机的电子设备的种类和数量在成倍地增长,短波、超短波、L波段、卫星通信等各个频段的通信设备、多种导航设备、敌我识别设备、侦察设备等均在各类平台上装备,造成了各类平台拥挤不堪,为了解决其体积、重量、功耗等问题,不得不在航行速度和续航时间等方面做出牺牲,因此小型化、综合化势在必行。全机的综合化牵涉的方面较多,成本、技术等方面的因素目前还不可逾越,但小型化的技术已日趋成熟,表面贴装、厚/薄膜集成电路技术、大规模逻辑门阵列技术均可使设备在一定程度上小型化。本文讨论的是寻求另外的一种途径,即改变收发信机的一些传统结构,来实现信道的集成化。 二、接收机体系结构 用于航空通信的接收机,已逐步走向减小功耗、降低成本、提高集成度的道路。采用单片放大,利用数字信号处理技术来完成调频调幅信号的解调、扩频信号的解扩,这些措施可以大大减少接收机系统的尺寸、成本和功率。现在已发展到探索新的拓扑结构形式来进一步小型化。近年来出现的各种各样的接收机拓扑结构,每种都有其优点和缺点。 1.超外差体系 超外差体系结构自问世以来已被广泛采用,现在仍占据了绝对地位。图1所示为一个超短波超外差接收机双变频体系结构。 低噪声放大器(LNA)对微弱信号进行了放大,其噪声系数对整机的贡献最大,但它提供的增益可减小后级引入的噪声系数。之前的射频滤波器衰减了带外信号和镜像干扰。使用可变本振,全部频谱就被下变频到一个固定的中频。通过在下变频模块之前使用一个外部镜像干扰抑制滤波器,镜像干扰可以被大大削弱到一个可接受的水平。在下变频之后使用中频滤波器可以滤除带外的杂波及噪声,对于后面的各个模块就降低了动态范围要求。第二下变频通常是正交的,以使同相和正交(I&Q)信号的数字处理变得容易。 由于有多个变频级,DC补偿和泄漏问题基本不存在,但它是以较大的硬件成本来获得较好的性能。实现镜像干扰抑制、互调等均需要的外部高Q带通滤波器,这些滤波器大都采用晶体滤波器、陶瓷滤波器和声表面波滤波器,其价格昂贵,尺寸较大。由于在第一中频就实现良好的信道选择,所以一、二本地振荡器就要求有良好的相位噪声性能。但所有的这些外部信道的要求使得在单芯片上集成收发器变得很困难。

高频通道元件及收发信机的测试方法

高频通道元件 及收发信机的测试方法 湖南省电力公司试验研究院 继电保护所

高频通道元件及收发信机的测试方法 一、高频阻波器 1.试验接线 图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表 2.阻抗特性试验 按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB。选频表输入阻抗选择“∞”。从84(或60、70)kHZ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后按下式计算阻抗值。 阻抗计算公式: 2) 21(05.0)110 (R Z p p ×?=?要求:在84kHZ ~500kHZ 的范围内,阻抗值不小于570Ω(厂家出厂标准)。 补充知识: 1、如果是相相偶合的,那么一个通道需要两相线路用来载波,那么就要两相都装.如果是两通道合用三相(一般B 相公用),那么三相都要装。 2、如果是相地偶合,那么一个通道只需要一相线路用来载波,那么就只要一相安装. 3、有的地区为了频率分区,需要全阻塞,那么相关线路(甚至该线路没有高频保护)三相都要装,此时不需结合设备。 二、结合滤波器(常规试验做线路侧和电缆侧的) *工作衰耗的定义:

R ’ (a) (b) 工作衰耗为当负载阻抗R 与电源阻抗R S 相等并直接相连时,如图所示,负载 R 所获得的最大接收功率P max 与经过四端网络后负载R’上所获得功率P 2,取Pmax 与P 2之比常用对数的10倍称为工作衰耗,即: max 2 10lg W P b P = 对于四端口网络当看进去的输入阻抗与电源阻抗相等即匹配时,输入阻抗上获得的功率最大。 用电压表测量: 因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。因此结合滤波 器电缆侧输入端的功率为: 1 2112 14) 2( R U R U P M == 结合滤波器线路侧负载阻抗R2所得到的功率为: 22 2 U P R = 工作衰耗为:

电报收发信机电原理及设计实现

电报收发信机电原理及设计实现 工作原理:如图1所示,Q1与周围元件构成了典型的考毕兹振荡器并且一直保持振荡(故在接收时有1mW左右振荡信号泄漏),信号通过82pF电容直接耦合到Q2,在发射状态下(电键按下),Q2作为C类功放,放大后的信号经0.01uF电容耦合到π型低通滤波器,然后送天线发射;在接收状态下(电键放开),Q1与周围元件构成差拍振荡器(BFO),Q2被偏置在非线性区(可以这么想,三极管无非就是背对背接着的两个二极管嘛!),将天线接收的信号与BFO的信号进行混频,混频得到的音频信号经过0.1uF电容耦合送到LM386构成的音频功率放大器,放大后的音频信号在LM386的5脚经10uF电容隔直后送耳机。电键不但控制LM386电源的通断,也切换Q2的偏置,使之工作在不同的状态下。 图1 “皮鞋”200mW微功率等幅电报收发信机电原理图 元件选择 所有电感选择色环电感,其中L3在80米波段时使用2.2uH。C6和C7在80米波段时使用820pF。三极管Q1和Q2并没有严格的规定,放大倍数在100到200之间的硅NPN三极管都能正常使用,比如,9011,9013,9018,8050,2N2222A,2N3904等,推荐Q1和Q2都使用9013或都使用2N3904。晶体需是基频晶体,7.060M 和7.042M晶体在天线都有售。建议在电路板上晶体和L3、C6、C7处使用插座,以便切换波段或频率。如为了增大发射功率,可以使用12V电源,但需将C10 增加到100u左右。

调试方法 焊接结束应检查是否存在短路,若无,加上9V叠层电池,接上耳机,不要接天线,正常情况下应该听到微小的“沙沙”声,接上天线噪音增加或者可以听到一些信号,整机电流在10mA以下。若听到很大的啸叫声或电流过大,说明电路自激,解决办法是在“SPEAKER”两端接一个103瓷片电容,若无效,再在LM386电源滤波的10uF电容两端并接一个103瓷片电容,若仍无效,在9V电源输入端并接一个103瓷片电容。至此接收应基本正常。 图2 带1W 50欧姆假负载的高频功率表电路原理图 然后接上带假负载的高频功率表(图2给出了参考电路图),短接“KEY”两端,耳机中应迅速无声,高频功率表有一定输出。发射状态下整机电流为40-100mA。发射时在旁边0.5米处放一个短波/中波收音机,检查所有的接收频率范围,除了载频和倍频外,应听不到其它由“皮鞋”产生的信号。如有其它信号(特别是啸叫声),说明存在高频自激。割开Q1和Q2之间的电源线,用100uH电感和100欧姆电阻并联后再串联进去,可有效消除高频自激。附表给出了发射和接收状态下各主要元件的直流参考电压。 本电报发射机的基本指标 电源:7V-12V(推荐9V叠层电池) 电路板:56mm x 41 mm 天线:50欧姆,不平衡式,BNC/Q9接口 本振泄漏:约1mW(50欧姆假负载上) 频率范围:7.060-7.064MHz(7.060M晶体上串联50p微调电容) 接收: 电流:小于10mA(9V供电时) 耳机:低阻耳机(推荐SONY、aiwa等高灵敏Walkman耳机) 发射: 功率:约200mW 电流:约50mA(9V供电时) 杂散(谐波)抑制:-20dB 主观评价 接收灵敏度和选择性较差,容易受广播干扰(BCI)。频率稳定度好,听SSB信号可懂度高。电路底噪小。收发切换时开关声大,容易导致发错电码。

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

光纤收发器的测试方法

光纤收发器故障诊断方法 1.Power灯不亮 电源故障 2.Link灯不亮 故障可能有如下情况: (a) 检查光纤线路是否断路 (b) 检查光纤线路是否损耗过大,超过设备接收范围 (c)检查光纤接口是否连接正确,本地的TX 与远方的RX 连接,远方的TX 与本地的RX连接。 (d)检查光纤连接器是否完好插入设备接口,跳线类型是否与设备接口匹配,设备类型是否与光纤匹配,设备传输长度是否与距离匹配。 3.电路Link灯不亮 故障可能有如下情况: (a)检查网线是否断路 (b)检查连接类型是否匹配:网卡与路由器等设备使用交叉线,交换机,集线器等设备使用直通线。 (c)检查设备传输速率是否匹配 4.网络丢包严重:可能故障如下: (1)收发器的电端口与网络设备接口,或两端设备接口的双工模式不匹配。 (2)双绞线与RJ-45头有问题,进行检测 (3)光纤连接问题,跳线是否对准设备接口,尾纤与跳线及耦合器类型是否匹配等。 (4)光纤线路损耗是否超出设备接受灵敏度。 5.光纤收发器连接后两端不能通信 (1).光纤接反了,TX和RX所接光纤对调 (2).RJ45接口与外接设备连接不正确(注意直通与绞接)光纤接口(陶瓷插芯)不匹配,此故障主要体现在100M带光电互控功能的收发器上,如APC插芯的尾纤接到PC插芯的收发器上将不能正常通信,但接非光电互控收发器没有影响。 6.时通时断现象: (1).可能为光路衰减太大,此时可用光功率计测量接收端的光功率,如果在接收灵敏度范围附近,1~2dB范围之内可基本判断为光路故障 (2).可能为与收发器连接的交换机故障,此时把交换机换成PC,即两台收发器直接与PC连接,两端对PING,如未出现时通时断现象可基本判断为交换机

微功率电报收发信机设计毕业论文

微功率电报收发信机设计 毕业论文 目录 第一章引言 (1) 1.1 无线通信的概念 (1) 1.2 课题的研究背景及意义 (1) 1.2.1 无线电传输的发展历史 (1) 1.2.2 无线电的应用 (1) 1.2.2 无线通信中收发电路的研究意义 (2) 1.3 课题研究的主要容 (2) 第二章无线收发的基本组成及工作原理 (3) 2.1 通信系统的基本结构 (3) 2.1.1 通信系统的结构框图 (3) 2.1.2 无线通信系统的分类 (3) 2.2 无线收发电路的调制与解调 (3) 2.2.1 调制与解调的基本概念 (3) 2.2.2 幅度调制与解调 (4) 2.2.3 ASK的调制与解调 (6) 2.3 无线收发电路的基本组成 (9) 2.3.1 无线发射电路的基本结构及原理 (9) 2.3.2 无线接收电路的基本结构及原理 (9) 第三章基于DDS的微功率电报收发信机设计 (11) 3.1 无线收发电路总体设计 (11) 3.2 无线发射电路的设计 (12) 3.2.1 本振电路的设计 (12) 3.2.2 功率放大器的设计 (19) 3.2.3 滤波电路的设计 (22)

3.3 无线接收电路的设计 (25) 3.3.1 一般接收机的主要功能规格 (25) 3.3.2 混频电路的设计 (26) 3.3.3 音频放大电路设计 (27) 3.3.4 收发控制电路设计 (28) 第四章焊接调试 (30) 第五章总结 (34) 参考文献 (35) 致谢 (36) 附录A 硬件原理图、PCB图、实物图 (37) 附录B 源程序 (39) 第一章引言 1.1 无线通信的概念 无线通信就是利用无线收发电路发射和接收信号,主要用在人们日常生活中的信息的传播。无线收发电路可分为发射电路和接收电路,发射电路直接把信息转换成电磁波在空中传播;接收电路则是把接收到的电磁波再还原成人们所需要的信号[1]。 1.2 课题的研究背景及意义 1.2.1 无线电传输的发展历史 在人们的日常生活中,需要把自己有信息发送出去,然后在另一个地方接收到这个信息,我们称之为通信。通信的主要任务就是传输消息,一般含义就是发送者到接收者的消息传递,利用某种信号实现消息传送的系统称之为通信系统。人们最早的传递信息方式是在视线围来传播,例如用火炬、烽火、旗语等来传播

光纤收发器测试方法和流程

光缆普查仪测试方法和流程 光缆普查仪又称光缆识别仪,是根据光纤干涉原理,通过光的相干解调将光缆的敲击振动信号转换为可视信号和音频信号,准确查找和识别铺设于人井、隧道、管道和电杆架空等环境下的目标光缆。在查找光缆过程中,完全取代以往切割、弯折、冷冻等光缆识别方法,只要敲击光缆即可。产品应用领域:三大电信运营商、电力通信、广电、煤矿及部队等专网光缆的维护和检测,亦可用于无源状态下的生命救援,如矿难井下救援系统等。 光缆资源普查与标识对通信运营商或专用通信网相光缆线路资源的普查与标识工作 2、目标光缆的准确查找对错综复杂的布缆环境中,快速、方便的查找目标光缆,取代以往拉拽、切割、弯折、冷冻等传统光缆识别方法 3、矿井无源呼叫救援系统针对矿井在发生故障时因安全因素电源中断或电源被破坏,无法与外界获得联系。此系统可在发生危险时,井下人员,直接敲击光缆,救援人员即可获知生活与位置状态产品应用原理 RS系列光缆普查仪是一款利用马赫-泽德光学干涉的方法,通过光的相干解调将光缆的敲击振动信号转换为可视信号和音频信号。准确查找和识别铺设于人井、隧道、管道和电杆架空等环境下的目标光缆。图1 图1所示:光源①的输出接耦合器②的一个端口,分成的两束光。一束经长光纤③接耦合器④的一个端口;另一束直接接耦合器④的另一个端口。两束光经耦合器④合成一束光连接到被测光缆中的光纤⑤,光纤末端接光反射器⑥。反

射光沿光纤⑤到耦合器④分成两束光,一束经过长光纤③,与另一束在耦合器②处混合。由于两束光的传播路径不同形成干涉,干涉信号经光电检测器⑦转换为电信号,通过对此电信号的分析处理,可获得外界的信息。图2 图3 在稳定状态条件下,干涉模式不会改变(图2),探测器可以沿光纤发现同样强度的光。但是,如果光缆被扭曲,被敲打,导致轻微的改变激光束在光纤的传输途径,这将改变干涉模式的位置(图3),外界应力干扰(敲击),光的偏振和相位发生一定变化,以至这种光缆的物理变化产生压力从而使探测器检测到光强变化,仪表将这种变化解析为声音和图像信号输出。 1、首先看光纤收发器或光模块的指示灯和双绞线端口指示灯是否已亮 a、如收发器的光口(FX)指示灯不亮,请确定光纤链路是否交叉链接。光纤跳线一头是平行方式连接;另一头是交叉方式连接。 b、如A收发器的光口(FX)指示灯亮、B收发器的光口(FX)指示灯不亮,则故障在A收发器端:一种可能是:A收发器(TX)光发送口已坏,因为B收发器的光口(RX)接收不到光信号; 另一种可能是:A收发器(TX)光发送口的这条光纤链路有问题(光缆或光线跳线可能断了)。 c、双绞线(TP)指示灯不亮,请确定双绞线连线是否有错或连接有误?请用通断测试仪检测(不过有些收发器的双绞线指示灯须等光纤链路接通后才亮)。

通信电路实验 无线收发信机实验

通信电路实验报告 50MHz FM/FSK无线收、发信机实验 班级: 学号: 姓名: 日期:2014年6月12日

目录 1实验目的2 2实验预习2 2.1发射机 (2) 2.2接收机 (2) 3实验数据整理3 3.1发射机部分(正常工作电源电压5V (3) 3.1.1调试三倍频谐振回路 (3) 3.1.2测量输出功率(接50?假负载,无调制信号) (4) 3.1.3静态调制特性测试 (5) 3.2接收机部分(正常工作电源电压12V) (6) 3.2.1扫频仪测量10.7MHz陶瓷滤波器幅频特性曲线 (6) 3.2.2用逐点法测量第二中频455kHz陶瓷滤波器的幅频特性..7 3.2.3用逐点法调测鉴频特性曲线 (8) 3.2.4用频率计测量第二本振信号频率,记录该频率值 (10) 3.2.5开环VCO压控特性测量 (10) 3.2.6锁相频率合成器工作频率范围的测量 (11) 3.2.7双模前置分频器输出频率测量 (12) 3.2.8第一本振信号的频谱纯度测量 (12) 3.2.9调测接收机灵敏度 (13) 3.2.10测试接收机最大不失真解调范围 (14) 3.2.11测试接收机输入端选频匹配网络的镜像频率干扰抑制性能14 3.3收、发联机实验 (14) 3.3.1方波传输 (14) 3.3.2方波传输 (15) 3.3.3正弦信号传输 (15) 4思考题解答16 1

1实验目的 1.了解无线收、发信机的构成及其性能指标; 2.掌握个单元电路的工作原理和性能,弄清它们在系统中所处的地位与作 用; 3.了解二次变频超外差接收机的特点,掌握其工作原理; 4.了解射频电路系统的工作特点,学会正确使用仪器调测无线收、发信机性 能的方法 2实验预习 2.1发射机 发射机原理框图如下所示 图1:发射机原理框图 发射机通常由高频振荡器、调制器、上变频器、高频功率放大器、带通滤波器等模块组成。其任务是完成基带信号对载波的调制,将其变换为占有一定频带的已调信号,并通过上变频将已调信号的频谱搬移到所需的发射频段上,再由功率放大器将已调信号放大到一定的功率水平,然后经天线发射出去。对于调幅发射机,要求只改变载波频率,而不改变已调信号的频谱结构,一般采用上变频器实现。 2.2接收机 发射机原理框图如下所示 图2:接收机原理框图 2

CSTDMA制式AIS基带收发信机的设计

CSTDMA制式AIS基带收发信机的设计 近年来,随着航运设备的智能化发展,为了提高航运安全性,防止船舶碰撞,越来越多移动船台采用AIS(Automatic identification System船舶自动身份识别系统)实现船台与船台之间的通信。AIS分为A类和B类两种标准,A类采用SOTDMA(Self—Organized Time Division Multiple Address自组织时分复用技术)方式进行通讯,而B类设备又有两种制式的通信方式,除了与A类相同的SOTDMA之外,还可用CSTDMA(Carrier-sense time division multiple access载波侦听时分复用技术)方式实现通讯。本文涉及的是B类CSTDMA制式标准,在介绍AIS相关技术基础上,分析AIS基带收发信机功能需求,采用高频电子技术完成基带调制解调电路的硬件设计,采用嵌入式系统和多任务控制技术进行软件设计,并对完成的AIS设备进行功能性测试,测试结果表明本系统完成设计要求。本文的主要工作与创新点:(1)采用基带调制解调芯片CMX7042结合嵌入式系统解决方案,重点 实现数据通讯中的调制和解调功能;(2)提出并完成射频功率检测电路设计,实现同时检测发射和反射功率值,不仅为发射功率的自动调 整和通道的切换提供依据,而且能够对收发电路的工作情况进行实时监测;(3)采用PWM修正技术改进传统的时隙处理方法,达到正确利用GPS的UTC同步AIS数据流的时隙,使时隙同步功能更加稳定、可靠; (4)采用实际测试和数学归纳的方法,改进了22号报文频道切换技术的处理方法,提高了系统的执行效率。

基于无线通信射频收发机系统的设计

基于无线通信射频收发机系统的设计 李夏 11720925 靳立兴 11720929 2011年11月20号 摘要:近年来,射频(RF)无线通信技术的迅速发展增加了人们对低电压高性能射频前端的需求,无线通讯系统中的关键模块-RFIC 成为当前的研究热点,如:蜂窝式个人通信与基站、无线接入系统、卫星通信、全球卫星定位系统、无线局域网等。经过三代移动通信的发展,通信系统发展成了支持多媒体的通信系统,系统的速度更快,误码率更低。射频收发机是通信系统的前端部分,负责信号的接收和发射部分,是无线通信系统中不可缺少的一部分,它决定了通信距离和影响着通信质量通信系统的发展也带动了射频收发机的发展。本论文探讨了收发机的基本结构,射频收发机的发展,然后介绍了射频收发机的一些关键指标,然后根据重要指标计算出射频系统的主要技术指标,最后仿真整个收发机的主要技术指标。 关键词:移动通信;射频收发机;系统指标 RF transceiver system design based on wireless communication In recent years,the rapid development of radio frequency (RF) wireless communication increase the RF front-end needs of low-voltage and high-performance.The key modules-RFIC of Wireless communication systems become research focus,such as cellular personal communications and base station, wireless access systems, Satellite Communications,GPS, wireless lan,etc. After the development of three generations of mobile communications, communications system developed into a multimedia communication system and the system has faster rate and lower BER. RFtransceiver which is front of the communication system is responsible for receiving and transmitting the signal part and that is an integral part the wireless communication system. RF transceiver determines the distance of communication and affects the communication s quality. The development of communication system has also led to thedevelopment of the RF transceiver. The paper discussed transceiver's basic structure and radio frequency transceiver's development and some key indicators. Then according to these important target, it has calculated the radio frequency system's major technique target. Finally it simulated entire transceiver's major technique target. Keywords: mobile communication RF transceiver system specifications

相关主题
文本预览
相关文档 最新文档