高中数学竞赛中数论问题的常用方法
高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法.1.基本原理为了使用方便,我们将数论中的一些概念和结论摘录如

2020-06-09
高中数学竞赛数论部分
高中数学竞赛数论部分

高中数学竞赛数论部分文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。1.请看下面的例子:(1) 证明:对于同样的整数x 和y

2020-12-30
高中数学竞赛辅导初等数论不定方程
高中数学竞赛辅导初等数论不定方程

不定方程不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题.1.几类不定方程 (1)一次不定方程在不定方程和不定方程组中,最简单

2020-07-30
高中数学竞赛资料-数论部分 (1)
高中数学竞赛资料-数论部分 (1)

初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞赛第一题)

2020-01-15
高中数学竞赛专题讲座---竞赛中的数论问题
高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法一. 条件的增设对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。1

2024-02-07
数学竞赛数论问题
数学竞赛数论问题

高中数学竞赛中数论问题的常用方法数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法.1.基本原理为了使用方便,我们将数论中的一些概念和结论摘录如

2024-02-07
初等数论中的几个重要定理高中数学竞赛
初等数论中的几个重要定理高中数学竞赛

初等数论中的几个重要定理基础知识定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。并定义中和互质的数的个数,称为欧拉(Euler)函数。这是数论中的非常重要的一个函

2024-02-07
数论历届高中数学联赛真题分类汇编含详细答案
数论历届高中数学联赛真题分类汇编含详细答案

数论部分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。★证

2024-02-07
高中数学竞赛数论
高中数学竞赛数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m

2024-02-07
全国高中数学联赛试题分类汇编-数论(1981年-2019年)
全国高中数学联赛试题分类汇编-数论(1981年-2019年)

(1981年~2019年)2019A 5、在1,2,3,,10中随机选出一个数a ,在1,2,3,,10----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100解析:首先数组(),a b 有1010100⨯=种等概率

2024-02-07
完整word版,高中数学竞赛辅导-初等数论(不定方程)
完整word版,高中数学竞赛辅导-初等数论(不定方程)

不定方程不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题.1.几类不定方程 (1)一次不定方程在不定方程和不定方程组中,最简单

2024-02-07
学习版高中数学竞赛数论.doc
学习版高中数学竞赛数论.doc

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m

2020-06-27
高中数学竞赛资料-数论部分-(1)
高中数学竞赛资料-数论部分-(1)

高中数学竞赛资料-数论部分-(1)初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(18

2024-02-07
高中数学竞赛——数论
高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m

2019-12-18
高中数学联赛初等数论专题练习(带答案详解版)
高中数学联赛初等数论专题练习(带答案详解版)

14.在数列 中, ,且 .(1) 的通项公式为__________;(2)在 、 、 、 、 这 项中,被 除余 的项数为__________.15.将一个数列中部分项按原来的先

2024-02-07
高中数学竞赛——数论
高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m

2024-02-07
高中数学竞赛——数论
高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m

2024-02-07
高中数学联赛数论专题
高中数学联赛数论专题

课程简介:全国高中数学联赛是中国高中数学学科的最高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”。优胜者可以自动

2024-02-07
初等数论中的几个重要定理  高中数学竞赛
初等数论中的几个重要定理 高中数学竞赛

初等数论中的几个重要定理基础知识定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。并定义中和互质的数的个数,称为欧拉(Euler)函数。这是数论中的非常重要的一个函

2024-02-07
高中数学竞赛资料-数论部分-(1)
高中数学竞赛资料-数论部分-(1)

初等数论简介绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子:(1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞赛第一题)

2024-02-07