南京大学近代物理实验2017版
- 格式:doc
- 大小:32.50 KB
- 文档页数:10
南京大学2011—2012学年第一学期《近代物质科学》考试试卷A(闭)卷院系年级学号姓名一、填空题(30分)(1分/格)1)近代物理实验中,导致量子力学产的“两朵乌云”指的分别是实验和实验2)晶体的结合方式有:、、、3)晶体具有种独立宏观对称操作,这些对称素组成种对称操作群,通过这些对称操作群能够得到种布拉伐格子,7 类晶系,分别为、、、、、、、。
4)量子论的产生来源于对的解释,提出了量子假说;发现了光电效应,用量子假说解释了光电效应。
5)光谱项n2s+1[l的符号]j中n表示的是主量子数,s表示的是量子数,l表示的是量子数,j表示的是量子数6)提出了物质波概念,粒子波函数φ的含义为7)格波波矢q的数目与数目相等,每个波矢q对应的圆频率w的数目与数目相等,总的独立格波的数目与数目相等。
8)简并态指的是,塞曼效应中,在外加磁场作用下l分量的能态分裂为个支能级二、简答和计算(70分)1)定量说明1Kg,1m/s的速度运动物体,为什么看不到波动性?(6’)2)两根相同的杆成一直线放置,长度均为l0,并以相同的速度v匀速相向运动,试问,在与一根杆连在一起的参考系内,另一根杆的长度是多少?(8’)3)宏观对称中为什么没有5次旋转轴?(6’)4)从群速度的定义入手,说明为什么粒子的速度可以用波包的速度描述(8’)5)一特殊原子的原子核,本来静止在实验室惯性系中,它是不稳定的,裂变为两个粒子1和2,如图所示,试问,与粒子2相对静止的观察者看来,粒子1的速度如何?静止在实验室惯性系中的观察者,发现两个向外射出的粒子也是不稳定的,粒子1在6.6X10-6s后衰变,粒子2在6.0X10-6s后衰变。
对于粒子2静止时所在的参考系来说,两个粒子的寿命各多长?(8’)6)简述布洛赫定理的内容,如何理解布洛赫定理对电子行为的描述(6’)7)晶体学中密勒指数是如何标定的?假定Z轴方向垂直纸面向内,对图中5个晶面进行标定(8’)(直接将结果写在图上)8)解释a)为什么会有导体、半导体和绝缘体之分?(6’)b)2价碱土为什么能够导电?(4’)9)考虑轨道角动量和自选的耦合,写出氢原子在主量子数为n=3时的全部可用量子能态。
---------------------------------------------------------------最新资料推荐------------------------------------------------------南京大学近代物理实验南京大学近代物理实验差热分析摘要:本文阐述了差热分析的基本原理、实验及数据处理方法,分别测量了锡样品和五水硫酸铜样品的差热曲线,并进行了分析讨论。
关键词:差热分析,差热曲线,五水硫酸铜,锡引言差热分析是在程序控制温度下测量物质和参比物之间的温度差与温度关系的一种技术。
描述这种关系的曲线称为差热曲线或 DTA 曲线。
由于试样和参比物之间的温度差主要取决于试样的温度变化,因此就其本质来说,差热分析是一种主要排与焓变测定有关并籍此斟了解物质有关性质的技缘术。
1.差热分析的基哑本原理物质在加热果或冷却过程中会发生物伊理变化或化学变化,与姐此同时,往往还伴随吸衅热或放热现象。
伴随热割效应的变化,有晶型转冬变、沸腾、升华、蒸发舀、熔融等物理变化,以埃及氧化还原、分解、脱忻水和离解等化学变化。
计另有一些物理变化,虽讯无热效应发生但比热容卉等某些物理性质也会发聘生改变,这类变化如玻话璃化转变等。
物质发生勋焓变时质量不一定改变媚,但温度是必定会变化1 / 17抛的。
差热分析正是在物蟹质这类性质基础上建立帜的一种技术。
若将疚在实验温区内呈热稳定卵的已知物质和试样一起催放入加热系统中,并以稚线性程序温度对它们加凳热。
在试样没有发生吸噎热或放热变化且与程序茫温度间不存在温度滞后遗时,试样和参比物的温镍度与线性程序温度是一稻致的。
若试样发生放热册变化,由于热量不可能罐从试样瞬间导出,于是硝试样温度偏离线性升温易线,且向高温方向移动蛇。
反之,在试样发生吸兴热变化时,由于试样不丸可能从环境瞬间吸取足仰够的热量,从而使试样衔温度低于程序温度。
只外有经历一个传热过程试凸样才能回复到与程序温驱度相同的温度。
差热分析——近代物理实验一.实验目的1.掌握差热分析的基本原理及测量方法。
2.学会差热分析仪的操作,并绘制425CuSO H O 等样品的差热图。
3.掌握差热曲线的处理方法,对实验结果进行分析。
二.实验原理1、差热分析基本原理物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热的现象,反映了物质系统的焓发生了变化。
在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。
在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。
差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。
在差热分析中,为反映微小的温差变化,用的是温差热电偶。
在作差热鉴定时,是将与参比物等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。
样品在某一升温区没有任何变化,即也不吸热、也不放热 ,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线 。
如果在某一温度区间样品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。
吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。
将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==南京大学近代物理实验篇一:南京大学近代物理实验201X版——差热分析差热分析摘要:本文阐述了差热分析的基本原理、实验及数据处理方法,分别测量了锡样品和五水硫酸铜样品的差热曲线,并进行了分析讨论。
关键词:差热分析,差热曲线,五水硫酸铜,锡引言差热分析(DTA)是在程序控制温度下测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。
描述这种关系的曲线称为差热曲线或DTA曲线。
由于试样和参比物之间的温度差主要取决于试样的温度变化,因此就其本质来说,差热分析是一种主要与焓变测定有关并籍此了解物质有关性质的技术。
1. 差热分析的基本原理物质在加热或冷却过程中会发生物理变化或化学变化,与此同时,往往还伴随吸热或放热现象。
伴随热效应的变化,有晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和离解等化学变化。
另有一些物理变化,虽无热效应发生但比热容等某些物理性质也会发生改变,这类变化如玻璃化转变等。
物质发生焓变时质量不一定改变,但温度是必定会变化的。
差热分析正是在物质这类性质基础上建立的一种技术。
若将在实验温区内呈热稳定的已知物质(参比物)和试样一起放入加热系统中(图1),并以线性程序温度对它们加热。
在试样没有发生吸热或放热变化且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。
若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。
反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸取足够的热量,从而使试样温度低于程序温度。
只有经历一个传热过程试样才能回复到与程序温度相同的温度。
图1 加热和测定试样与参比物温度的装置示意图在试样和参比物的比热容、导热系数和质量等相同的理想情况,用图1装置测得的试样和参比物的温度及它们之间的温度差随时间的变化如图2所示。
南京大学物理学院物理拔尖班一年级(17)级2017-2018学年第二学期(仙林)授课计划及课表12-1 注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共2.0周)南京大学物理学院物理学专业二年级(16)级2017-2018学年第二学期(仙林)授课计划及课表12-2 注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共 2.0周)南京大学物理学院声学专业二年级(16级)2017-2018学年第二学期(仙林)授课计划及课表12-3 注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共2.0周)南京大学物理学院声学专业三年级(15级)2017-2018学年第二学期(鼓楼)授课计划及课表12-1 注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共2.0周)南京大学物理学院物理学专业三年级(15)级2017-2018学年第二学期(鼓楼)授课计划及课表12-2注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共2.0周)南京大学物理学院物理学专业四年级(14)级2017-2018学年第二学期(鼓楼)授课计划及课表12-3 注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共 2.0周)南京大学物理学院声学专业四年级(14)级2017-2018学年第二学期(鼓楼)授课计划及课表12-4 注:本学期上课起讫时间:自3月5日至6月24日(共16.0周)复习及考试起讫时间:自6月25日至7 月8日(共2.0周)。
注:上课时间:2014年2月17日至2014年6月22日(共18周)考试时间:2014年6月23日至2014年7月6日(共2周)
注:上课时间:2014年2月17日至2014年6月22日(共18周)考试时间:2014年6月23日至2014年7月6日(共2周)
天文与空间科学学院天文学授课计划及课程表(三年级)
注:上课时间:2014年2月17日至2014年6月22日(共18周)
考试时间:2014年6月23日至2014年7月6日(共2周)
天文与空间科学学院空间科学与技术授课计划及课程表(三年级)
注:上课时间:2014年2月17日至2014年6月22日(共18周)
考试时间:2014年6月23日至2014年7月6日(共2周
天文与空间科学学院天文学授课计划及课程表(四年级)
注:上课时间:2014年2月17日至2014年6月22日(共18周)
考试时间:2014年6月23日至2014年7月6日(共2周)。
矢网分析摘要:矢量网络分析仪能够对网络参数进行全面测量,它既可测量网络的幅频特性,又可测量网络的相频特性和群延迟特性。
本实验用矢量网络分析仪测量装有微波材料样品的二端口网络散射系数(s参量),反推出待测样品的介电常数。
关键词:矢量网络分析仪,散射系数,介电常数一、引言隐身技术是通过控制、降低目标的可探测信号特征,使其不易被微波、红外、可见光、声波等各种探测设备发现、跟踪、定位的综合技术。
其中,微波隐身(或称雷达波隐身)的研究早在20世纪30年代就开始了。
现在已发展成集形状隐身、材料隐身等一体的高度复杂的技术,并已应用到导弹、飞机、舰船、装甲车辆、重要军事设施等许多武器装备上。
雷达隐身技术中,最简单的一种是涂覆型隐身技术。
它是将吸波材料直接以一定的厚度涂覆在外壳以降低对微波的反射,减少雷达探测面积,提高隐身能力。
而材料的微波介电常数和磁导率与吸波性能有关,本实验用矢量网络分析仪测量装有微波材料样品的二端口网络散射系数(s参量),反推出待测样品的介电常数和磁导率。
二、实验原理矢量网络分析仪能够对网络参数进行全面测量,它既可测量网络的幅频特性,又可测量网络的相频特性和群延迟特性。
可广泛应用于天线和雷达散射截面RCS测量,发射/接收(T/R)模块测量,介质材料特性测量,微波脉冲特性测量,光电特性测量和低温电子测量等领域,是相控阵雷达、精密制导、电子对抗、隐身和反隐身技术、微波通信和卫星等电子系统的科研、生产过程中必不可少的测试设备。
矢量网络分析仪的工作原理:矢量网络分析仪的信号源产生测试信号输入到被测件,当测试信号通过被测件时,一部分信号被反射,另一部分信号则被传输,那么反射和传输信号就携带了被测件的一些特性。
矢量网络分析仪A V3629用于测量器件和网络的反射和传输特性。
整机主要包括45MHz—40GHz 合成信号源、53MHz—24GHz本振源、s参数测试装置模块、幅相接收模块、数字信号处理与嵌入式计算机模块和液晶显示模块。
近代物理实验教程的实验报告近代物理实验教程的实验报告新版时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。
我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。
它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。
同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。
我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍:一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。
探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信,了解光纤语音通信的基本原理和系统构成。
老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。
二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。
《近代物理实验》教学大纲一、实验教学目标与基本要求近代物理实验是继普通物理实验和无线电电子学实验后的一门重要的基础实验课程,具有较强的综合性和技术性。
本课程的主要目的是:通过近代物理实验丰富和活跃学生的物理思想,培养他们对物理现象的观察能力和分析能力,引导他们了解实验物理在物理概念的产生、形成和发展过程的作用,学习近代物理中的一些常用方法、技术、仪器和知识,进一步培养正确的和良好的实验习惯以及严谨的科学作风,使学生获得一定程度的实验方法和技术研究物理现象和规律的独立工作能力。
1.学习如何用实验方法和技术研究物理现象与规律,培养学生实验过程中发现问题,分析问题和解决问题的能力,以及创新能力。
2.学习近代物理某些主要领域中的一些基本实验方法和技术,掌握有关的仪器的性能和使用。
3.通过实验加深对近代物理的基本现象及其规律的理解。
4.巩固和加强有关实验数据处理及误差分析方面的训练。
5.培养实事求是,踏实细致,严肃认真的科学态度和克服困难,坚韧不拔的工作作风以及良好的实验素养。
本课程的教学方式是在教师指导下,学生独立进行实验,教学中提倡学生之间的讨论和交流。
教学过程分为预习、操作和撰写实验报告三个教学环节。
本课程的考核方法是以平时成绩为主,期终采取笔试或口试或操作考核,最后综合评定成绩,按百分制给成绩。
二、实验课程内容与学时分配本课程为一学年。
其中第一学期和第二学期各8个实验,共要求学生完成16个实验。
三、实验题目及其目的和实验内容原子、分子与量子物理:钠原子的发射光谱,CCl4分子振动拉曼散射光谱,黑体辐射,塞曼效应;核物理与相对论:核磁共振,NaI(TI)闭烁谱仪和γ射线在物质中的吸收,相对论效应;真空物理与致装冷技术:高真空的获得与测量,真空镀膜及铜膜的霍尔效应和电阻率的测量,汽液两相致冷机;微波与光学:反射速调管工作特性,Properties of Klystrons and wave-guides 速调管和波导管特性,Optical Properties of microwaves微波的光特性,光拍法测量光速;固体物理:微波段电子自旋共振,电子衍射,用椭圆偏振仪测定薄膜的厚度和折射率,铁磁共振,热电子发射规律研究,红外分光计应用,紫外分光计应用,,Dielectric properties of microwaves微波介质介电常数测量,光磁共振,穆斯堡尔谱仪,扫描隧道显微镜;先进测量技术:锁相放大器应用-PN结电容的测量,工业CT,计算机自动测量,Virtual Instruments虚拟仪器,光纤光栅传感实验。
物理系课程教学大纲(2004版)南京大学物理系2004年5月目录1.大学物理实验(一) (1)2.大学物理实验(二) (3)3.大学物理实验(三) (5)4.力学 (7)5.热学 (9)6.电磁学 (11)7.光学 (13)8.原子与亚原子物理学 (15)9.近代物理实验 (17)10.数学物理方法 (23)11.理论力学 (28)12.电动力学 (30)13.统计物理 (33)14.量子力学 (35)15.固体物理 (37)16.原子核物理 (40)17.结构与物性 (42)18.计算物理 (44)19.微机原理与应用 (45)20.C 语言程序设计 (47)21.统计物理补充 (50)22.量子力学补充 (52)23.近代物理设计性实验 (53)24.数据库原理与应用 (55)25.现代电子技术 (57)26.晶体衍射 (60)27.晶体物理性能 (62)28.铁磁学 (64)29.磁性材料 (67)30.粒子物理 (69)31.反应堆与加速器 (71)32.生物物理 (73)33.超导物理与器件 (75)34.现代光学 (78)35.光电子技术 (81)36.半导体物理 (83)37.半导体器件物理 (85)38.单片机原理与接口技术 (87)39.硬件描述语言 (89)40.计算机图形学 (91)41.物理学史 (93)42.物理英语文献 (95)43.晶体生长物理学 (97)44.集成电路原理与设计基础 (99)45.微加工技术 (102)46.能源工学 (103)47.辐射探测与防护 (105)48.机械制图 (107)49.数字电路 (109)50.电工学 (111)51.操作系统 (113)52.计算机网络 (114)53.计算机辅助设计 (117)54.汇编语言 (120)55.离散数学 (122)56.光通信原理与技术 (124)57.凝聚态光物理 (126)58.高新技术中的物理 (128)59.计算机基础 (130)60.制冷原理与技术 (133)61.管理学概论 (135)62.演示物理 (137)一、课程编号:1200A二、课程名称:大学物理实验(一)三、英文名称:Experiments in physics(I)四、周讲课时数:3 学分:2五、先修课程:无六、课程目的和要求:本课程是为理科学生开设的公共基础课。
南京大学近代物理实验-X荧光分析X荧光分析摘要:本文介绍了能量色散X荧光分析的原理、仪器构成和基本测量、分析方法。
实验中还研究了对多道分析器的定标以及利用X荧光分析测量未知样品成分。
关键词:X荧光分析,多道分析器,莫塞莱定律一、引言X 荧光分析是一种快速、无损、多元素同时测定的现代技术,已广泛应用于材料科学、生物医学、地质研究、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,例如可用X荧光分析技术研究:钢中碳、锰含量与低碳钢的脆性转变温度的关系;千分之几的锰对铁镍合金薄膜磁电阻的严重影响;检测齿轮箱润滑油中各金属元素的含量,在不拆卸机件的情况下,分析飞行器部件磨损状况;分析大气中浮游尘、气溶胶、水源污染情况、食品中有害物;分析血样、头发、牙齿、淋巴细胞、活性酶中微量元素与人体健康、疾病的相关性;无损分析文物组分;分析飞船带回的月岩、陨石等成分;测定地下水样中砷浓度,依据金矿与砷同时存在的特征,找出金矿;用稀硝酸淋洗可疑射击者的手,测定浓缩液中硫、钡、铁、铅含量,作为侦察的依据,可信度达90%-98%;监控水泥中钙、铁、铝等含量,达到控制水泥生产品质的目的;分析土壤中微量元素,以确定作物(特别是草药)种植的适宜性等。
二、实验原理以一定能量的光子、电子、质子、α粒子或其他离子轰击样品,将物质原子中的内壳层电子击出,产生电子空位,原子处于激发态。
外壳层电子向内壳层跃迁,填补内壳层电子空位,同时释放出跃迁能量,原子回到基态。
跃迁能量以特征X射线形式释放,或能量转移给另一个轨道电子,使该电子发射出来,即俄歇电子发射。
另外还可能存在几率较低,主量子数相同,角量子数不同,亚壳层间电子的Coster-Kronig非辐射跃迁。
测出特征X射线能谱,即可确定所测样品中元素种类和含量。
当原子中K层电子被击出后,L层或M层的电子填补K层电子空位,同时一定几率发射特征X射线。
L→K产生的X射线叫K??系,L层有三个子壳层,允许跃迁使K??系有两条谱线K??1和K??2。
椭偏光法测量薄膜的厚度和折射率摘要:本实验利用椭偏光法测量介质薄膜的厚度和折射率以及硅的消光系数和复折射率,实验中借助数字化椭偏仪,使测量结果更加精确,数据处理更为简便。
关键词:椭偏光法,椭偏仪1.引言椭圆偏振测量(椭偏光法)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。
椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。
结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。
2.实验原理在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。
通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)图(1-1)这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ,用r1p、 r1s表示光线的p 分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。
由多光束干涉的复振幅计算可知:其中Eip和Eis 分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。
现将上述Eip、Eis 、Erp、Ers四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。
上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分 =的实数部分[tgψe iΔ]的虚数部分 =的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。
《近代物理实验》作业及答案《近代物理实验》练习题及答案一、填空1、核物理实验探测的主要对象是核衰变时所辐射的β射线、γ射线和中子。
因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。
2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。
用百分比表示的能量分辨率定义为:%峰位置的脉冲幅度宽度最大计数值一半处的全1000V V ??=R 。
能量分辨率值越小,分辨能力越强。
3、γ射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。
其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。
4、对于不同的原子,原子核的质量不同而使得里德伯常量值发生变化。
5、汞的546.1nm 谱线的塞曼分裂是反常塞曼效应。
6、由于氢与氘的能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。
7、在塞曼效应实验中,观察纵向效应时放置1/4波片的目的是将圆偏振光变为线偏振光。
8、射线探测器主要分“径迹型”和“信号型”两大类。
径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气泡室、火花室等。
这些探测器大多用于高能核物理实验。
信号型探测器则当一个辐射粒子到达时给出一个信号。
根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。
9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底片上,利用线性插值法来进行测量。
10、在强磁场中,光谱的分裂是由于能级的分裂引起的。
11、原子光谱是线状光谱。
12、原子的不同能级的总角动量量子数J 不同,分裂的子能级的数量也不同。
13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和②卤素管两大类。
坪特性是评价盖革-弥勒计数管的重要特性指标。
包括起始电压、坪长、坪斜等。
一只好的计数管,其坪长不能过短,对于③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。
近代物理实验步骤(第一部分)《近代物理实验》实验资料(第一部分)2021.3.61/19写在实验前的话既然你选择了物理,不管是主动选择还是被动选择,你就应该热爱实验,认真做好实验,尊重实验客观现象。
要摆正实验目的,实验不是简单的为了获得数据,要注重实验过程,实验过程多思考,多问为什么。
当你回避或敷衍应付实验时,你在实验方面将一无所获。
如果你通过学习本课,你深刻理解了每个实验的巧妙的实验思想,当你由此叹服科学家们的奇思妙想,并因此为解决某个问题在脑里产生各种实验设想时,即使这些设想是异想天开的,但我还是我祝贺你,祝贺你爱上了实验,你已经学会了在实验中享受快乐。
在我看来,错过一门实验课的学习要比错过一门理论课的学习损失得多。
因为只要你足够聪明,只要你有时间,只要你愿意,你还是有可能把错过的理论课重新学好,而实验课则不然,因为你不可能自己拥有一个实验室。
也许到目前为止,你可能认为实验报告是很容易写的。
在我看来,与其写一百个没有任何思考的实验报告,不如写一、两个精品实验报告收获更多。
应付式的实验报告只会是浪费时间,就犹如你到了大三还在做加减练习一样毫无意义。
我希望你认真写出经过思考有独立见解的实验报告,如果哪天我准许你免交实验报告时,恭喜你学会了写报告。
从以往批改的实验报告来看,只有少数同学知道怎样去处理实验数据,也只有少数同学愿意花时间来认真学习数据处理方法――虽然这是物理学科学生最必备的知识;只有少数同学知道怎样正确使用万用表和示波器等常用仪器。
我希望通过学习本课,能真正提高你的数据处理能力(广义的实验数据包括数字、现象、图形、特征等),希望你在实验过程中注意知识的积累;希望你对于不理解的问题,能主动与老师交流,或查阅有关文献或网络。
对于考研的同学,我支持,但考研不能成为要求我对你放松的理由;对于学生干部,我支持你的工作,但教学计划外的任何事情都不能影响到教学计划内的教学。
可能你只是考虑到自己的利益,而我要考虑的是对所有同学的公平。
南京大学近代物理实验2017版篇一:南京大学-法拉第效应法拉第效应(南京大学物理学院江苏南京 210000)摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。
本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。
关键词:法拉第效应;法拉第转角;费尔德常数;旋光性一、实验目的1.了解法拉第效应的经典理论。
2.初步掌握进行磁光测量的方法。
二、实验原理1.法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。
(1)比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。
几乎所有的物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。
不同物质的振动面旋转的方向可能不同。
一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学法拉第效应引言1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。
法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。
实验原理1.法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费尔德定律,即?F?VBHl(1)比例系数V由物质和工作的波长决定,表征着物质的磁光特性,这个系数称为费尔德常数,它与光频和温度有关。
几乎所有的物质(包括气体液体固体)都有法拉第效应,但是一般都很不显著。
不同物质的振动面旋转的方向可能不同。
一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇三:法拉第效应法拉第效应摘要:当在光的传播方向加一个强磁场时,平面偏振光穿过处于该磁场中的样品后,其偏振面会偏转一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。
关键词:法拉第效应法拉第旋光角费尔德常数一、引言1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,如图1所示,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。
图1 法拉第效应法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。
二、实验原理 1、法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费尔德定律,即?F?VBHl(1)比例系数V由物质和工作的波长决定,表征着物质的磁光特性,这个系数称为费尔德常数,它与光频和温度有关。
几乎所有的物质(包括气体液体固体)都有法拉第效应,但是一般都很不显著。
不同物质的振动面旋转的方向可能不同。
一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V<0)。
法拉第效应与自然旋光不同。
在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B的方向决定,和光的传播方向无关,这个光学过程是不可逆的。
光线往返一周,旋光角将倍增。
而自然旋光是可逆的,光线往返一周,累积旋光角为零。
与自然旋光类似,法拉第效应也有色散,如图2所示。
含有三价稀土离子的玻璃,费尔德常数可以近似表示为22?1V?K() (2)t这里K是透射光波长λt、有效的电偶极矩阵元、温度和浓度等物理量的函数,但是与入射波长λ无关。
这种V值随波长而变得现象称为旋光色散。
图2 室温下铈Ce3+玻璃的旋光色散曲线2、法拉第效应的经典理论从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两束等幅的的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。
介质中受原子核束缚的电子在入射光的两旋转电矢量作用下,作稳态的圆周运动。
在与电子轨道平面相垂直的方向上加一个磁场B,则在电子上将引起径向力FM(即洛伦兹力)可以有两个不同的值。
轨道半径也可以由两个不同的值。
结果,对于一个给定的磁场就会有两个电偶极矩,两个电极化率。
这样,磁场的作用就使左旋圆偏振光的折射率nL和右旋圆偏振光的折射率nR不等,通过厚度为l的介质后,将产生不同的相位滞后?R?(2?/?)nRl??(2?/?)nlL L(3)式(3)中的λ是真空中的波长。
圆偏振光的相位即旋转矢量的角位移,相位滞后即角位移的倒转。
在介质的入射面上,入射的平面偏振光E可以分解为如图3(a)所示的两个旋转方向不同的圆偏振光EL和ER。
通过介质后,它们的相位滞后旋转矢量如图3(b)所示,从介质出射后,两个圆偏振光的合成矢量E的方向相对于原来的方向转过的角度是?F?(?R??L)?(?/?)(nR?nL)l12(4)假如和的差正比于磁感应强度B,由式(4)可以得到式(1)。
磁场使左右旋圆偏振光的折射率不同,从微观上理解:这在本质上可以归结为在磁场的作用下原子、分子能及和量子态的变化。
法拉第效应的严格推导涉及到色散的量子力学理论。
图3 旋光的解释3、法拉第旋光角的计算设介质中原子的轨道电子具有磁矩μe L2me(5)式中L是轨道角动量。
在磁场B中,一个电子磁矩具有势能Ep EpB?eeBLB?L轴2me2me(6)式中L轴为电子轨道角动量的轴向分量。
当平面偏振光通过磁场B作用在折射率为n的样品介质上,光子使电子由基态激发到高能态。
处于激发态的电子吸收光子的角动量±h,动能没有改变,而势能则增加?Ep?Ep?eBeB?Ep轴??h 2me2me(7)同时光子失去能量?Ep。
式(7)中的正负号对应于左旋光和右旋光。
因为光子具有能量hν,故样品介质对光的折射率n是hw的函数对左旋光量子来说n?n(?) (8)或nL?n(E’p)nL?n(???E’p’dn?EpeBdn)?n(?)??n(?)?d?2md?(9)同理,对右旋光量子有nR?n(?)?eBdn2md?(10)把式(9)和式(10)带入式(4)得lBedn?F??2mcd?(11)用波长表示得?F??lBedn?2mcd?(12)这是法拉第效应旋光角的计算公式。
它表明旋光角的大小和样品介质的厚度、磁感应强度成正比,和入射光的波长及样品介质的色散有密切关系。
三、实验仪器法拉第效应的实验装置如图4所示。
本装置分为如下几个部分:图4 实验装置示意图光源系统:白炽灯、透镜组、单色仪、斩光器、起偏器;磁场系统:电磁铁及供电电源、特斯拉计;样品介质:可选用费尔德常数大的材料,一般是含重金属或稀土离子的光学玻璃,样品做成柱状;旋光角检测系统:检偏测角仪、前置放大器、锁相放大器、光电倍增管及其电源和输出指示。
四、实验内容1、确定磁场及光电倍增光的旋钮处于逆时针的最小位置,打开电源。
2、磁场调零。
3、光电倍增管电压换换调至850V(必须<1000V),调节过程中注意输出指示不可以过载。
4、缓慢转动检偏调节旋钮寻找消光点,这就是法拉第转角的零点。
5、固定光的波长为500nm,不断增大磁场值(必须<=600mT),分别在0,100,200,300,400,500,600mT处测量检偏角,算出Faraday转角。
6、再分别取波长为550nm,633nm,700nm(沿一个方向缓慢转动波长调节旋钮),分别在0,200,400,600mT处测量检偏角,算出Faraday转角。
7、换一个样品重做步骤5和6。
8、(选作)固定磁场值为500mT,在400nm~700nm范围内间隔50nm改变光的波长(沿一个方向缓慢转动波长调节旋钮),分别测量检偏角,取步骤5或6中0T处的检偏角值为零点,计算Faraday转角、费尔德常数。
五、注意事项1、先把磁场调零,光电倍增管的负电压调至绝对值小于300V,然后再开电源、关电源以及换样品。
2、磁场处于最大值(600mT)的时间不能太长,否则仪器发热容易损坏。
3、尽量沿一个方向缓慢转动波长调节旋钮、检偏调节旋钮。
六、数据处理 1、实验部分实验测得数据如表1所示。
样品一长度l=,样品二长度为l=。