当前位置:文档之家› AlphaScreen技术在高通量筛选研究的现况分析

AlphaScreen技术在高通量筛选研究的现况分析

AlphaScreen技术在高通量筛选研究的现况分析
AlphaScreen技术在高通量筛选研究的现况分析

AlphaScreen技术在高通量筛选研究的现况分析

本文介绍了AlphaScreen和AlphaLISA在基础药物研发研究和高通量筛选(HTS)方面的技术现状。AlphaScreen用于HTS

第二信使检测

Gs偶联的GPCR被激活后,可激活细胞内的cAMP 释放,并引起下游的信号转导。AlphaScreen技术用于cAMP检测采用了竞争性实验(Competition Assay),示意图如下:

反应体系内供体珠包被了亲和素,用于偶联上生物素化的cAMP;受体珠表面为anti-cAMP

抗体;通过生物素化的cAMP可将供体珠和受体珠拉近,单体氧分子得以传递至受体珠,发生化学反应,产生光信号。

将细胞裂解液加入反应体系内,胞内含有的游离cAMP同生物素化的cAMP竞争性结合抗体,体系产生的光信号降低。

蛋白激酶检测

蛋白激酶是一类磷酸转移酶,将ATP的磷酸基团转移至靶标底物。蛋白激酶主要分为2大家族,其中一族将磷酸基团转移至蛋白的酪氨酸残基上,称为酪氨酸激酶;另一族将磷酸基团转移至蛋白的丝氨酸/苏氨酸残基上,称为丝氨酸/苏氨酸激酶。

针对酪氨酸激酶检测,AlphaScreen利用了酪氨酸磷酸化抗体,这些特异性的抗体已偶联于受体珠表面。作为激酶作用的蛋白底物,已经过生物素化处理,能连接于供体珠表面。

激酶有活性状态下,利用蛋白底物的磷酸化基团能将供体珠与受体珠的距离拉近,单体氧分子得以传递至受体珠,发生化学反应,产生光信号。

通常意义上,丝氨酸/苏氨酸激酶特异性高于酪氨酸激酶,因此进行检测时,对于抗体的特异性要求更高。在这里,受体珠表面包被上Protein A(Protein A是一种分离自金黄色葡萄球菌的细胞壁蛋白,主要通过Fc片断结合哺乳动物IgG),用于偶联鼠源或兔源磷酸化抗体;供体珠可以通过表面包被的亲和素偶联生物素化的磷酸化多肽或者是通过表面包被的谷胱甘肽(GSH)偶联GST标签蛋白底物。一旦多肽或蛋白底物被磷酸化,将拉近抗磷酸化抗体,产生光信号。

常见的激酶检测方法都需要特异性的抗体用于检测磷酸化多肽,新近又有一些方法采用Lewis 金属螯合物用于螯合底物上的磷酸基团。在这里,磷酸化的激酶底物可以通过生物素化或是加上GST标签而偶联在供体珠上,供体珠表面包被了Lewis金属螯合物。一旦磷酸化的底物被Lewis螯合将拉近供体珠和受

与同类型的检测方法TR-FRET、EFC和FP相比,AlphaScreen的优势在于蛋白和多肽都可作为磷酸化底物用于激酶检测。

另一些激酶检测方法则是将一对抗体对分别标记在供体珠和受体珠,与ELISA类似,形成双抗体夹心法。该检测方法最大的优势在于无需进行引物标记,检测灵敏度比ELISA方法更高。

如今,激酶检测技术朝着活细胞检测的方向发展,AlphaScreen在活细胞激酶检测有着独特的优势,可以检测内源底物的磷酸化状态。

蛋白酶检测

AlphaScreen已设计用来检测多种蛋白酶的活性,例如ADAM。供体珠和受体珠分别偶联了抗体针对蛋白多糖(aggrecan)的两个不同的抗体表位。当底物蛋白多糖结构完整的情况下,成对的珠子距离拉近,能产生光信号。当ADAM存在的情况下,能打断蛋白多糖的完整结构,光信号强度降低。类似的检测方法在小分子高通量筛选中应用很广泛。

蛋白底物被水解后,供体和受体珠分开,光信号强度降低

同传统的蛋白酶活性检测技术(例如,基于FRET的检测方法)比较,AlphaScreen优势在于能利用较大分子底物,尤其长片段蛋白底物上存在多个蛋白酶水解位点,而多肽片段只含有一个水解位点则会错失大量蛋白酶功能信息。

泛素化是一类翻译后的修饰,由E3连接酶家族调控,将导致目标蛋白的降解。研究已发现,E3连接酶活性的失调与多种疾病发生机理有关(如Alzheimer’s、Parkinson’s、癌症、炎症反应),因此E3连接酶是一类重要的药物靶标,传统的筛选技术通量低,并多采用免疫印迹技术。文献已报道使用AlphaScreen 技术筛选未知的E3连接酶底物,即经历泛素化修饰的未知靶标。该项目筛选连接酶Rsp5的底物,大量的未知底物加上GST标签,以此偶联上受体珠;体系中加入生物素化的泛素;如Rsp5能作用于底物时,将生物素化的泛素加上GST标签底物,供体珠亲和素-生物素偶联,将供体珠受体珠距离拉近,单体氧分子得以传递,产生光信号。利用该方法,此次项目中筛选得到大量首次得到的底物,后续的电泳胶实验和细胞毒性检测也证实了这些底物为Rsp5的泛素化靶点。

蛋白之间相互作用检测

很多细胞学检测涉及到复杂的蛋白之间相互作用,包括配体/GPCR结合,G蛋白偶联,激酶与底物结合,以及转录因子同激活子/抑制子之间的相互作用。

生长因子受体结合

以TNF受体超家族OX40受体为例,配体(OX40L)带有生物素标签将偶联至亲和素包被的供体珠;受体(OX40)以融合蛋白的形式连上IgG的部分Domain,以此偶联上Protein A包被的受体珠;当OX40L 与OX40结合后,将供体珠和受体珠距离拉近,单体氧分子得以传递,产生光信号。在实际高通量筛选中,已筛选出若干个抑制OX40L结合的小分子。

转录因子

AlphaScreen也同样用于转录因子和核内结合位点的结合,例如雌激素受体(ER)和steroid receptor

co-activator 1(SRC-1)。ER通过抗ER抗体偶联至受体珠,多肽片断(SRC-1)生物素化后偶联上供体珠。ER激活剂激活ER后将启动ER和SRC-1的相互作用,产生光信号。诸如上述,AlphaScreen技术用于受体的激活剂和抑制剂的高通量筛选。

病毒蛋白结合

传染性疾病的机理研究中病毒蛋白引起的细胞transformation和增殖。例如,人乳头瘤病毒(HPV)通过抑制p53活性,抑制细胞经历凋亡,是cervical癌症的主要致病因子。该过程中,HPV蛋白E6与泛素化连接酶E6AP而引发该过程。文献报道使用AlphaScreen检测E6和E6AP相互作用,以检测两者结合的抑制因子。检测体系中,E6-GST标签蛋白结合至受体珠,E6AP生物素化后连接至供体珠。通过该检测平台筛选了约3000种小分子并成功筛选出若干个先导物,并由后续实验证实。

AlphaLISA

目前,高通量的生物标志物筛选分析对于自动化检测仪器平台的要求较迫切,而目前常见的生物标志物分析技术为ELISA。ELISA技术不可避免地需要多个洗涤步骤,这需要自动化仪器的复杂编程,将增加成本并降低准确性。ELISA技术动态范围为2个数量级,多数情况下需要对样本进行多次稀释以达到ELISA检测的范围内。

AlphaLISA技术作为AlphaScreen的延伸,很好地满足生物标志物的高通量筛选需求。检测原理类似于双抗体夹心法,示意如下:

与ELISA相比,AlphaLISA具有下述特点:

传统ELISA AlphaLISA

特异性高高

灵敏度灵敏(皮摩尔水平)高灵敏(亚皮摩尔)

检测特性非匀相,需要多次洗涤匀相,无需洗涤

人力非常耗人力人力需求非常少

高通量实现高通量较困难容易实现微型化

抗体需求需要高亲和度的抗体可以使用高亲和/低亲和力抗体

上样体系大,50~100μl小,< 5μl

检测范围有限(2个数量级)大(4个)

仪器需求普通微孔板Alpha检测特殊仪器,需要激光器

总结

任何技术都是一把双刃剑,有优势也有限制,AlphaScreen/AlphaLISA技术也不例外。AlphaScreen技术主要的限制在于反应体系对于强光或是长时间的室内光敏感;其次,某些化合物对于单体氧分子的捕获会降低光信号;供体珠光漂白效应使得信号检测以单次为佳。与ECL、FMAT技术相似,AlphaScreen也需要高能激光器;同其他技术相比,AlphaScreen对于检测仪器平台有要求。

AlphaScreen技术主要优势在于待测物质的范围宽泛,从小分子到大型复合物;均相体系、快速、稳定,灵敏度更高;AlphaScreen检测也不需要荧光标签的引入,避免了空间位阻影响生物分子的相互结合;可用于检测生物学粗提物例如细胞裂解物、血清、血浆、体液等,而不会影响测读效果。

高通量筛选技术简要综述

高通量筛选技术简要综述 药物高通量筛选(HTS)技术,是发现创新药物的重要技术手段之一,已受到药学同行的极大关注。现将近年来药物高通量筛选技术的研究进展做一综述。 发展中的高通量筛选技术 高通量筛选的组合模式近年来,由于自动化技术特别是机器人的应用,在新药研究中出现了高通量筛选技术,该技术将化学、基因组研究、生物信息,以及自动化仪器等先进技术,有机组合成一个高程序、高自动化的新模式,从而创造了发现新药的新程序。由于该技术具有快速、高效等特点,因而成为新药发现的主要手段。 高通量筛选的实验方法分子水平和细胞水平的实验方法(或称筛选模型)是实现药物高通量筛选的技术基础。由于药物高通量筛选要求同时处理大量样品,实验体系必须微量化,而这些微量化的实验方法应根据新的科研成果来建立。第四军医大学周四元研究认为,药物高通量筛选模型的实验方法,根据其生物学特点,可分为以下几类:受体结合分析法;酶活性测定法;细胞分子测定法;细胞活性测定法;代谢物质测定法;基因产物测定法。这些实验方法,均已广泛用于药物高通量筛选中。 高通量筛选的特色效用高通量筛选技术是将多种技术方法有机结合而形成的一种新技术体系,它以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验数据,以计算机对数以千计的样品数据进行分析处理,从而得出科学准确的实验结果和特色效用。英国学者AlanD研究提示,一个实验室采用传统的方法,借助20余种药物作用靶位,1年内仅能筛选75000个样品;1997年高通量筛选技术发展初期,采用100余种靶位,每年可筛选100万个样品;1999年高通量筛选技术进一步完善后,每天的筛选量就高达10 万种化合物。 高通量筛选技术采用的先进检测方法 光学测定技术:近年来,美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。

QPix400微生物筛选系统-MolecularDevices

特点 ?????QPix400 微生物筛选系统:更多功能,更多微生物 APPLICATION NOTE 快速-每天挑30,000个克隆高效-成功率>98%,琼脂糖厚度感应器,自动调整挑针高度 优化-不同微生物组织特异性挑针 靶向-荧光定量,用户自定义挑选参数 智能-智能的克隆挑选软件 无论你是从事发现新一代抗生素,或者挑选克隆测序,还是把微藻转化为生物燃料工厂的研究,为了发现最好的克隆,你可能需要反复地筛选成千甚至上百万个克隆。 而且除了筛选,还需要克隆涂布和克隆复制。自动化克隆筛选系统能够加速和简化这些费力的过程。你需要用基于荧光和形态学的筛选替代在限制性培养基中生长克隆的手动挑选吗?你需要研究其他微生物,而不仅仅是大肠杆菌吗?QPix400微生物克隆筛选系统能完成上述所有的工作,包括基于形态学和荧光强度的克隆筛选,克隆涂布和克隆板的复制,适用于细菌、真菌、藻类、噬菌斑和酵母。 QPix400微生物克隆筛选系统支持更多微生物筛选和多种功能模块,包括荧光强度,蓝/白挑选,克隆大小和邻近度,抑菌圈。你自定义挑选参数,仪器自动完成挑选。 克隆挑选流程 无论你选择哪个挑选模块,QPix400系统的任何型号都遵照相同的流程。1. 打开QPix的软件,2. 设定挑选的参数,比如:克隆大小,克隆形状和其他的形态学特征,对于抑菌圈的检测,在抑菌圈模块下设定参数。3. 克隆在白光成像模式下检测,如需要的话,可以进一步在荧光成像模式下检测。 白光成像克隆筛选 对大多数研究来说,用QPix400系统在白光成像下筛选克隆是最常用的方 法。举个例子,涂布委内瑞拉链霉 菌,37℃培养过夜,然后克隆在白光下挑选。智能化的软件分析图像,满足设定参数的克隆黄色显示并被自动挑取(图1)。不满足设定参数的克隆红色显示。 荧光成像克隆筛选 荧光挑选,可以大大地减少高价值克隆的早期筛选时间(图2)。使用合适的荧光标记,结合形态学参数和功能的自动筛选,快速获取满足要求的,数量更少的克隆,然后进行进一步的下游功能筛选和鉴定,从而节省时间和人力物力。 图1:涂布的委内瑞拉链霉菌(左侧)。智能软件模块基于用户设定参数检测到想要的克隆(中间和右侧,黄色显示克隆),排除不满足的克隆(中间和右侧,红色显示克隆)。

AlphaScreen技术在高通量筛选研究的现况分析

AlphaScreen技术在高通量筛选研究的现况分析 本文介绍了AlphaScreen和AlphaLISA在基础药物研发研究和高通量筛选(HTS)方面的技术现状。AlphaScreen用于HTS 第二信使检测 Gs偶联的GPCR被激活后,可激活细胞内的cAMP 释放,并引起下游的信号转导。AlphaScreen技术用于cAMP检测采用了竞争性实验(Competition Assay),示意图如下: 反应体系内供体珠包被了亲和素,用于偶联上生物素化的cAMP;受体珠表面为anti-cAMP 抗体;通过生物素化的cAMP可将供体珠和受体珠拉近,单体氧分子得以传递至受体珠,发生化学反应,产生光信号。 将细胞裂解液加入反应体系内,胞内含有的游离cAMP同生物素化的cAMP竞争性结合抗体,体系产生的光信号降低。 蛋白激酶检测 蛋白激酶是一类磷酸转移酶,将ATP的磷酸基团转移至靶标底物。蛋白激酶主要分为2大家族,其中一族将磷酸基团转移至蛋白的酪氨酸残基上,称为酪氨酸激酶;另一族将磷酸基团转移至蛋白的丝氨酸/苏氨酸残基上,称为丝氨酸/苏氨酸激酶。 针对酪氨酸激酶检测,AlphaScreen利用了酪氨酸磷酸化抗体,这些特异性的抗体已偶联于受体珠表面。作为激酶作用的蛋白底物,已经过生物素化处理,能连接于供体珠表面。 激酶有活性状态下,利用蛋白底物的磷酸化基团能将供体珠与受体珠的距离拉近,单体氧分子得以传递至受体珠,发生化学反应,产生光信号。 通常意义上,丝氨酸/苏氨酸激酶特异性高于酪氨酸激酶,因此进行检测时,对于抗体的特异性要求更高。在这里,受体珠表面包被上Protein A(Protein A是一种分离自金黄色葡萄球菌的细胞壁蛋白,主要通过Fc片断结合哺乳动物IgG),用于偶联鼠源或兔源磷酸化抗体;供体珠可以通过表面包被的亲和素偶联生物素化的磷酸化多肽或者是通过表面包被的谷胱甘肽(GSH)偶联GST标签蛋白底物。一旦多肽或蛋白底物被磷酸化,将拉近抗磷酸化抗体,产生光信号。 常见的激酶检测方法都需要特异性的抗体用于检测磷酸化多肽,新近又有一些方法采用Lewis 金属螯合物用于螯合底物上的磷酸基团。在这里,磷酸化的激酶底物可以通过生物素化或是加上GST标签而偶联在供体珠上,供体珠表面包被了Lewis金属螯合物。一旦磷酸化的底物被Lewis螯合将拉近供体珠和受

【CN109852663A】一种基于机器视觉高通量筛选微生物的方法及系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910261410.4 (22)申请日 2019.04.02 (71)申请人 天津科技大学 地址 300457 天津市滨海新区经济技术开 发区第十三大街29号 (72)发明人 夏梦雷 王敏 彭明梦 李彩霞  成杨 薛丹妮 郑宇 申雁冰  (74)专利代理机构 北京瑞盛铭杰知识产权代理 事务所(普通合伙) 11617 代理人 张红 (51)Int.Cl. C12Q 1/04(2006.01) C12M 1/34(2006.01) (54)发明名称 一种基于机器视觉高通量筛选微生物的方 法及系统 (57)摘要 本公开提供了一种基于机器视觉高通量筛 选微生物的方法,属于菌种筛选技术领域。本发 明所述方法可实现原位筛选且高精确度的高通 量筛选,有效地缩短了筛选周期,节约了劳动量, 可以实现筛选过程的操作自动化。本发明所述方 法包括:S1、在光照条件下获取待筛选微生物的 菌落的数字图像;S2、根据步骤S1获取的数字图 像提取菌落特征;S3、根据步骤S2提取的菌落特 征与目标筛选特征建立筛选模型;S4、根据步骤 S3筛选模型得到的结果筛选微生物,所述结果包 括目标筛选特征的预测值。本发明所述方法用于 食品领域和工业微生物育种领域的微生物分类、 微生物鉴定、筛选高产或低产某种物质的微生 物。权利要求书1页 说明书10页 附图1页CN 109852663 A 2019.06.07 C N 109852663 A

权 利 要 求 书1/1页CN 109852663 A 1.一种基于机器视觉高通量筛选微生物的方法,包括如下步骤: S1、在光照条件下获取微生物菌落的数字图像; S2、根据步骤S1获取的数字图像提取菌落特征; S3、根据步骤S2提取的菌落特征与目标筛选特征建立筛选模型; S4、根据步骤S3筛选模型得到的结果筛选微生物,所述结果包括目标筛选特征的预测值。 2.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,步骤S1中,待采集菌落图像的微生物以固态平板培养法进行培养。 3.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,菌落特征包括菌落大小、颜色、粗糙度、欧拉数、分形维数、纹理的熵值;所述菌落大小包括菌落面积和半径。 4.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,步骤S3中,基于步骤S2提取的菌落特征建立特征数据库A,基于目标筛选特征建立目标特征数据库B,然后以A为输入量,以B为目标值,采用神经网络、支持向量机、遗传算法、粒子群优化算法对A与B建立映射网络,构建筛选模型。 5.根据权利要求4所述的基于机器视觉高通量筛选微生物的方法,其特征在于,步骤S3还包括:分析菌落特征与目标筛选特征的相关性,选择相关性大于40%的菌落特征作为输入量。 6.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,步骤S1中,所述微生物为真菌或细菌。 7.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,菌落包括在固态培养基上可以形成的自然菌落和通过添加指示菌、色素、荧光标记获得的抑菌圈、变色圈、透明圈、荧光圈。 8.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,目标筛选特征包括产物产量、副产物产量、菌体量、营养缺陷型。 9.根据权利要求1所述的基于机器视觉高通量筛选微生物的方法,其特征在于,所述方法用于食品领域和工业微生物育种领域的微生物分类、微生物鉴定、筛选高产或低产某种物质的微生物、筛选具有特定菌落特征的微生物和筛选筛选具备特定生长特性的微生物。 10.一种应用权利要求1~9任一项所述方法基于机器视觉高通量筛选微生物的系统,包括: 菌落图像采集装置,用于在光照条件下获取微生物的菌落的数字图像; 菌落特征提取装置,用于基于菌落图像采集装置所获取的数字图像提取菌落特征; 筛选模型构建装置,用于基于菌落特征提取装置所提取的菌落特征以及目标筛选特征构建筛选模型,得到目标筛选特征的预测值。 2

什么是高通量筛选技术

什么是高通量筛选技术 高通量筛选(high—throughout screening)是近年来迅速发展起来的药物筛选技术。高通量药物筛选就是应用分子细胞水平的药物活性评价方法(模型),通过自动化手段,对大量样品进行生物活性或药理作用的检测,发现新药的过程。高通量药物筛选的规模至少为每日筛选数千个样品。同时它通过运用基因科学、蛋白质科学、分子药理学、细胞药理学、微电子技术等多学科理论和技术,以及与疾病相关的酶和受体为作用靶点。对天然或合成化合物进行活性测试,并在此基础上进行筛选。高通量筛选具有快速、高效、经济、高特异性等优点,其中所用的样品量甚少的特点尤其适用于天然化合物的活性筛选。 高通量筛选可以根据待测样品的种类分为非细胞相筛选、细胞相筛选、生物表型筛选。其中非细胞相筛选常用的方法有Microbead—FCM 联合筛选、放射免疫性检测、荧光检测(FA)、闪烁接近检测、酶连接的免疫吸附检测(ELISA)等;细胞相筛选常用的方法有选择性杀死策略、离子通道检测、报告基因检测等;生物表型筛选可以有目的敲除或屏蔽掉某些未知功能的基因等等。 高通量筛选在抗病毒药物筛选中有很大的应用,介绍一些抗病毒药物筛选方法:利用亲合闪烁分析对HIV逆转录酶活性测定、HCV NS5B 活性测定、HCV NS3(nonstructural protein 3,NS3)解旋酶活性的测定;利用荧光共振能量转移对SARS—CoV病毒3CL 蛋白酶活性测定;

抗病毒药物的其它高通量筛选模型如病毒与宿丰细胞结合的细 胞模型、HCV NS3/4A蛋白酶活性测定、HIV整合酶(integrase,IN)活性的测定等等。 高通量筛选体内药动学模型中传统的药动学研究以测定药物在 体内的浓度及分布为主要手段。高通量筛选体外药动学模型中常用的筛选模型建立在组织、器官水平和细胞及亚细胞水平,观察的是药物与分子靶点的相互作用,能够直接体现药物的基本作用机制。高通量筛选的体内和体外筛选模型是互为补充、相辅相成的。体内药动学筛选模型可以很好地预测药物在体内的吸收、分布、代谢等药动学性质,但存在样品需求量大、筛选费用高、较难达到高通量筛选水平等缺陷。体外筛选模型可以对大量的候选化合物进行筛选,但它却忽略了生物的整体性,有时用其预测体内药动学参数并不一定理想,必须借助 于体内筛选模型。 高通量筛选技术极大地提高了对目标分子、活性物质以及前导药物的筛选速度,当前HTS技术进一步向着高内涵筛选(HCS)技术发展。HCS技术是生物学、分析软件、自动化控制以及显微观测技术最新发展的综合运用,HCS的出现彻底改变了以细胞为基础的靶目标的确认、二次筛选、前导化合物优化和结构活性分析的传统方法引。随着科技的发展,HTS/HCS技术将不断向着微型化、自动化、高效化、低廉化和微量化方向发展。

高通量药物筛选

高通量药物筛选一,概念高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整体系运转的技术体系。二. 高通量筛选技术体系的组成 1. 化合物样品库化合物样品主要有人工合成和从天然产物中分离纯化两个来源。其中,人工合成又可常规化学合成和组合化学合成两种方法。 2.自动化的操作系统自动化操作系统利用计算机通过操作软件控制整个实验过程。操作软件采用实物图像代表实验用具,简洁明了的图示代表机器的动作。自动化操作系统的工作能力取决于系统的组分,根据需要可配置加样、冲洗、温解、离心等设备以进行相应的工作。 3.高灵敏度的检测系统检测系统一般采用液闪计数器、化学发光检测计数器、宽谱带分光光度仪、荧光光度仪等。 4.数据库管理系统数据库管理系统承担4个方面的功能: 样品库的管理功能;生物活性信息的管理功能; 对高通量药物筛选的服务功能; 药物设计与药物发现功能。三. 高通量筛选模型常用的筛选模型都在分子水平和细胞水平,观察的是药物与分子靶点的相互作用,能够直接认识药物的基本作用机制。 1.分子水平的药物筛选模型:受体筛选模型;酶筛选模型;离子通道筛选模型 1.1受体筛选模型:指受体与放射性配体结合模型。以受体为作用靶的筛选方法,包括检测功能反应、第二信使生成和标记配体与受体相互作用等不同类型。 1.2酶筛选模型:观察药物对酶活性的影响。根据酶的特点,酶的反应底物,产物都可以作为检测指标,并由此确定反应速度。典型的酶筛选包括1) 适当缓冲液中孵化;(2)控制反应速度,如:温度,缓冲液的pH值和酶的浓度等;(3)单时间点数器, 需测量产物的增加和底物的减少。 1.3离子通道筛选模型: (1)贝类动物毒素的高通量筛选,其作用靶为Na+通道上的蛤蚌毒素结合位点,用放射性配体进行竞争性结合试验考察受试样品。(2)用酵母双杂交的方法高通量筛选干扰N型钙通道β3亚单位与α1β亚单位相互作用的小分子,寻找新型钙通道拮抗剂。 2.细胞水平药物筛选模型观察被筛样品对细胞的作用,但不能反映药物作用的具体途径和靶标,仅反映药物对细胞生长等过程的综合作用。包括: 内皮细胞激活; 细胞凋亡; 抗肿瘤活性; 转录调控检测; 信号转导通路; 细菌蛋白分泌; 细菌生长。高通量筛选技术与传统的药物筛选方法相比有以下几个优点:反应体积小;自动化;灵敏快速检测;高度特异性。但是,高通量筛选作为药物筛选的方法,并不是一种万能的手段,特别是在中药研究方面,其局限性也是十分明显的。首先,高通量筛选所采用的主要是分子、细胞水平的体外实验模型,因此任何模型都不可能充分反映药物的全面药理作用;其次,用于高通量筛选的模型是有限的和不断发展的,要建立反映机体全部生理机能或药物对整个机体作用的理想模型,也是不现实的。但我们应该相信,随着对高通量筛选研究的不断深入,随着对筛选模型的评价标准、新的药物作用靶点的发现以及筛选模型的新颖性和实用性的统一,高通量筛选技术必将在未来的药物研究中发挥越来越重要的作用。高通量筛选技术采用的先进检测方法光学测定技术。近年来,美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。放射性检测技术。美国学者GanieSM在高通量药物筛选研究中,应用放射性测定法,特别是亲和闪烁(SPA)检测方法,使在96孔板上进行的样本量实验得到发展。该方法灵敏度高,特异性强,促进了高通量药物筛选的实现,但存在环境污染问题。荧光检测技术。美国学者GiulianokA研究认为,采用FLIPR(fluor ometricimaging readet)荧光检测法,可在短时间内同时测定荧光的强度和变化,对测定细胞内钙离子流及测定细胞内pH和细胞内钠离子流等,是非常理想的一种高效检测方法。多功能微板检测系统。由西安交通大学药学院研制的1536孔板高通量多功能微板检测系统,是目前国际上先进的高通量检测系统,它可使筛选量进一步提高,现已在该院投入使用。1.基

高通量筛选技术

高通量筛选技术 高通量筛选(high—throughout screening)是近年来迅速发展起来的药物筛选技术。高通量药物筛选就是应用分子细胞水平的药物活性评价方法(模型),通过自动化手段,对大量样品进行生物活性或药理作用的检测,发现新药的过程。高通量药物筛选的规模至少为每日筛选数千个样品。同时它通过运用基因科学、蛋白质科学、分子药理学、细胞药理学、微电子技术等多学科理论和技术,以及与疾病相关的酶和受体为作用靶点。对天然或合成化合物进行活性测试,并在此基础上进行筛选。高通量筛选具有快速、高效、经济、高特异性等优点,其中所用的样品量甚少的特点尤其适用于天然化合物的活性筛选。 高通量筛选可以根据待测样品的种类分为非细胞相筛选、细胞相筛选、生物表型筛选。其中非细胞相筛选常用的方法有Microbead—FCM 联合筛选、放射免疫性检测、荧光检测(FA)、闪烁接近检测、酶连接的免疫吸附检测(ELISA)等;细胞相筛选常用的方法有选择性杀死策略、离子通道检测、报告基因检测等;生物表型筛选可以有目的敲除或屏蔽掉某些未知功能的基因等等。 高通量筛选在抗病毒药物筛选中有很大的应用,介绍一些抗病毒药物筛选方法:利用亲合闪烁分析对HIV逆转录酶活性测定、HCV NS5B 活性测定、HCV NS3(nonstructural protein 3,NS3)解旋酶活性的测定;利用荧光共振能量转移对SARS—CoV病毒3CL 蛋白酶活性测定;

抗病毒药物的其它高通量筛选模型如病毒与宿丰细胞结合的细 胞模型、HCV NS3/4A蛋白酶活性测定、HIV整合酶(integrase,IN)活性的测定等等。 高通量筛选体内药动学模型中传统的药动学研究以测定药物在 体内的浓度及分布为主要手段。高通量筛选体外药动学模型中常用的筛选模型建立在组织、器官水平和细胞及亚细胞水平,观察的是药物与分子靶点的相互作用,能够直接体现药物的基本作用机制。高通量筛选的体内和体外筛选模型是互为补充、相辅相成的。体内药动学筛选模型可以很好地预测药物在体内的吸收、分布、代谢等药动学性质,但存在样品需求量大、筛选费用高、较难达到高通量筛选水平等缺陷。体外筛选模型可以对大量的候选化合物进行筛选,但它却忽略了生物的整体性,有时用其预测体内药动学参数并不一定理想,必须借助于体内筛选模型。 高通量筛选技术极大地提高了对目标分子、活性物质以及前导药物的筛选速度,当前HTS技术进一步向着高内涵筛选(HCS)技术发展。HCS技术是生物学、分析软件、自动化控制以及显微观测技术最新发展的综合运用,HCS的出现彻底改变了以细胞为基础的靶目标的确认、二次筛选、前导化合物优化和结构活性分析的传统方法引。随着科技的发展,HTS/HCS技术将不断向着微型化、自动化、高效化、低廉化和微量化方向发展。

生药活性成分的高通量筛选技术

生药活性成分的高通量筛选技术 高通量筛选(High throughput screening,HTS)技术是20世纪80年代后期发展起来的一种药物筛选新技术。它集计算机控制、自动化操作、高灵敏度检测、数据结果自动采集和处理于一体,实现了药物筛选的快速、微量、灵敏和大规律,日筛选量达到数万甚至数十万样品次,是新药发现技术和方法的一大进步。 传统的药物筛选方法是采用药理学的实验方法,通过体内、体外的多种实验方法,评价药用样品的药理活性。但是,由于传统的药理实验方法需要消耗大量样品,使用大量实验动物,参加实验的技术人员具有较熟练的操作技能,而且筛选样品量有限,劳动强度大,不能适应大量样品的同时筛选。高通量药物筛选是在传统的筛选技术基础上,应用先进的分子生物学、细胞生物学、计算机、自动化控制等高新技术,建立的一套更适合于药物筛选的技术体系。 本文试对高通量筛选技术的基本原理及其在生药活性成分筛选中的应用做一简单论述。 1.基本原理 高通量药物筛选技术是将多种技术方法有机结合而形成的新的技术体系,它以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验数据,以计算机对实验获得的数据进行分析处理。它的正常开展需要有一个高容量的化合物库、自动化的操作系统、高灵敏度的检测系统、高效率的数据处理系统以及高特异性的药物筛选模型。 1.1 化合物样品库 高通量筛选是一种利用已有的化合物进行的体外随机筛选。因此通过高通量药物筛选发现先导化合物(leading compounds)的有效性取决于化合物样品库中化合物的数量及其质量。化合物样品的数量是指不同样品的数量。化合物样品的质量主要由化合物结构的多样性决定的。许多活性反应基团(reactive groups)使初筛的假阳性大量增加,剔除这些化合物可以提高化合物样品库的质量。 化合物样品主要有人工合成和从天然产物中分离纯化两个来源。 人工合成又可分为常规化学合成和组合化学合成两种方法。采用常规化学合成的纯化合物一直是国外制药企业建立化合物样品库的主要来源。它们通过长年积累的化合物建立化合物样品库,通过购买和化合物交流使化合物样品库的数量和质量大幅度提高。 组合化学(combinatorial chemistry)的出现为大量增加化合物的数量提供另外一种来源。组合化学的基本原理是采用适当的化学方法,在特定的分子母核上加入不同的基团,在同样条件下,产生大量的新化合物。这种方法在化合物的结构改造和优化方面已经表现出强大的优势。但是,由于该方法是基于母核结构的改造,因此产生的大量化合物在结构多样性方面尚有极大的不足。解决组合化学产物结构多样性的问题,已经成为化学研究人员的研究课题。 从天然产物中分离出来的化合物,母核结构和活性基团是长期的自然选择形成的,它们通过高通量筛选所表现出来的生物活性在药物发现中具有人工合成化合物所不能比拟的优势。因此,增加样品库中具结构多样性的天然化合物及其衍生物是提高样品库质量的一个重要途径。跨国制药企业为了增加高通量筛选的阳性率,已经或正在寻求助买我国的天然产物单体。 1.2 自动操作系统 高通量药物筛选每天要对数千化台物样品进行检测,工作枯燥、步骤单一,人工操作容易疲劳、出错。自动化操作系统采用微孔板作为反应容器,具有固定的分布模式(format);不同的微孔板通过条形码加以标记。自动化操作系统通过光电阅读器对特定的微孔板上的特定位置进行操作,并将操作结果及相关数据存贮在计算机内,使筛选结果准确,实验过程快速。

高通量筛选

高通量筛选简介 高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机分析处理实验数据,在同一时间检测数以千万的样品,并以得到的相应数据库支持运转的技术体系,它具有微量、快速、灵敏和准确等特点。简言之就是可以通过一次实验获得大量的信息,并从中找到有价值的信息。高通量筛选技术 高通量筛选特点 高通量筛选时每天要对数以千万的样品进行检测,工作枯燥,步骤单一,操作人员容易疲劳、出错。自动化操作系统由计算机及其操作软件、自动化加样设备、温孵离心设备和堆栈4个部分组成。自动化操作系统代替人工操作显然有诸多优势,它利用计算机通过操作软件控制整个实验过程,编程过程简洁明了。高通量筛选的应用 高通量筛选技术将化学、基因组研究、生物信息,以及自动化仪器等先进技术,有机组合成一个高程序、高自动化的新模式,并以此为模型创造了发现新药的新程序。高通量筛选技术的研究 发展中的高通量筛选技术 高通量筛选的实验方法高通量筛选的实验方法分子水平和细胞水平的实验方法(或称筛选模型)是实现药物高通量筛选的技术基础。由于药物高通量筛选要求同时处理大量样品,实验体系必须微量化,而这些微量化的实验方法应根据新的科研成果来建立。第四军医大学周四元研究认为,药物高通量筛选模型的实验方法,根据其生物学特点,可分为以下几类:受体结合分析法;酶活性测定法;细胞分子测定法;细胞活性测定法;代谢物质测定法;基因产物测定法。这些实验方法,均已广泛用于药物高通量筛选中。高通量筛选的特色效用高通量筛选的特色效用高通量筛选技术是将多种技术方法有机结合而形成的一种新技术体系,它以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验数据,以计算机对数以千计的样品数据进行分析处理,从而得出科学准确的实验结果和特色效用。英国学者AlanD研究提示,一个实验室采用传统的方法,借助20余种药物作用靶位,1年内仅能筛选75000个样品;1997年高通量筛选技术发展初期,采用100余种靶位,每年可筛选100万个样品;1999年高通量筛选技术进一步完善后,每天的筛选量就高达10万种化合物。高通量筛选技术检测方法光学测定技术近年来,美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。放射性检测技术美国学者GanieSM在高通量药物筛选研究中,应用放射性测定法,特别是亲和闪烁(SPA)检测方法,使在96孔板上进行的样本量实验得到发展。该方法灵敏度高,特异性强,促进了高通量药物筛选的实现,但存在环境污染问题。荧光检测技术美国学者GiulianokA研究认为,采用FLIPR(fluorometricimagingreadet)荧光检测法,可在短时间内同时测定荧光的强度和变化,对测定细胞内钙离子流及测定细胞内pH和细胞内钠离子流等,是非常理想的一种高效检测方法。多功能微板检测系统由西安交通大学药学院研制的1536孔板高通量多功能微板检测系统,是目前国际上先进的高通量检测系统,它可使筛选量进一步提高,现已在该院投入使用。我国高通量筛选技术的进展

药物高通量筛选的设计与实施

关键词]:高通量筛选,设计,实施,综述 健康网讯: 利用计算机模拟技术、组合化学及高通量筛选技术发现新药的研发模式,带动了新药发现技术方法的重要变革。高通量筛选(high throughput screening, FITS)又称大规模集群式筛选,是由一些有特定靶点的微量生物筛选方法、自动化/机器人技术和完整数据处理技术有机组合而成,是一种新型的、高自动化、高灵敏度、高通量的筛选发现新药的技术。目前,世界上大型制药企业都无一例外地将其作为驱动新药发现的强力引擎,纷纷引进新药研发领域,使FITS的形式和内容不断丰富发展,并日益呈现出向超高通量筛选发展的趋势。 1 HTS系统的组成 1.1 高容量的样品库系统高容量的样品库及其数据库管理系统是开展HTS的先决条件。它们可以是生物样品(包括植物、动物和微生物的样品)、从生物样品中提取的活性部位或单体化合物以及人工合成(传统化学合成、组合化学合成)的化合物,化合物数量越多,结构多样性越高,筛选的命中率也越高。 1.2 自动化的操作系统自动化操作系统利用计算机,通过操作软件控制整个筛选过程,一般包括计算机及其操作软件、自动化加样设备、温孵离心设备及堆栈4个部分,也可以选取不同的组合应用。 1.3 高灵敏度检测系统 HTS检测系统一般采用液闪计数器、化学发光检测计数器、宽谱带分光光度仪、荧光光度仪以及闪烁亲和分析( scintillation proximity assay,SPA)等检测方法。检测灵敏度越高,则所需的样品量越少,效果越好。 1.4 高特异性的药物筛选系统 HTS常用的筛选模型都是建立在分子水平和细胞水平上,观察的是药物与分子靶点的相互作用,能够直接认识药物的作用机制。常用的筛选模型可分为受体结合分析法、细胞因子测定法、细胞活性测定法、代谢物质测定法以及基因产物

中国科学院微生物研究所

中国科学院微生物研究所非专利药开发公司 背景:非专利药(generics)是基本物质专利保护过期的药品。保护期满,任何人都可以无偿利用其发明创造。但这些药品绝大多数仍具有非常广阔的市场前景。非专利药的开发风险小、投资少、周期短、见效快。而新药研发是多学科、高技术、高投入、高风险的系统工程。国外一个新药从发现到上市平均需要12年时间,耗资10亿美元。因此非专利药是一项巨大的公共社会财富,国际市场成长迅速。据IMS报告,2002~2005年,世界非专利药市场复合年增长率(CAGR)为13%,远高于商标名药CAGR的9%。2006年默克公司的辛伐他汀(simvastatin,Zocor)、百时美施贵宝公司的普伐他丁(pravastatin,Pravachol)、辉瑞公司的舍曲林(sertraline,Zoloft)、赛诺菲-安万特公司的唑吡坦(zolpidem,Ambien)、葛兰素史克公司的昂丹司琼(ondansetron,Zofran)以及诺华公司的特比萘芬(terbinafine,Lamisil)等6个重要品牌药物专利过期。据统计到2007年底将有35种重要专利药品到期,为非专利药提供了高达820亿美元的市场机会,而在2011年到2015年间将有市值770亿美元的专利药品期满。可以说,非专利药物的市场潜力是无限的。在药品知识产权与国际接轨前提下,非专利药的开发与生产成为我国制药工业发展战略的重要组成部分。从国际因素看,2002年和2003年欧美出台了一系列有利于非专利药发展的相关法规,欧洲品牌药从2003年开始变原来的“10年完全保护期”为“未披露数据保护期8年,市场独占期2年”,同时非专利药厂商可以在原创药品知识产权保护期未过的情况下进行非专利产品开发必需的试验;美国2002年中止了品牌药公司可以通过无数次的注册附加专利获得专利延长而数年屏蔽非专利药竞争的有关条款,从而为非专利药的开发提供了发展空间。 市场定位:随着新药研发速度的减慢,非专利药正逐步成为药品消费的主流。为推动我国非专利药工业健康快速发展,通过分析世界非专利药工业发展动向和趋势,我们依托中国科学院微生物研究所,成立“中国科学院微生物研究所非专利药物开发公司”。充分利用微生物所丰富的微生物资源,重点研制开发专利期满或是即将期满的微生物药物或原料药(如多杀菌素,纳他霉素,阿卡波糖,奥利

高通量药物筛选利器——HTRF 原理介绍

HTRF 技术介绍 快速、稳定、不需洗涤、操作简单、易于自动化和微型化。上述优势使得Cisbio 的HTRF 技术一直是药物研发领域的领先技术之一,并广泛用于信号转导研究和免疫检测。该技术已经在知名医药公司、生物技术公司和学术研究机构应用了15年以上。 HTRF (均相时间分辨荧光,Homogeneous Time-Resolved Fluorescence )是用来检测纯液相体系中待测物的一种常用方法。 该技术结合了荧光共振能量转移(FRET , Fluorescence Resonance Energy Transfer ) 和时间分辨荧光 (TRF, Time-Resolved Fluorescence))两种技术。这种结合将FRET 的均相实验方式和TRF 的低背景特点融合在一 起,使得HTRF 技术拥有如下优势:操作简单、 灵敏度高、通量大、实验数据稳定可靠、假阳 性率较低。HTRF 是基于TR-FRET 的化学技术,拥有与其它TR-FRET 技术相似的特征,包括使 用镧系元素(铕和铽),具有非常长的半衰期,很大的Stroke's shift (如图1所示,Eu 3+ Stroke’s shift > 300 nm )等。除此之外,它还有其独特的性质,从而与其它技术区分开来。这主要表现在HTRF 的镧系元素与络合的穴相结合,而不是像其它所有TR-FRET 技术使用螯合物。螯合物在溶液中是一种动态平衡,在特定条件下不稳定;而HTRF 中应用的穴与镧系元素是永久地嵌合,非常稳定,可耐受较宽的pH 范围、二价金属离子如Mn 2+等、螯合剂如EDTA 等。HTRF 的独特之处还包括对数据的专利的比值处理方法,其能校正样品基质不同等带来的干扰。 FRET 技术简介 FRET 技术利用了两种荧光基团的能量转移,这两种荧光基团分别称为(能量)供体和(能量)受体,前者的发射光谱与后者的激发光谱重叠。供体被外来能源激发(例如闪光灯或激光),如果它与受体在足够近的距离之内,可以将能量共振转移到受体上。受体受到激发,发出特定波长的发射光。 将供体和受体分别与相互作用的两个生物分子结合,生物分子的结合可以将受体和供体拉到足够近的距离,产生能量转移。这时,我们可以检测到两个发射光,分别 为受体和供体的发射光。由于受体分子的发射光来自于能量转移,所以在 图1:铕穴状化合物的激发和发射光谱

相关主题
文本预览
相关文档 最新文档