当前位置:文档之家› 基于物联网技术水资源环境监测仿真研究

基于物联网技术水资源环境监测仿真研究

基于物联网技术水资源环境监测仿真研究
基于物联网技术水资源环境监测仿真研究

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要

环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

地表水环境监测方案

地表水水质监测方案 ——广州大学内水质监测一、监测目的 (1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。 (2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。 (3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。 (4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。 二、基础资料的收集 本次监测选取了校园网主场至生化实验楼区域水域进行监测。根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下: 1.地形地貌 广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。小岛总体地形是东北高、西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,

有着树枝状般的水系。 2.气象 广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。 3.水文 广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。潮汐周期为半个月,即15天。每年的1~3月份平均潮位较低,6~9月份较高。各月均值之间差值一般只有0.2米左右,变化较小。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人

基于物联网的生态环境监测

1 、生态环境监测的定义 对于生态环境监测,许多人有不同的理解。全球环境监测系统将其定义为是一种综合技术,可相对便宜地收集大范围内生命支持系统能力的数据。前苏联学者曾提出,生态监测是生物圈的综合监测。美国环保局把生态监测定义为自然生态系统的变化及其原因的监测。国内有学者提出“生态监测就是运用可比的方法,在时间和空间上对特定区域范围内生态系统或生态系统组合体的类型、结构和功能及其组合要素等进行系统地测定和观察的过程,监测的结果则用于评价和预测人类活动对生态系统的影响,为合理利用资源、改善生态环境和自然保护提供决策依据”,这一定义从方法原理、目的、手段、意义等方面作了较全面的阐述。 2 、生态监测的对象 生态环境监测已不再是单纯的对环境质量的现状调查,它是以监测生态系统条变化对环境压力的反映及趋势,侧重于宏观的、大区域的生态破坏问题。生态监测的对象包括农田、森林、草原、荒漠、湿地、湖泊、海洋、气象、物候、动植物等,每一类型的生态系统都具有多样性,不仅包括了环境要素变化的指标和生物资源变化的指标,同时还要包括人类活动变化的指标。另外根据《生态环境状况评价技术规范》的生态环境质量指标:生物丰度指数、植被覆盖指数、水网密度指数、土地退化指数和环境质量指数,提出了生态监测的因子。 3 生态监测的类型

根据生态监测2个基本的空间尺度,可将其划分为宏观生态监测和微观生态监测两大类。 (1)宏观生态监测。是在大区域范围内对各类生态系统的组合方式、镶嵌特征、动态变化和空间分布格局及其在人类活动影响下的变化等进行监测。主要利用遥感技术、地理信息系统和生态制图技术等进行监测。 (2)微观生态监测。其监测对象的地域等级最大可包括由几个生态系统组成的景观生态区,最小也应代表单一的生态类型。它是对某一特定生态系统或生态系统集合体的结构和功能特征及其在人类活动影响下的变化进行监测。 宏观生态监测起主导作用,且以微观生态监测为基础,二者既相互独立,又相辅相成。 4 、生态监测的特点 生态监测是一个综合性的工作,牵涉到多学科的交叉,它包含了农、林、牧、副、渔、工等各个生产领域。又是一个长期性的复杂性的工作,因为生态系统的发展是十分缓慢的复杂变化过程,受污染物质的排放、资源的开发利用,还有自然因素等的影响,长期监测才能揭示其变化规律。其还具有分散性,生态监测站点的选取往往相隔较远,监测网的分散性很大。同时由于生态过程的缓慢性,生态监测的时间跨度也很大,所以通常采取周期性的间断监测。 生态监测系统性强。生态监测本身是对系统状态的总体变化

地表水环境质量现状监测

地表水环境质量现状监测方案 广州中科检测技术服务有限公司 一、地表水环境质量现状监测 1、监测断面设置 在该项目污水纳污河道A河设置5个监测断面,分别为该项目污水排口A与B河交叉处、排污口、排口下游1000米、排口下游2000米、排口与C河。 2、监测项目 监测项目为:水温、pH、SS、石油类、总磷、COD、BOD5、DO、NH3-N、硫化物、TN,共11项。 3、采样时间、频率及分析方法 监测分析方法按《地表水及污水监测技术规范》(HJ/T91- 2002)中有关规定进行。 二、地下水水质现状监测 1、监测点设置 布设3个监测点,厂区范围内一个点,及厂区附近两个点。 2、监测项目 地下水监测项目为:pH、高锰酸盐指数、氨氮、氯化物、硫酸盐、硝酸盐氮、亚硝酸盐氮、总大肠菌群、铅、铬、镉、汞、砷,共13项。 监测分析方法按《地表水及地下水监测技术规范》中有

关规定进行。 三、大气环境现状监测 1、监测点布设 拟建厂址上风向、下风向及保护目标区域布设4个测点,主要考虑评价区范围内的主要居民敏感点,在敏感点处要布点监测。 大气监测布点一览表 2、监测项目 监测项目为NO2(小时值和日均值)、SO2(小时值和日均值)、PM10(日均值)、氨气、非甲烷总烃、臭气浓度、乙二醇、环氧丙烷、环氧乙烷、三乙胺、甲苯、甲醇、二苯醚(小时值),同时记录风向、风速、气温、气压等气象参数。

3、监测频率及时间 小时浓度每天四次;日均浓度按国家标准和导则要求采样七天; 4、监测方法 污染物分析方法按《环境空气质量标准》(GB3095-1996)规定方法进行。 四、声环境质量现状监测 在场界四周布设4个监测点(厂界四周各一个),连续监测两天,昼夜各一次。测量方法按《声环境质量标准》(GB/3096-2008)进行。 五、土壤环境质量现状监测 监测布点:在场界内及周边共布设2个监测点; 监测因子:pH、铜、铅、锌、铬、镍、汞、镉、砷; 监测频率:采样一次。 六、底泥环境质量现状监测 监测布点:在排口位置布设1个监测点; 监测因子:pH、铜、铅、锌、铬、镍、汞、镉、砷; 监测频率:采样一次。

基于物联网的环境监测实现研究

基于物联网的环境监测实现研究

摘要 近年来物联网(TheInternetofthings)的概念和技术逐渐成为研究的热点,被认为它是继计算机、互联网与移动通信网之后信息产业发展又一次浪潮,开发应用前景巨大。物联网是通信网络的延伸,它能够使我们的社会更加自动化,降低生产成本提高生产效率,借助通信网络随时获取远端的信息。而作为物联网技术基础的无线传感器网络是当前国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。本文研究了物联网技术在环境监测系统的应用,尤其是在严酷环境中对环境参数的检测和采集,对无线传感器网络的几种关键技术,如节点供电、自组织路由,以及和互联网的连接等进行了研究,给出了具体解决方案、硬件和软件路由设计等。 关键词:物联网、无线传感网、环境监测、ZigBee、TinyOs 目录 1 前言......................................................................................... 错误!未指定书签。2物联网与无线传感网............................................................. 错误!未指定书签。 1.1.环境监测典型应用................................................... 错误!未指定书签。 3 物联网环境监测系统设计..................................................... 错误!未指定书签。 3.1无线采集节点设计.................................................................. 错误!未指定书签。 3.1.1节点结构及功能设计........................................................... 错误!未指定书签。 3.1.2硬件设计............................................................................... 错误!未指定书签。 3.2节点路由协议实现................................................................. 错误!未指定书签。 3.3 无线网关设计 .............................................................. 错误!未指定书签。 3.3.1网关与上位机通讯协议....................................................... 错误!未指定书签。 3.3.2 网关路由协议实现............................................ 错误!未指定书签。 3.4上位机通信与数据分析处理.................................................. 错误!未指定书签。 3.4.1上位机通信软件结构........................................................... 错误!未指定书签。 4 结束语..................................................................................... 错误!未指定书签。1前言 近年来物联网的概念和技术被广泛关注,普遍认为它是继计算机、互联网与移动通信网之后的世界信息产业发展又一次浪潮,开发应用前景巨大。美国研

地表水水质监测的方案

地表水水质监测方案 一.明确监测目的 (1)对校园内教学区、生活区、实验区、食堂商业区、校园景观的用水及水质进行监测,掌握校园水质情况。 (2)进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各中指标与污染物的测定方法。 (3)学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。 二.基础资料的收集 广州大学图书馆至生化楼实验区域的水域进行监测,该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下: 1.地形地貌 广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带,地形总的特征是东北高,西南低。东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300m 一下,地形高差250m左右,坡度15°~35°,水系呈树枝状,切割强烈。西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7m,其中分布零星的残丘和苔地。 2.气象 广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,北部21.4℃,中部21.7℃,南部21.9℃。最热是7~8月,平均气温28.0℃~ 28.7℃,绝对最高气温是38.7℃。年平均降雨量172517mm,相对集中在4 ~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量160315mm。 3.水文 珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011Km2,占广州市区面积的10.8%。据黄埔潮汐站资料,珠江平均高潮水位位0.72m,平均低潮水位为-0.88m,涨潮最大朝差2.56m,落潮最大潮差3.00m。 4.监测河段概况 经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,宽约4.5m,水深约1.5m,流经生化实验楼和工程实验楼,水质受到这两次污染源的影响。监测河段在学校的位置示意图如下:

水资源监测要素

国家水资源监控能力建设项目标准 SZY 201-2012 水资源监测要素 Technical standard for water resources monitoring elements 2012-11发布 2012-11实施 国家水资源监控能力建设项目办公室 发 布

SZY 201-2012 目次 前言.......................................................................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 地表水水源地监测 (1) 3.1 监测对象 (1) 3.2 监测要素 (1) 3.3 监测要求 (2) 4 取用水监测 (3) 4.1 监测对象 (3) 4.2 监测要素 (3) 4.3 监测要求 (3) 5 地表水功能区监测 (4) 5.1 监测对象 (4) 5.2 监测要素 (4) 5.3 监测要求 (5) 6 行政区界断面监测 (5) 6.1 监测对象 (5) 6.2 监测要素 (5) 6.3 监测要求 (6) 7 地下水监测 (6) 7.1 监测对象 (6) 7.2 监测要素 (6) 7.3 监测要求 (7) 附录A (9) A.1 SL 219(《水环境监测规范》(2011年修编送审稿)) (9) A.2 GB/T 50138-2010(《水位观测标准》) (17) A.3 SL 365-2007(《水资源水量监测技术导则》) (20) A.4 GB 50179-1993(《河流流量测验规范》) (22) A.5 SL 183-2005(《地下水监测规范》) (23) I

基于物联网的环境监测系统设计

163 电子技术 1 引言 近几年来,我国不断投入大量的人力、物力和财力,加强环境保护的信息化建设,在环境监测监控系统、环境应急系统等硬件等软硬件建设方面做出了大量的探索和努力。现阶段我国的环境监测监控领域的发展并没有太大突破,尤其是环境监测监控系统的体系结构以及环境监控中的硬件设备等等,在当今物联网技术大发展的趋势下,随着环境监测监控新途径、新方法和新技术的发展,环境监测监控系统建设已经成为下一步环境监控的重要手段,把符合“物物相连”等要求的数据采集终端设备纳入环境监测监控物联网系统。数据采集终端设备之间通过相互协作,完成相关的环境监测业务。现有技术中存在多种类型环境要素接入时系统要求高、传输方式单一、数据采集可靠性低的问题。 2 系统介绍 基于物联网的环境监测系统设计 万 军1 ,张新婷2 (1.科盛环保科技股份有限公司,南京 211500;2.河海大学设计研究院有限公司,南京 210098) 摘 要:本文介绍了一种环境监测物联网系统,包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,解决了多种类型环境要素接入时系统要求高、传输方式单一、数据采集可靠性低的问题,具有多种类型环境要素可同时接入环境监测物联网系统、数据可靠、有利于判断数据的正确性、便于用户使用和升级、传输方式多样、适用于不同环境监测场合。关键词:物联网;环境监测;系统 DOI:10.16640/https://www.doczj.com/doc/f312137479.html,ki.37-1222/t.2017.12.147 图1 是环境监测物联网系统结构图 如图1所示,环境监测物联网系统包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,采集终端用于采集废气污染物的数据、采集废水污染物的数据、设备运行数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪,环保数采仪用于将接收的环保数据汇总后上传至经物联网上传至环境监测服务平台,环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端,环境监测服务器用于向用户提供环保数据。 环境监测物联网系统,包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端;采集终端用于采集废气污染物的数据、采集废水污染物的数据、采集锅炉负荷数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪;环保数采仪用于将接收的环保数据汇总后上传至经物联网上传至环境监测服务平台;环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端;环境监测服务器用于向用户提供环保数据。控制指令包括废气污染物控制指令、废水污染物控制指令、设备运行控制指令、室温控制指令、室内湿度 控制指令。环境监测物联网系统还包括网关,网关用于目的地址解析。 由于采用包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,采集终端用于采集废气污染物的数据、采集废水污染物的数据、采集锅炉负荷数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪,环保数采仪用于将接收的环保数据汇总后经物联网上传至环境监测服务平台,环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端,环境监测服务器用于向用户提供环保数据,网络拓扑结构合理,数据准确性高,便于用户使用和升级。 由于物联网用于采集终端和环境监测服务平台的数据传输,使得多种类型环境要素可同时接入环境监测物联网系统,由于物联网利用局部网络或互联网等通信技术把传感器、控制器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络,物联网是互联网的延伸,它包括互联网及互联网上所有的资源,兼容互联网所有的应用,但物联网中所有的元素(所有的设备、资源及通信等)都是个性化和私有化。 3 小结 (1)采用物联网用于采集终端和环境监测服务平台的数据传输,使得多种类型环境要素可同时接入环境监测物联网系统。 (2)由于采用了废气连续在线监测仪、锅炉运行负荷采集装置、废水在线监测仪、温度传感器、湿度传感器等多种采集终端接入的技术手段,多种环保数据的采集为环境监测服务平台的数据分析提供了更可靠的依据。 (3)上传采集终端自身的工作状态包括废气连续监测仪自身的工作状态和废水在线监测仪自身的工作状态,使得用户能及时发现设备存在的问题,有利于判断数据的正确性以及系统的维护。 (4)采用包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,采集终端用于采集废气污染物的数据、采集废水污染物的数据、采集锅炉负荷数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪,环保数采仪用于将接收的环保数据汇总后上传至经物联网上传至环境监测服务平台,环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端,环境监测服务器用于向用户提供环保数据,网络拓扑结构合理,数据准确性高,便于用户使用和升级。 (5)采用环保数采仪的技术手段,由于环保数采仪允许多种协议输入,统一格式输出,解决了传输方式单一的难题。从整体上说,本系统布局合理,连接简单,适用于不同环境监测场合。 作者简介:万军(1982-),男,江苏南京人,本科,中级,研究方向:电气自动化。

机场,楼宇,工业园区环境监测物联网系统

lora环境监测物联网系统 解 决 方 案

一、系统背景 人们越来越重视环境问题,为此创羿兴晟研发了多款lora产品,例lora控制终端CY-LRB-102、lora检测终端CY-LRB-101、lora控制终端CY-LRW-102、lora检测终端CY-LRW-101等产品型号,还有多款产品正在研发中,通过lora窄带物联网技术实现对场所内环境,包括pm2.5、CO2含量、光照、粉尘颗粒物浓度、环境温度气压等的监测,打造lora环境监测物联网系统,通过对环境的监测实现对环境状态的提前预警,实现从被动承受到主动防御的转变。 一台lora控制终端可连接16-32个环境传感器。Lora远距离通信,大大减少了中继的成本。本系统可应用于机场、车站、工业园区、居民区、学校等各种需要监测实时环境状态的场景,实现对环境的实时监控和提前预警。 二、系统组成及总体设计 lora环境监测物联网系统由各种环境传感器、lora控制终端CY-LRB-102、lora检测终端CY-LRB-101、DDC设备及云数据管理平台等几个部分组成。 系统总体网络拓扑结构如图1所示,主要包括环境数据管理中心、lora控制终端CY-LRB-102、lora监测终端CY-LRB-101以及DDC 设备,该系统lora控制终端CY-LRB-102与各类传感器以有线一对多方式相连,采集传感器的模拟量数据;lora控制终端CY-LRB-102与lora监测终端CY-LRB-101采用lora无线一对一的通信方式,传输传

感器的模拟量数据;lora监测终端CY-LRB-101与DDC设备以有线多对一方式相连,将环境信息发送给DDC设备,并将数据上传到环境数据管理中心。 lora控制终端CY-LRB-102向下与传感器根据modbus通信规约通过RS485方式连接,向上借助lora网络的超长距离无线通信能力与lora监测终端CY-LRB-101通信;lora监测终端CY-LRB-101向上与DDC设备根据baet通信规约通过RS485方式连接,将采集的环境数据通过DDC设备传回环境数据管理中心。lora控制终端CY-LRB-102与lora监测终端CY-LRB-101内都有modbus/baet通信规约机制,可根据需要转换通信机制。若遇障碍物严重遮挡,导致lora控制终端CY-LRB-102与lora监测终端CY-LRB-101不能正常通信时,可增加中继节点以使采集的数据传输至Lora监测终端CY-LRB-101。 环境数据管理中心通过对采集数据的分析处理,智能分析每个接入传感器的状态,并转换成有价值的信息,供授权用户访问使用。由此可见,该系统可实现上电即用、网络简单、数据上传、数据下发、抗干扰等功能,实现环境数据的采集与管理。该系统不仅为环境数据管理中心提供查询和管理的便捷,还能提供智能决策,帮助管理中心提高服务水平。

基于物联网的智能化环境监测系统研究平台.doc

基于物联网的智能化环境监测系统研究平台 摘要:本文通过对重点污染源排放状态的自动监控,及时、准确、全面地反映环境质量现状及趋势,为环境管理、污染源控制、环境规划、环境评价提供客观的科学依据,采用了计算机、通讯和自动化领域最新的产品和技术,从而构建新一代的污染源在线自动监测(监控)系统。 关键词:物联网;环境;检测(监控);平台 哥本哈根气候峰会在2009年12月举行,许多国家希望达成一份具有约束力的二氧化碳减排协议。与此同时,各国都陆续将物联网的建设上升到国家战略的层面,旨在通过物联网的应用实现节能减排,成就低碳经济。物联网作为低碳经济革命的技术创新之一,是要在能源流的整个过程中提高能源生产率和降低二氧化碳的排放。低碳经济社会的特点是要建立能源互联网,使得不同形式、不同时空的能源可以得到聪明的使用。这既可以大幅度地减少能源消耗和二氧化碳排放,同时又可以大幅度地提高人们的生活质量和便利性。 1 系统总体设计 1.1 异构自组织无线传感器网络 拟采用三层架构:底层节点包括信息采集设备等;中间层由车载设备节点或多跳转发设备构成;上层由位置固定的网关节点组成。 1.2 平面型环境监测气体传感器 气体传感器:一是提高灵敏度和工作性能,降低功耗和成本,缩小尺

寸,简化电路,与应用整机相结合,这也是气体传感器一直追求的目标。二是增强可靠性,实现元件和应用电路集成化,多功能化,发展MEMS技术,发展现场适用的变送器和智能型传感器。 1.3 环境与气象监测信息处理中心及通讯终端 监控中心采用标准的B/S系统架构,同时采用通用的软、硬件产品,并规范数据存储格式,使系统具有兼容性强、规模易扩展的特性。定制移动终端采用CPU+DSP核的硬件架构,可以实现高速的数据处理能力。丰富的外部接口和高亮度大屏幕,坚实的外壳能很好满足特殊要求。终端采用VISION公司的VISION225+TI公司的OMAP5910构成的硬件平台。 2 系统技术难点分析 基于物联网的智能化环境监测系统主要研究的内容是异构自组织无线传感器网络与平面型环境监测气体传感器。 2.1 异构自组织无线传感器网络系统架构 信息采集节点:由传感模块和数据处理传输模块组成,能够自组织成无线网络的节点。传输距离50-100米,功耗休眠期10mW,工作时间100mW,传输距离可扩展为500米,接口包括模拟4-20MA和RS485接口。车载节点和多跳转发节点:是具有较强数据收集能力的中心节点,把传感节点汇集来的数据进行接收和处理,传输距离500-1000米,功耗随传输距离变化。网关节点:把车载节点和多跳转发节点通过Internet转发给中央控制系统,具有无线接入网络和宽带接入网络功能。终端设备:是由能够上网的PC、PDA或智能手机构成,实现远程浏览。中央控制管理:通过节点收集的各类信息最终汇总到中央控制系统,自主设计开发的中央控制系统

环境监测中地表水监测现状及进展

环境监测中地表水监测现状及进展 发表时间:2016-12-28T14:29:16.303Z 来源:《基层建设》2016年29期作者:刘基华[导读] 摘要:随着我国经济的快速发展以及科学技术水平的不断进步,包括工业在内的很多产业都得到了快速的发展。 南通化学环境监测站有限公司江苏省南通市 226000 摘要:随着我国经济的快速发展以及科学技术水平的不断进步,包括工业在内的很多产业都得到了快速的发展。虽然推动了经济和人民生活水平的发展,但是也给我国的环境带来了严重的污染,其中地表水资源的状况正在逐日恶化。对地表水环境进行监测,可以为制定预防污染方案提供参考依据,有助于制定水质监测标准。文章分析了环境检测中地表水监测的现状及进展,提出推进地表水监测发展的有 效策略。 关键词:地表水监测;现状;进展;对策 1.前言 随着经济和科学技术的快速发展,我国的工业水平也得到了很大的提高。在工业发展的同时,环境污染问题也随之而来,其中地表水的污染情况正在逐日加重,地表水环境质量与人们的实际生活及生产有着密切的联系,如不对地表水的污染情况进行有效改善,必将严重影响着人们的健康水平。在水资源管理中,水环境监测是其重要组成部分,通过监测水环境的污染物,评估其中的污染原因,以便为防止污染提供技术支持。由于我国目前的地表水环境的污染越来越严重,所以在这个背景下必须加大监测任务,完善监测技术,加强对地表水的监测力度,为保护水资源以及预防水污染提供有力保障。 2.地表水监测的内容及意义 不同时期的地表水监测内容也不同,每一个月的1号到10号是我国地表水监测的主要时间,不同的监测对象应该运用不同的监测方法。比如监测河流时,其pH值、COD、氨氮、汞含量、铅含量、石油类及水温等是监测河流的主要内容,而监测水库、湖泊时,要在监测河流内容的基础上再对水位、透明度、总磷及总氮等进行监测[1]。 地表水监测的意义主要有两大点:第一,加强提高地表水监测的技术,能有效完善我国的环境监测体系,在我国环境监测中,地表水监测是其一项重要内容,积极探究地表水监测存在的问题并对其改进,有效提升监测技术和水平,从而促进和完善我国环境监测体系的发展;第二,对地表水进行监测,可以在一定程度上减少水体污染,加大民众的用水安全,在我们的工作生活中,水是必不可少的,如果水体遭受到污染,将会严重影响到人们的工作和生活,甚至会导致多种疾病的发生,我国是一个以发展工业带动经济增长的发展中国家,环境因此遭到了极大的污染,水体污染成为了一个比较严重的问题,另外,伴随着人们生活水平的提高,居民对于水资源的需求逐渐加大,而污水处理厂的数量根本满足不了人们的需求,所以,监测我国的地表水可以有利于减少水体污染,保障人们的用水安全。 3.环境监测中地表水监测的现状 3.1监测的技术与设备有待改进 我国现有的监测技术和设备,与发达国家相比,明显是处于相对落后的地位,所应用的技术和设备不够先进,在充分应用现代化监测技术这个方面存在着一定的不足和缺陷,使得对一些地表水污染物的类型以及污染情况的把握不够精准,因此,在监测的技术与设备这个方面还有待改进。 3.2地表水社会监测从业人员队伍不足且专业化程度不高 自从我国重视环境监测以来,也伴随着许多专业技术人才投身进入地表水监测行业当中,江苏省甚至全国范围内放开监测市场,让更多的社会环境机构参与到环境监测这项长期的战斗当中,通过不同途径的培训和交流,逐渐形成了一个系统的社会环保保护网,为日益加重的地表水污染状况做出自己的一份力量,然而目前我国现在的监测队伍明显不足,且队伍人员由于缺乏实践等原因,个人的能力与专业水平还是存在有一定的偏差,专业化程度还有待逐步提高。 3.3水环境监测分析方法不完善导致的处理能力较低 最近几年,我国一些社会环境监测机构存在着许多环境监测质量的问题,原因大都是因为社会监测机构的从业人员对水环境监测方法的认知程度不够导致监测分析数据不合理,严重影响了监测分析数据的可靠性,大大减少了地表水环境监测的质量,在很大程度上浪费了人力和财力[2]。目前,我国还没有对水体中的所有污染因子制定分析方法,只能借助不同行业的分析方法,从而达不到环境管理的要求。另外,地表水环境的工作量在不断的增加着,我国的监测能力以及信息处理能力处于较低的水平,不利于提升监测数据的针对性和有效性。 4.完善和推进地表水环境监测水平质量的措施 4.1加大资金投入,引进先进设施设备 结合实际地表水监测的情况,不管是技术还是设备,都与发达国家相差甚远,我们应该正视这种差距,加大投入资金,引进先进的设施设备,提高地表水监测的科学技术水平,使用先进地表水自动监测设施设备监测污量,做到手动监测和自动监测相结合,更精准的监测污染物种以及污染程度,提高监测质量和效果。同时,先进的设施设备还可以针对不同的水域采用不同的检查方法,大大提高了监测的准确性和工作效率。 4.2加大对监测人员的培训,提高专业化程度 建立健全管理制度,提高监测队伍的整体素质,加大对监测人员的培训工作,提高其专业化程度。对工作人员的有效培训与提升环境监测行业有着密切的联系,不管是从理念上还是从实际上都应该加强对监测人员的培训。可以通过开展定期的教育培训、制定竞争上岗制度、引入高校专业人才实施有效交流等等方式来实现对监测人员的培训,提高专业化程度。 4.3提高数据准确度,增强信息处理能力 对地表水监测的过程和环节,应进行严格的监督和控制,加强质控环节,进行地表水采集和分析的工作时,要科学分析待测物质,对一些影响监测效果的成分并采取处理措施,及时排除干扰因素,将已排除干扰因素的待测物品浓缩到仪器的监测范围内,增强分析的精准度。做好采样以及对样品的运输和保存等工作,对地表水采集样品时,应选取没有被污染的水资源,科学进行分析[3]。加大监测的信息化投入,提高监测的信息化水平,加大程度满足监测任务的需求,提高检测数据的准确度,增强信息处理能力。 5.结束语

水资源环境遥感监测

贵州大学环境监测学题目:水资源环境遥感监测姓名:颜兴奎

2011年12月12日 水资源环境遥感监测 前言 水资源是人类赖以生存和社会发展不可替代的战略资源。随着人口的急剧增加、社会经济的迅速发展,以资源匮乏和污染为主要特征的水资源安全日益成为全球性问题,亦是我国生态环境改善和社会可持深发展的主要制约因素。如何建立有效的方法,科学、准确、快速地对水资源环境进行监测,适时掌握水资源环境的变化信息,进而采取相应的措施,已成为对水资源的有效利用、合理规划及保护的关键问题。 一、水污染的现状 中国是一个水资源短缺、水灾害频繁的国家,水资源总量居世界第六位,人均占有量只有2500立方米,约为世界人均水量的1/4,在世界排第110位,已被联合国列为13个贫水国家之一。中国有82%的人饮用浅井和江河水,其中水质污染严惩细菌超过卫生标准的占75%,受到有机物污染的饮用水人口约1.6亿。据最新资料透露,目前中国主要大城市只有23%的居民饮用水符合卫生标准,小城镇和农

村饮用水合格率更低。多年来,中国水资源质量不断下降,水环境持续恶化,由于污染所导致的缺水和事故不断发生,不仅使工厂停产、农业减产甚至绝收,而且造成了不良的社会影响和较大的经济损失,严重地威胁了社会的可持续发展,威胁了人类的生存。所以,我们必须采取相应措施处理水污染,而有效的水环境监测技术就显得很有必要,因而将遥感技术运用到水环境监测中,产生了一门新技术——水环境遥感监测技术。 二、“3S”技术 “3S”是指遥感技术(RS)、地理信息系统(GIS)、全球定位系统(GPS)三种空间信息技术的简称。 一、遥感是一种以非直接接触方法对远距离目标性质进行探测的技术。遥感技术系统由遥感平台、传感器、遥感介质、数据处理和应用五部分组成。 二、地理信息系统是一个具有多种功能的计算机软、硬件系统,是一个具有空间数据的采集、储存、检索、分析和可视化的数据库管理系统。 三、全球定位系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。其由GPS卫星星座、地面监控系统和GPS信号接收机三部分组成。 二、水环境遥感监测技术 一、遥感监测的机理 水污染遥感监测的主要机理是被污染水体具有独特的有别于清

HJKJ2014060015 基于物联网的水环境监测及分析系统

基于物联网的水环境监测及分析系统 梁艳,俞旭东,谢凯 (南京南瑞集团公司,江苏南京211106) [摘要]:基于物联网的水环境监测及分析系统集传感器、测控、通信、计算机应用、地理信息系统等技术为一体,实现了“测得准、传得快、说得清、管得好”的总体目标,可为水环境管理、水功能区管理、污染物减排和总量控制提供科学依据。系统可方便接入其他业务系统,实现资源共享,提高环保部门环境监察、管理能力,增强应对突发性污染事故快速反应能力,满足环境监测和环境管理的业务需求。 关键词:物联网;水环境监测;水环境分析 0引言 随着环保产业的发展及物联网概念的兴起,将物联网与环境监测融合已成为环境监测与管理新的发展趋势[1]。环境参数、设备状态、视频监控等信息通过具有定位功能的传感器、智能监测分析仪器等感知设备进行采集后,经由网络设备和通道实时传输至信息平台进行存储和分析,实现环境管理部门对水环境信息的实时监控,同时实现其对监测站点测控、数据传输装置及排污口闸门等设备进行远程控制和工况监测,增加系统运行的稳定性和可靠性,有效防止和应对突发性环境污染事故的发生。物联网技术在环境监测中的应用使得环境监测与管理更加便利和准确[2-3]。 传统的水环境监测以实验室监测为主,还包括便携式仪器现场人工取样检测和固定监测站点连续取样监测[4],各方式分别具有其优缺点。如实验室监测响应时间长,检测频次有限,但监测参数全面且分析结果精确;自动在线监测投资运行成本高,但监测及时,预警能力强等。物联网将3种监测手段结合起来,充分利用传感器技术、射频技术、无线通信技术等,快速有效获取大范围(甚至是整个水域)水质信息并对这些信息进行综合挖掘利用,作出整体有效的评价[5-6]。水质信息的快速准确获取以及数据的高效利用是水环境监测中物联网技术运用的关键。 水环境监测及分析系统在物联网先进感知技术的基础上,充分利用网络技术、数据库技术、GIS技术、Web发布技术,以智能传感器为基础,结合自由组网传输方式将采集数据传输至环境业务数据中心。系统对业务应用进行扩展,其业务应用模块依据水质规范,对监测项目各种动态数据进行综合性地分析和评价,实现有效的监控预警;并且根据内置的各种水质模型,为污染物总量控制、水功能区环境治理提供科学依据及技术支持,提高环境管理部门监察监管能力,增强其应对突发性污染事故快速反应能力,实现环境监测管理“测得准、传得快、说得清和管得好”的总体目标。

根据物联网的环境监测实现研究

-` 基于物联网的环境监测实现研究 戴礼森

摘要 近年来物联网(The Internet of things)的概念和技术逐渐成为研究的热点,被认为它是继计算机、互联网与移动通信网之后信息产业发展又一次浪潮,开发应用前景巨大。物联网是通信网络的延伸,它能够使我们的社会更加自动化,降低生产成本提高生产效率,借助通信网络随时获取远端的信息。而作为物联网技术基础的无线传感器网络是当前国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。本文研究了物联网技术在环境监测系统的应用,尤其是在严酷环境中对环境参数的检测和采集,对无线传感器网络的几种关键技术,如节点供电、自组织路由,以及和互联网的连接等进行了研究,给出了具体解决方案、硬件和软件路由设计等。 关键词:物联网、无线传感网、环境监测、ZigBee、TinyOs

目录 1 前言 (3) 2物联网与无线传感网 (5) 1.1.环境监测典型应用 (5) 3 物联网环境监测系统设计 (7) 3.1无线采集节点设计 (7) 3.1.1节点结构及功能设计 (7) 3.1.2 硬件设计 (10) 3.2 节点路由协议实现 (12) 3.3 无线网关设计 (16) 3.3.1网关与上位机通讯协议 (17) 3.3.2 网关路由协议实现 (21) 3.4 上位机通信与数据分析处理 (23) 3.4.1 上位机通信软件结构 (23) 4 结束语 (27) 1前言 近年来物联网的概念和技术被广泛关注,普遍认为它是继计算机、互联网与移动通信网之后的世界信息产业发展又一次浪潮,开发应用前景巨大。美国研究机构Forrester预测,物联网所带来的产业价值要比互联网大30倍,将形成下一个万亿元级别的通信业务。 所谓物联网是指通过信息传感设备,按约定的协议实现人与人、人与物、物与物全面互联的网络,其主要特征是通过射频识别、传感器等方式获取物理世界的各种信息,结合互联网、移动通信网等网络进行信息的传送与交互,采用智

物联网智能环境监测系统

物联网智能环境监测系 统 Document number:BGCG-0857-BTDO-0089-2022

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要 环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生

活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 物联网简介 (4) 智能环境研究的目的和背景 (4) 2需求分析 (4) 智能环境功能需求分析 (5) 各子系统需求分析 (5) 大气污染监测子系统需求分析 (5) 海洋污染监测子需求分析 (5) 水质监测子系统需求分析 (5) 生态环境检测子系统需求分析 (5) 城市环境检测子系统需求分析 (5) 其他非功能需求分析 (6) 可靠性需求 (6) 开放性需求 (6) 可扩展性需求 (6) 安全性需求 (6) 应用环境需求 (6)

3详细设计 (6) 各环境监测子系统解决方案 (6) 智能环境监测系统结构图 (5) 各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13) 1引言 物联网简介 物联网是一种新兴技术,其核心内容是将各种信息传感设备和互联网结合起来而形成的一个巨大的网络,实现信息的高速获取和交换,是人类的生产和生活具有更高的智能化。物联网作为一种新理念,却非凭空产生,而是随着传感器技术,无线网络技术,人工智能技术和数据融合技术的发展而出现的。目前的传感器已经能够实现对温度,湿度,声音,光线,辐射等多种环境信号的采集;物联网技术领域也出现了一种Wifi,CDMA以及Adhoc等高速网络接入和容错组网的方式,使得高速数据传输成为可能;人工智能技术经过多年的发展,目前已经能够实现一定程度的自动控制;高性能计算技术的出现也使得海量数据处理和融合不再成为控

相关主题
文本预览
相关文档 最新文档