2017-2018学年高中物理第十八章原子结构4玻尔的原子模型同步备课学案新人教版选修3-5
- 格式:doc
- 大小:332.00 KB
- 文档页数:12
高中物理18.4 波尔的原子模型导学案新人教版选修18、4 波尔的原子模型导学案新人教版选修3-5【学习目标】1、知道玻尔原子理论的基本假设、2、知道能级、能级跃迁,会计算原子能级跃迁时辐射或吸收光子的能量、3、知道玻尔对氢光谱的解释以及玻尔理论的局限性、【重点难点】1、玻尔原子理论的基本假设、2、会计算原子能级跃迁时辐射或吸收光子的能量、【学习内容】课前自学一、玻尔原子理论的基本假设1、轨道量子化围绕原子核运动的电子轨道半径只能是某些_______、_______数值,这种现象叫做轨道量子化、2、能量量子化(1)定态:电子在不同的轨道对应不同的____,在这些状态中尽管电子在做变速运动,却不向外________,在这些状态中原子是_____、(2)能量量子化:电子在不同轨道对应不同的状态,原子在不同的状态中具有不同的____,因轨道是量子化的,所以原子的能量也是_________,____________实验充分说明了这一点、 (3)能级:把量子化的_______称为能级,其中能量最低的状态叫做基态,其他的状态叫做_______、处于____的原子最稳定、3、跃迁条件(1)跃迁:当电子由能量较高(较低)的定态轨道跳到能量较低(较高)的定态轨道的过程、(2)电磁辐射:当电子在不同的定态轨道间跃迁时就会放出或吸收一定频率的______,光子的能量值为:hν=________ (其中h是普朗克常量,ν是光子的频率,Em是高能级能量,En是低能级能量)、4、几个基本概念(1)量子数:现代物理学认为原子的可能状态是________,各状态的标号1,2,3,4,……,叫做______,一般用n表示、 (2)基态:原子能量_____的状态、(3)激发态:原子能量较____的状态(相对于基态)、(4)电离:原子丢失____的过程、二、玻尔理论对氢光谱的解释原子从较高的能态向低能态跃迁时,放出光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线、三、玻尔模型的局限性1、玻尔理论的成功之处玻尔理论第一次将_____观念引入原子领域、提出了定态和____的概念,成功解释了氢原子光谱的实验规律、2、玻尔理论的局限性过多地保留了经典理论,即保留经典粒子的观念,把电子的运动看做经典力学描述下的轨道运动、核心知识探究一、玻尔氢原子理论1、轨道量子化围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象叫轨道量子化,例如:r1=0、053 nm,r2=0、212 nm,r3=0、477 nm…,即rn=n2r1,n=1,2,3,2、定态及原子能量量子化不同的电子轨道对应着不同的原子状态,在这些状态中不向外辐射能量,这就是定态、原子在不同的定态中具有不同的能量,能量是量子化的、例如:E1=-13、6 eV,E2=-3、4 eV,E3=-1、51 eV…,即En=,n=1,2,3…、3、原子的能级跃迁原子从一个定态跃迁到另一个定态,它辐射或吸收一定频率的光子,即hν=Em-En,从高能级向低能级跃迁时辐射能量,反之吸收能量,辐射或吸收的能量为两能级的能级差、二、原子跃迁注意的几个问题1、跃迁与电离跃迁是指原子从一个定态到另一个定态的变化过程,而电离则是指原子核外的电子获得一定能量挣脱原子核的束缚成为自由电子的过程、2、原子跃迁条件与规律原子的跃迁条件hν=E初-E终适用于光子和原子作用而使原子在各定态之间跃迁的情况,以下两种情况则不受此条件限制、 (1)光子和原子作用而使原子电离的情况原子一旦电离,原子结构即被破坏,因而不再遵守有关原子结构的理论、如基态氢原子的电离能为13、6 eV,只要大于或等于13、6 eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大、 (2)实物粒子和原子作用而使原子激发的情况当实物粒子和原子相碰时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,均可以使原子受激发而向较高能级跃迁,但原子所吸收的能量仍不是任意的,一定等于原子发生跃迁的两个能级间的能量差、3、直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁、两种情况下辐射(或吸收)光子的频率可能不同、4、一个原子和一群原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了、即:一群氢原子处于量子数为n的激发态时,可能辐射出的光谱条数为N==C,而一个氢原子处于量子数为n的激发态上时,最多可辐射出n-1条光谱线、5、跃迁时电子动能、原子势能与原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能Ep减小,电子动能增大,原子能量减小向外辐射能量、反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大,从外界吸收能量、【课堂小结与反思】【课后作业与练习】1、玻尔在他提出的原子模型中所作的假设有()A、原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量B、原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C、电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D、电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率2、氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是()A、氢原子的能量增加B、氢原子的能量减少C、氢原子要吸收一定频率的光子D、氢原子要放出一定频率的光子3、仔细观察氢原子的光谱,发现它只有几条不连续的亮线,其原因是()A、氢原子只有几个能级B、氢原子只能发出平行光C、氢原子有时发光,有时不发光D、氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的4、根据玻尔的氢原子理论,电子在各条可能轨道上运动的能量是指()A、电子的动能B、电子的电势能C、电子的电势能与动能之和D、电子的动能、电势能和原子核能之和5、氢原子辐射出一个光子后()A、电子绕核旋转半径增大B、电子的动能增大C、氢原子的电势能增大D、原子的能级增大6、根据玻尔理论解释的氢原子模型,量子数n越大,则( )A、电子运动轨道半径越大B、核外电子绕行速率越大C、氢原子定态能量越大D、原子的电势能越大7、氢原子从基态跃迁到激发态时,下列论述中正确的是( )A、动能变大,势能变小,总能量变小B、动能变小,势能变大,总能量变大C、动能变大,势能变大,总能量变大D、动能变小,势能变小,总能量变小8、下列叙述中,哪些符合玻尔理论( )A、电子可能轨道的分布是不连续的B、电子从一条轨道跃迁到另一个轨道上时,原子将辐射或吸收一定的能量C、电子的可能轨道上绕核做加速运动,不向外辐射能量D、电子没有确定的轨道,只存在电子云9、根据玻尔氢原子模型,氢原子核外一个电子在第一轨道、第二轨道分别运行时,它运动的( )A、轨道半径之比为1:4B、运行速率之比为4:1C、运行周期之比为1:8D、动能之比为4:1。
玻尔的原子模型★新课标要求(一)知识与技能1.了解玻尔原子理论的主要内容。
2.了解能级、能量量子化以及基态、激发态的概念。
(二)过程与方法通过玻尔理论的学习,进一步了解氢光谱的产生。
(三)情感、态度与价值观培养我们对科学的探究精神,养成独立自主、勇于创新的精神。
★教学重点玻尔原子理论的基本假设★教学难点玻尔理论对氢光谱的解释。
★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课复习提问:1.α粒子散射实验的现象是什么?2.原子核式结构学说的内容是什么?3.卢瑟福原子核式结构学说与经典电磁理论的矛盾教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
(二)进行新课1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n =n=1,2,3……能 量: 121E nE n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。
玻尔的原子模型★新课标要求(一)知识与技能1.了解玻尔原子理论的主要内容。
2.了解能级、能量量子化以及基态、激发态的概念。
(二)过程与方法通过玻尔理论的学习,进一步了解氢光谱的产生。
(三)情感、态度与价值观培养我们对科学的探究精神,养成独立自主、勇于创新的精神。
★教学重点玻尔原子理论的基本假设★教学难点玻尔理论对氢光谱的解释。
★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课复习提问:1.α粒子散射实验的现象是什么?2.原子核式结构学说的内容是什么?3.卢瑟福原子核式结构学说与经典电磁理论的矛盾教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
(二)进行新课1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n =n=1,2,3……能 量: 121E nE n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。
波尔的原子模型【学习目标】1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子光谱.【重点难点】重点:玻尔原子理论的基本假设难点:利用玻尔原子理论解释氢原子跃迁的现象【导学】一、玻尔原子理论的基本假设1.定态假设:原子只能处于一系列_______的能量状态中,在这些状态中原子是_____的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫_____2.能量假设:原子从_________的定态轨道(其能量为E m)跃迁到_______的定态轨道(其能量为E n)时,它______一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n.3.轨道假设:原子的不同能量状态对应于电子不同的运行轨道,原子的定态是______的,因而电子的可能轨道也是______的.二、玻尔理论对氢光谱的解释1.氢原子的能级图2.解释巴耳末公式(1)按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为___________(2)巴耳末公式中的正整数n和2正好代表电子跃迁之前和跃迁之后所处的_________的量子数n和2.3.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后____________.由于原子从较高能级向低能级是_______的,所以放出的光子的能量也是_______的,因此原子的发射光谱只有一些分立的亮线.三、玻尔理论的局限性1.玻尔理论的成功之处在于把量子思想引入了原子结构理论,提出了_______和跃迁的概念,成功地解释了氢原子光谱的实验规律.2.玻尔理论的不足之处在于保留了_________的观念,把电子的运动仍看做经典力学描述下的轨道运动,没有彻底摆脱________理论的框架.【导练】题组一对玻尔理论的理解1.根据玻尔理论,下列关于氢原子的论述正确的是( )A.若氢原子由能量为E n的定态向低能级跃迁,则氢原子要辐射的光子能量为hν=E nB.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC.一个氢原子中的电子从一个半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则此过程原子要辐射某一频率的光子D.氢原子吸收光子后,将从高能级向低能级跃迁题组二氢原子的跃迁规律分析2.在氢原子能级图中,横线间的距离越大,代表氢原子能级差越大,下列能级图中,能形象表示氢原子最低的四个能级的是( )3.大量氢原子从n=5的激发态,向低能级跃迁时,产生的光谱线条数是( )A.4条 B.6条C.8条 D.10条4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( )A.可能吸收一系列频率不同的光子,形成光谱中的若干条暗线B.可能发出一系列频率不同的光子,形成光谱中的若干条亮线C.只吸收频率一定的光子,形成光谱中的一条暗线D.只发出频率一定的光子,形成光谱中的一条亮线5.氢原子的能级图如图所示,欲使一处于基态的氢原子释放出一个电子而变成氢离子,氢原子需要吸收的能量至少是( ) A .13.6 eV B .10.20 eV C .0.54 eVD .27.20 eV6.如图所示为氢原子的能级图,若用能量为10.5 eV 的光子去照射一群处于基态的氢原子,则氢原子( ) A .能跃迁到n =2的激发态上去 B .能跃迁到n =3的激发态上去 C .能跃迁到n =4的激发态上去 D .以上三种说法均不对7.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则( ) A .ν0<ν1 B .ν3=ν2+ν1 C .ν0=ν1+ν2+ν3 D.1ν1=1ν2+1ν38.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用.图3为μ氢原子的能级示意图,假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光子,且频率依次增大,则E 等于( ) A .h (ν3-ν1)B .h (ν3+ν1)C .hν3D .hν49.氢原子部分能级的示意图如图所示,不同色光的光子能量如下表所示:色光红橙黄绿蓝—靛紫光子能量范围(eV)1.61~2.002.00~2.072.07~2.142.14~2.532.53~2.762.76~3.10处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为( ) A.红、蓝—靛B.黄、绿C.红、紫D.蓝—靛、紫题组三综合应用10.如图所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,(1)有可能放出几种能量的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?导练答案:1、 C 2、 C 3、 D 4、 B 5、 A 6、 D解析用能量为10.5 eV的光子去照射一群处于基态的氢原子,从能级差可知,若氢原子跃迁到某一能级上,则该能级的能量为10.5 eV-13.6 eV=-3.1 eV,根据氢原子的能级图可知,不存在能级为-3.1 eV的激发态,因此氢原子无法发生跃迁.7、 B 8、 C 9、 A解析由七种色光的光子的不同能量可知,可见光光子的能量范围在 1.61~3.10 eV,故可能是由第4能级向第2能级跃迁过程中所辐射的光子,E1=-0.85 eV-(-3.40 eV)=2.55 eV,即蓝—靛光;也可能是氢原子由第3能级向第2能级跃迁过程中所辐射的光子,E2=-1.51 eV-(-3.40 eV)=1.89 eV,即红光.10、解析(1)由N=C2n,可得N=C24=6种;(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hν=E4-E3=-0.85-(-1.51) eV=0.66 eV,λ=hcE4-E3=6.63×10-34×3×1080.66×1.6×10-19m≈1.88×10-6 m.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高中物理第十八章原子结构4 玻尔的原子模型学案新人教版选修3-5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理第十八章原子结构4 玻尔的原子模型学案新人教版选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理第十八章原子结构4 玻尔的原子模型学案新人教版选修3-5的全部内容。
4 玻尔的原子模型学习目标知识脉络1。
知道玻尔原子理论基本假设的主要内容.(重点)2.了解能级、能级跃迁、能量量子化以及基态、激发态等概念.(重点)3.掌握用玻尔原子理论简单解释氢原子模型.(重点、难点)4.了解玻尔模型的不足之处及其原因。
玻尔原子理论的基本假设[先填空]1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动.(2)电子绕核运动的轨道是量子化的.(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射.2.定态当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的能量状态叫做激发态.3.跃迁当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(其能量记为E n,m>n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,这个式子被称为频率条件,又称辐射条件.[再判断]1.玻尔的原子结构假说认为电子的轨道是量子化的.(√)2.电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.(√)3.电子能吸收任意频率的光子发生跃迁.(×)错误!1.玻尔的原子模型轨道与卢瑟福的行星模型轨道是否相同?【提示】不同.玻尔的原子模型的电子轨道是量子化的,只有当半径的大小符合一定条件时才有可能.卢瑟福的行星模型的电子轨道是任意的,是可以连续变化的.2.电子由高能量状态跃迁到低能量状态时,释放出的光子的频率可以是任意值吗?【提示】不可以.因各定态轨道的能量是固定的,由hν=E m-E n可知,跃迁时释放出的光子的频率,也是一系列固定值.错误!根据玻尔原子模型,原子核外的电子处于一系列不连续的轨道上,原子在不同的轨道又具有不同的能量.探讨1:原子处于什么状态稳定,什么状态不稳定?【提示】原子处于基态时是稳定的,原子处于激发态时不稳定.探讨2:原子的能量与电子的轨道半径具有怎样的对应关系?【提示】原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.错误!1.轨道量子化轨道半径只能够是一些不连续的、某些分立的数值.氢原子各条可能轨道上的半径r n=n2r1(n=1,2,3…)其中n是正整数,r1是离核最近的可能轨道的半径,r1=0。
第4节玻尔的原子模型1.丹麦物理学家玻尔提出玻尔原子理论的基本假设。
(1)定态假设:原子只能处于一系列不连续的能量状态之中,这些状态中能量是稳定的。
(2)跃迁假设:原子从一个定态跃迁到另一个定态,辐射或吸收一定频率的光子。
hν=Em-En。
(3)轨道假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
2.氢原子的轨道半径rn=n2r1,n=1,2,3,…氢原子的能量:En=1n2E1,n=1,2,3,…一、玻尔原子理论的基本假设1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动。
(2)电子绕核运动的轨道是量子化的。
(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射。
2.定态(1)当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫作能级。
(2)原子中这些具有确定能量的稳定状态,称为定态。
能量最低的状态叫作基态,其他的状态叫作激发态。
3.跃迁(1)当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(能量记为E n,m>n)时,会放出能量为hν的光子,这个光子的能量由前、后两个能级的能量差决定,即hν=E m-E n,该式被称为频率条件,又称辐射条件。
(2)反之,当电子吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定。
二、玻尔理论对氢光谱的解释1.解释巴耳末公式(1)按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n。
(2)巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2。
并且理论上的计算和实验测量的里德伯常量符合得很好。
2.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。
高中物理第十八章原子结构第四节玻尔的原子模型课堂探究学案新人教版选修3玻尔理论的理解问题导引丹麦物理学家玻尔意识到了经典理论在解释原子结构方面的困难。
在普朗克关于黑体辐射的量子理论和爱因斯坦关于光子的概念的启发下,他在1913年把微观世界中物理量取分立值得观念应用到原子系统。
那么在玻尔的头脑中,原子模型会是一幅什么图景呢?玻尔提示:原子中的电子绕原子核做匀速圆周运动,服从经典力学规律,但轨道是量子化的,能量也是量子化的。
名师精讲玻尔的原子模型的主要内容1、轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值。
氢原子各条可能轨道上的半径rn=n2r1(n=1,2,3,…)其中n是正整数,r1是离核最近的可能轨道的半径,r1=0、5310-10 m。
其余可能的轨道半径还有0、212 nm、0、477 nm……不可能出现介于这些轨道半径之间的其他值。
这样的轨道形式称为轨道量子化。
2、能量量子化:(1)电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态。
(2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的。
这样的能量值,称为能级,能量最低的状态称为基态,其他的状态叫作激发态,对氢原子,以无穷远处为势能零点时,其能级公式En=E1(n=1,2,3,…)其中E1代表氢原子的基态的能级,即电子在离核最近的可能轨道上运动时原子的能量值,E1=-13、6 eV。
n是正整数,称为量子数。
量子数n越大,表示能级越高。
(3)原子的能量:En=Ekn+Epn,即原子的能量包括:原子的原子核与电子所具有的电势能和电子运动的动能。
当氢原子中的电子绕核运动时:=,故Ekn=mv2=。
当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,动能减小;反之电势能减小,动能增大。
与卫星绕地球运行相似。
3、跃迁:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级Em低能级En。
4玻尔的原子模型[学习目标] 1.知道玻尔原子理论的基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念,会计算原子跃迁时吸收或辐射光子的能量.3.能用玻尔原子理论简单解释氢原子光谱.一、玻尔原子理论的基本假设[导学探究] 1.按照经典理论,核外电子在库仑引力作用下绕原子核做圆周运动.我们知道,库仑引力和万有引力形式上有相似之处,电子绕原子核的运动与卫星绕地球的运动也一定有某些相似之处,那么若将卫星—地球模型缩小是否就可以变为电子—原子核模型呢?答案不可以.在玻尔理论中,电子的轨道半径只可能是某些分立的数值,而卫星的轨道半径可按需要任意取值.2.氢原子吸收或辐射光子的频率条件是什么?它和氢原子核外的电子的跃迁有什么关系?答案电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(其能量记为E n) 时,会放出能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=E m-E n(m>n).这个式子称为频率条件,又称辐射条件.当电子从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定.[知识梳理]玻尔原子理论的基本假设1.轨道量子化(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”).(3)电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.2.定态(1)当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级.(2)原子中这些具有确定能量的稳定状态,称为定态.(3)基态:原子能量最低的状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.(4)激发态:较高的能量状态称为激发态,对应的电子在离核较远的轨道上运动.1氢原子各能级的关系为:E n=E1.(E1=-13.6 eV,n=1,2,3,…)n23.频率条件与跃迁当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(能量记为E n,m>n) 时,会放出能量为hν的光子,该光子的能量hν=E m-E n,该式称为频率条件,又称辐射条件.[即学即用]判断下列说法的正误.(1)玻尔认为电子运行轨道半径是任意的,就像人造地球卫星,能量大一些,轨道半径就会大点.(×)(2)玻尔认为原子的能量是量子化的,不能连续取值.(√)(3)当电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出任意能量的光子.(×)二、玻尔理论对氢光谱的解释[导学探究]如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时能辐射出多少种频率不同的光子?从n=4的激发态跃迁到基态时,放出光子的能量多大?图1答案氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n=4→n=3,n=4→n=2,n=4→n=1,n=3→n=2,n=3→n=1,n=2→n=1.从n=4的激发态跃迁到基态辐射光子能量ΔE=E4-E1=-0.85 eV-(-13.6 eV)=12.75 eV.[知识梳理]1.氢原子能级图(如图2所示)图22.解释巴耳末公式按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n.巴耳末公式中的正整数n和2正好代表能级跃迁之前和跃迁之后所处的定态轨道的量子数n和2.3.解释气体导电发光通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.4.解释氢原子光谱的不连续性原子从高能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.5.解释不同原子具有不同的特征谱线不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.[即学即用]判断下列说法的正误.(1)玻尔理论能很好地解释氢原子的巴耳末线系.(√)(2)处于基态的原子是不稳定的,会自发地向其他能级跃迁,放出光子.(×)(3)不同的原子具有相同的能级,原子跃迁时辐射的光子频率是相同的.(×)三、玻尔理论的局限性[导学探究]玻尔理论的成功之处在哪儿?为什么说它又有局限性?答案(1)玻尔理论成功之处在于第一次将量子化的思想引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱.(2)它的局限性在于过多的保留了经典粒子的观念.[知识梳理]1.成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.2.局限性保留了经典粒子的观念,把电子的运动仍然看做经典力学描述下的轨道运动.3.电子云原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图象就像云雾一样分布在原子核周围,故称电子云.[即学即用]判断下列说法的正误.(1)玻尔第一次提出了量子化的观念.(×)(2)玻尔的原子理论模型可以很好地解释氦原子的光谱现象.(×)(3)电子的实际运动并不是具有确定坐标的质点的轨道运动.(√)一、对玻尔原子模型的理解1.轨道量子化(1)轨道半径只能够是一些不连续的、某些分立的数值.(2)氢原子中电子轨道的最小半径为r1=0.053 n m,其余轨道半径满足r n=n2r1,式中n称为量子数,对应不同的轨道,只能取正整数.2.能量量子化(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.(2)基态:电子在离核最近的轨道上运动的能量状态,基态能量E1=-13.6 eV.1(3)激发态:电子在离核较远的轨道上运动时的能量状态,其能量值E n=E1(E1=-13.6 eV,n2n=1,2,3,…)3.跃迁与频率条件原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定发射光子hν=E m-E n态的能量差决定,即高能级E m低能级E n.吸收光子hν=E m-E n例1(多选)玻尔在他提出的原子模型中所作的假设有()A.原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率答案ABC解析A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.例2氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中()A.原子要吸收光子,电子的动能增大,原子的电势能增大B.原子要放出光子,电子的动能减小,原子的电势能减小C.原子要吸收光子,电子的动能增大,原子的电势能减小D.原子要吸收光子,电子的动能减小,原子的电势能增大答案 D解析根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B错;氢原子核外电子绕核e2 v2 1做圆周运动,由原子核对电子的库仑力提供向心力,即:k=m,又E k=mv2,所以E k=r2 r 2ke2.由此式可知:电子离核越远,即r越大时,电子的动能越小,故A、C错;由r变大时,2r库仑力对核外电子做负功,因此电势能增大,从而判断D正确.针对训练1(多选)按照玻尔原子理论,下列表述正确的是()A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m-E n(m>n)D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量答案BC解析根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.原子的能量及变化规律(1)原子的能量:E n=E k n+E p n.e2 v2(2)电子绕核运动时:k=m,r2 r1 ke2故E k n=mv n2=2 2r n电子轨道半径越大,电子绕核运动的动能越小.(3)当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.(4)电子的轨道半径增大时,说明原子吸收了光子,从能量较低的轨道跃迁到了能量较高的轨道上.即电子轨道半径越大,原子的能量越大.二、氢原子的跃迁规律分析1.对能级图的理解E1由E n=知,量子数越大,能级差越小,能级横线间的距离越小.n=1是原子的基态,n→∞n2是原子电离时对应的状态.c2.跃迁过程中吸收或辐射光子的频率和波长满足hν=|E m-E n|,h=|E m-E n|.λn n-13.大量处于n激发态的氢原子向基态跃迁时,最多可辐射种不同频率的光,一个处2于激发态的氢原子向基态跃迁时,最多可辐射(n-1)种频率的光子.例3(多选)氢原子能级图如图3所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656 nm.以下判断正确的是()图3A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nmB.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级答案CD解析能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,A错误;由E m-E n=hν可知,B错误,D正确;根据C23=3可知,C正确.针对训练2如图4所示为氢原子的能级图.用光子能量为13.06 e V的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波长的光有()图4A.15种B.10种C.4种D.1种解析基态的氢原子的能级值为-13.6 e V,吸收13.06 e V的能量后变成-0.54 e V,原子跃迁n n-1 5 ×5-1到n=5能级,由于氢原子是大量的,故辐射的光子种类是=种=102 2种.原子跃迁时需要注意的两个问题(1)注意一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.(2)注意跃迁与电离:hν=E m-E n只适用于光子和原子作用使原子在各定态之间跃迁的情况,对于光子和原子作用使原子电离的情况,则不受此条件的限制.如基态氢原子的电离能为13.6 e V,只要大于或等于13.6 e V的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大.1.根据玻尔理论,关于氢原子的能量,下列说法中正确的是()A.是一系列不连续的任意值B.是一系列不连续的特定值C.可以取任意值D.可以在某一范围内取任意值答案 B2.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是()A.电子绕核旋转的轨道半径增大B.电子的动能减少C.氢原子的电势能增大D.氢原子的能级减小答案 D解析氢原子辐射出光子后,由高能级跃迁到低能级,轨道半径减小,电子动能增大,此过程中库仑力做正功,电势能减小.3.(多选)如图5所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是()图5A.能量和频率最大、波长最短的是B光子B.能量和频率最小、波长最长的是C光子C.频率关系为νB>νA>νC,所以B的粒子性最强D.波长关系为λB>λA>λC答案ABC解析从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B 光子的能量和频率最大,波长最短,能量和频率最小、波长最长的是C光子,所以频率关系是νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C正确,D错误.4.氢原子处于基态时,原子能量E1=-13.6 eV,普朗克常量取h=6.6×10-34 J·s.(1)处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?(2)今有一群处于n=4激发态的氢原子,最多可以辐射几种不同频率的光子?其中最小的频率是多少?(结果保留2位有效数字)答案(1)3.4 eV(2)6种 1.6×1014 Hz1解析(1)E2=E1=-3.4 eV22则处于n=2激发态的氢原子,至少要吸收3.4 eV能量的光子才能电离.(2)根据C24=6知,一群处于n=4激发态的氢原子最多能辐射出的光子种类为6种.n=4→n=3时,光子频率最小为νmin,则E4-E3=hνmin,代入数据,解得νmin=1.6×1014 Hz.一、选择题(1~7题为单选题,8~10题为多选题)1.根据玻尔理论,氢原子有一系列能级,以下说法正确的是()A.当氢原子处于第2能级且不发生跃迁时,会向外辐射光子B.电子绕核旋转的轨道半径可取任意值C.处于基态的氢原子可以吸收10 eV的光子D.大量氢原子处于第4能级,向低能级跃迁时最多会出现6条谱线答案 D解析氢原子处于第2能级且向基态发生跃迁时,才会向外辐射光子.故A错误.根据玻尔原子理论可知,电子绕核旋转的轨道半径是特定值.故B错误.10 e V的能量不等于基态与其他能级间的能级差,所以该光子能量不能被吸收.故C错误.根据C24=6知,大量处于n=4能级的氢原子向低能级跃迁时最多能辐射出6种不同频率的光子.故D正确.2.一个氢原子从n=3能级跃迁到n=2能级,该氢原子()A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少答案 B解析氢原子从高能级向低能级跃迁时,放出光子,能量减少,故选项B正确.3.氢原子的能级图如图1所示,已知可见光的光子能量范围约为1.62~3.11 eV.下列说法错误的是()图1A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离B.大量氢原子从高能级向n=3能级跃迁时,发出的光具有显著的热效应C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出2种不同频率的可见光D.大量处于n=4能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光答案 D解析紫外线的频率比可见光的高,因此紫外线光子的能量应大于3.11 e V,而处于n=3能级的氢原子其电离能仅为1.51 eV<3.11 eV,所以处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离.4.根据玻尔理论,某原子从能量为E的轨道跃迁到能量为E′的轨道,辐射出波长为λ的光.以h表示普朗克常量,c表示真空中的光速,E′等于()λλA.E-h B.E+hc cc cC.E-h D.E+hλλ答案 Cc c解析释放的光子能量为hν=h,所以E′=E-hν=E-h.λλ5.如图2所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长的光.选项图所示的该原子光谱中,谱线从左向右的波长依次增大,则正确的是()图2答案 Cc 解析由能级图可知,三种光的能量大小依次为E a>E c>E b,又E=h,可知b光的能量最小,λ波长最长,a光的能量最大,波长最短,C项正确.6.氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,已知普朗克常量为h,若氢原子从能级k跃迁到能级m,则()A.吸收光子的能量为hν1+hν2B.辐射光子的能量为hν1+hν2C.吸收光子的能量为hν2-hν1D.辐射光子的能量为hν2-hν1答案 D解析由于氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,可知能级k最高、n最低,所以氢原子从能级k跃迁到能级m,要辐射光子的能量为hν2-hν1,选项D正确,A、B、C错误.7.处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有()A.1种B.2种C.3种D.4种答案 C8.关于玻尔的原子模型,下列说法中正确的是()A.它彻底否定了卢瑟福的核式结构学说B.它发展了卢瑟福的核式结构学说C.它完全抛弃了经典的电磁理论D.它引入了普朗克的量子理论答案BD解析玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确,它的成功就在于引入了量子化理论,缺点是被过多引入的经典力学所困,故C错误,D正确.9.关于玻尔原子理论的基本假设,下列说法中正确的是()A.原子中的电子绕原子核做圆周运动,库仑力提供向心力B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的C.原子的能量包括电子的动能和势能,电子动能可取任意值,势能只能取某些分立值D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)光子频率等于电子绕核运动的频率答案AB解析根据玻尔理论的基本假设知,原子中的电子绕原子核做圆周运动,库仑力提供向心力,故A正确.玻尔原子模型结合氢原子光谱,可知氢原子的能量是不连续的.故B正确.原子的能量包括电子的动能和势能,由于轨道是量子化的,则电子动能也是特定的值,故C错误.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子能量等于两能级间的能级差,D错误.10.如图3所示,用光子能量为E的单色光照射容器中处于基态的氢原子,发现该容器内的氢能够释放出三种不同频率的光子,它们的频率由低到高依次为ν1、ν2、ν3,由此可知,开始用来照射容器的单色光的光子能量可以表示为()图3A.hν1 B.hν3C.hν1+hν2 D.hν1+hν2+hν3答案BC解析氢原子吸收光子能向外辐射三种不同频率的光子,可知氢原子被单色光照射后跃迁到第3能级,吸收的光子能量等于两能级间的能级差,即单色光的能量E=hν3,又hν3=hν1+hν2,故B、C正确,A、D错误.二、非选择题11.如图4所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,图4(1)最多有可能放出几种能量的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?最长波长是多少?答案(1)6种(2)第4能级向第3能级 1.88×10-6 m解析(1)由N=C2n,可得N=C24=6种.(2)氢原子由第4能级向第3能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根hc hc据hν==E4 -E3 =-0.85 -( -1.51) eV =0.66 eV ,λ==λE4-E3m≈1.88×10-6 m.6.63 × 10-34 × 3 × 1080.66 × 1.6 × 10-1912.氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E1=-54.4 eV,氦离子能级的示意图如图5所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢原子.求:图5(1)氦离子发出的光子中,有几种能使氢原子发生光电效应?(2)发生光电效应时,光电子的最大初动能最大是多少?答案(1)3种(2)37.4 eVn n-1解析(1)一群处于n=4能级的氦离子跃迁时,一共发出N==6种光子.2由频率条件hν=E m-E n知6种光子的能量分别是由n=4到n=3,hν1=E4-E3=2.6 eV,由n=4到n=2,hν2=E4-E2=10.2 eV,由n=4到n=1,hν3=E4-E1=51.0 eV,由n=3到n=2,hν4=E3-E2=7.6 eV,由n=3到n=1,hν5=E3-E1=48.4 eV,由n=2到n=1,hν6=E2-E1=40.8 eV,由发生光电效应的条件知,hν3、hν5、hν6 三种光子可使处于基态的氢原子发生光电效应.(2)由光电效应方程E k=hν-W0知,能量为51.0 eV的光子使氢原子逸出的光电子最大初动能最大,将W0=13.6 eV代入,E k=hν-W0得E k=37.4 eV.。
4 玻尔的原子模型学习目标知识脉络1.知道玻尔原子理论基本假设的主要内容.(重点)2.了解能级、能级跃迁、能量量子化以及基态、激发态等概念.(重点)3.掌握用玻尔原子理论简单解释氢原子模型.(重点、难点)4.了解玻尔模型的不足之处及其原因.玻尔原子理论的基本假设[先填空]1.玻尔原子模型(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动.(2)电子绕核运动的轨道是量子化的.(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射.2.定态当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的能量状态叫做激发态.3.跃迁当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(其能量记为E n,m>n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,这个式子被称为频率条件,又称辐射条件.[再判断]1.玻尔的原子结构假说认为电子的轨道是量子化的.(√)2.电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.(√)3.电子能吸收任意频率的光子发生跃迁.(×)[后思考]1.玻尔的原子模型轨道与卢瑟福的行星模型轨道是否相同?【提示】不同.玻尔的原子模型的电子轨道是量子化的,只有当半径的大小符合一定条件时才有可能.卢瑟福的行星模型的电子轨道是任意的,是可以连续变化的.2.电子由高能量状态跃迁到低能量状态时,释放出的光子的频率可以是任意值吗?【提示】不可以.因各定态轨道的能量是固定的,由hν=E m-E n可知,跃迁时释放出的光子的频率,也是一系列固定值.[合作探讨]根据玻尔原子模型,原子核外的电子处于一系列不连续的轨道上,原子在不同的轨道又具有不同的能量.探讨1:原子处于什么状态稳定,什么状态不稳定?【提示】原子处于基态时是稳定的,原子处于激发态时不稳定.探讨2:原子的能量与电子的轨道半径具有怎样的对应关系?【提示】原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.[核心点击]1.轨道量子化轨道半径只能够是一些不连续的、某些分立的数值.氢原子各条可能轨道上的半径r n=n2r1(n=1,2,3…)其中n是正整数,r1是离核最近的可能轨道的半径,r1=0.53×10-10m.其余可能的轨道半径还有0.212 nm、0.477 nm…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.2.能量量子化(1)电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.(2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的。
第四节玻尔的原子模型学习目标知识导图知识点1 玻尔原子理论的基本假设1.轨道假设轨道量子化:原子中的电子在__库仑力__的作用下,绕原子核做圆周运动,电子运动轨道的__半径__不是任意的,而是__量子__化的。
电子在这些轨道上绕核的转动是__稳定__的,不产生__电磁__辐射。
2.定态假设(1)定态:当电子在不同的轨道上运动时,原子处于不同的__状态__。
原子在不同的__状态__中具有不同的能量,因此,原子的能量是__量子__化的。
这些__量子__化的能量值叫做__能级__,原子中这些具有确定能量的稳定状态,称为__定态__。
(2)基态:能量最__低__的状态叫做基态。
(3)激发态:基态__之外__的能量状态叫做激发态。
3.跃迁假设电子从能量__较高__的定态轨道跃迁到能量__较低__的定态轨道时,会向外辐射能量,辐射的能量是__一份一份__的,光子的能量由两个能级的__能量差__决定。
hν=E m-E n这个式子称为频率条件,也叫辐射条件,式中的h为普朗克常量,ν为光子的__频率__。
知识点2 玻尔理论对氢光谱的解释1.氢原子的能级图2.解释巴耳末公式(1)按照玻尔理论,原子从高能级(如从E3)跃迁到低能级(如到E2)时辐射的光子的能量为hν=__E3-E2__。
(2)巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的__定态轨道__的量子数n和2。
并且理论上的计算和实验测量的__里德伯常量__符合得很好。
3.解释气体导电发光通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到__激发态__,处于激发态的原子是__不稳定__的,会自发地向能量较低的能级跃迁,放出__光子__,最终回到基态。
4.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后__两能级差__,由于原子的能级是__分立__的,所以放出的光子的能量也是__分立__的,因此原子的发射光谱只有一些分立的亮线。
第十八章第四节玻尔的原子模型1.(吉林省长春十一中2016~2017学年高二下学期期中)根据玻尔理论,下列论述不正确的是( D )A.电子在一系列定态轨道上运动,不会发生电磁辐射B.处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,这是原子发光的机理C.巴尔末公式代表的应该是电子从量子数分别为n=3,4,5等高能级向量子数为2的能级跃迁时发出的光谱线D.一个氢原子中的电子从一个半径为r1的轨道自发地直接跃迁到另一半径为r2的轨道,已知r1>r2,则此过程原子要吸收某一频率的光子,该光子能量由前后两个能级的能量差决定解析:按照玻尔理论电子在某一个轨道上运动的时候并不向外辐射能量,即其状态是稳定的,故A正确;处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,这是原子发光的机理,故B正确;巴尔末公式:1λ=R(122-1n2),代表的是电子从量子数分别为n=3,4,5等高能级向量子数为2的能级跃迁时发出的光谱线,故C正确;已知r1>r2,电子从较高能级的轨道自发地跃迁到较低能级的轨道时,会辐射一定频率的光子,故D 错误。
本题选择错误的,故选:D。
2.(辽宁省大连市2017~2018学年高二下学期期中)下列四幅图涉及到不同的物理知识,其中说法不正确的是( D )A.图甲:普朗克通过研究黑体辐射提出能量子的概念,成为量子力学的奠基人之一B.图乙:玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率是不连续的C.图丙:卢瑟福通过分析α粒子散射实验结果,提出了原子的核式结构模型D.图丁:根据电子束通过铝箔后的衍射图样,可以说明电子具有粒子性解析:根据物理学史可知A、B、C正确;根据电子束通过铝箔后的衍射图样,说明电子具有波动性,故D错误。
3.(河北省“名校联盟”2018届高三质检)氢原子能级如图所示,已知可见光光子的能量在1.61eV~3.10eV范围内,则下列选项说法正确的是( B )A.氢原子能量状态由n=2能级跃迁到n=1能级,放出的光子为可见光B.大量氢原子处于n=4能级时,向低能级跃迁能发出6种频率的光子C.氢原子光谱是连续光谱D.氢原子处于n=2能级时,可吸收2.54eV的能量跃迁到高能级解析:从n=2能级跃迁到n=1能级时发出的光子能量为-3.40+13.60=10.2eV,不在可见光范围之内,A错误;大量氢原子处于n=4能级时,向低能级跃迁能发出C24=6种频率的光,B正确;玻尔理论认为原子的能量是量子化的,不是连续光谱,C错误;吸收的光子能量等于两能级间的能级差,才能发生跃迁,n=2能级时吸收 2.54eV的能量变为-0.86eV,不能向高能级跃迁,D错误。
4 玻尔的原子模型名师导航知识梳理1.原子各状态所具有的______________叫做原子的能级,能量______________的状态叫做基态,当原子不处于______________时,我们就说原子处于激发态。
2.氢原子能级表达式为______________,其中n 也叫______________,氢原子的基态能量值为______________.3。
能级间的跃迁产生不连续的______________,从不同能级跃迁到同一特定能级形成一个______________.疑难突破1。
对氢原子能级的理解剖析:氢原子的能级公式为E n =21n E (n=1,2,3…) 式中n 称为量子数,E 1代表氢原子的基态能量,即量子数n=1时对应的能量,其值为-13.6 eV 。
E n 代表电子在第n 轨道上运动时的能量。
关于氢原子的能级,有以下几点说明:(1)在氢原子问题中,电子和核在库仑力的作用下绕公共质心运动,因此,严格地讲,电子的运动并不等于电子和核的整体运动。
但由于核的质量远大于电子的质量,通常就近似认为核是不动的。
此时,电子的运动状态就反映了原子的运动状态。
所以,在忽略核运动时,电子的能量就等于原子的能量,或者说,氢原子能级和氢原子中电子的能级这两种说法的意义相同,都是指氢原子系统的能量。
(2)氢原子的能量是电子沿轨道运动的动能加电子与原子核系统的势能.规定无穷远处的位置为电势能零点,由现代物理学知识,电子电势能为其动能的-2倍,因而电子绕核运动的总能量为负值.总能量为负值又表示电子在该状态中的能量都是小于它脱离原子而静止于无穷远处时的能量.例如:电子在第一条可能的轨道时,动能为13.6 eV,电势能为—27.2 eV,总能量E1=—13。
6 eV。
氢原子的能量是负值,意味着氢原子系统是比较稳定的。
(3)由氢原子能级公式知道,氢原子的能量不能为任意量,而只能取由量子数n决定的一系列分立的值.也就是说,氢原子的能量是量子化的,这种量子化的能量值就是能级;显然若氢原子轨道一定时,氢原子能量也是一定的.轨道半径越大,即n值越大,则氢原子能量越高,我们称为高能级。
4 玻尔的原子模型[目标定位] 1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子模型.一、玻尔原子理论的基本假设1.玻尔原子模型(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.(2)电子绕核运动的轨道是量子化的.(3)电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.2.定态当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.即原子的能量是量子化的,这些量子化的能量值叫做能级.原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的状态叫做激发态,对应的电子在离核较远的轨道上运动.3.频率条件当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(能量记为E n,m >n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,该式称为频率条件,又称辐射条件.反之,当电子吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子能量同样由频率条件决定.高能级E m低能级E n【深度思考】是不是所处的能级越高的氢原子,向低能级跃迁时释放的光子能量越大?答案不一定.氢原子从高能级向低能级跃迁时,所释放的光子能量一定等于能级差,氢原子所处的能级越高,跃迁时能级差不一定越大,释放的光子能量不一定越大.【例1】根据玻尔理论,下列关于氢原子的论述正确的是( )A.若氢原子由能量为E n的定态向低能级跃迁时,氢原子要辐射的光子能量为hν=E n B.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC.一个氢原子中的电子从一个半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则此过程原子要辐射某一频率的光子D .氢原子吸收光子后,将从高能级向低能级跃迁解析 原子由高能级向低能级跃迁满足频率条件,辐射的光子能量为hν=E n -E m ,同样吸收满足频率条件的光子后会从低能级跃迁到高能级;原子辐射的能量与电子在某一轨道上绕核的运动无关.答案 C【例2】 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即k e 2r 2=m v 2r ,又E k =12mv 2,所以E k =ke 22r.由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.答案 D当氢原子从低能量态E n 向高能量态E m (n <m )跃迁时,r 增大,E k 减小,E p 增大(或r 增大时,库仑力做负功,电势能E p 增大),E 增大,故需吸收光子能量,所吸收的光子能量hν=E m -E n .二、玻尔理论对氢光谱的解释1.氢原子能级图如图1所示图12.解释巴耳末公式按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n.巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2.3.解释气体导电发光通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.4.解释氢原子光谱的不连续性原子从高能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.5.解释不同原子具有不同的特征谱线不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.【深度思考】(1)观察氢原子能级图(图1),当氢原子处于基态时,E1=-13.6 eV.通过计算,E n与E1在数值上有什么关系?(2)如果氢原子吸收的能量大于13.6 eV,会发生什么现象?答案(1)通过计算得:E n=E1n2(n=1,2,3,…)(2)hν=E m-E n适用于光子和原子在各定态之间跃迁情况,若吸收光子的能量大于或等于13.6 eV时,原子将会被电离.【例3】如图2所示为氢原子的能级图.用光子能量为13.06 eV的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波的光有( )图2A .15种B .10种C .4种D .1种解析 基态的氢原子的能级值为-13.6 eV ,吸收13.06 eV 的能量后变成-0.54 eV ,原子跃迁到n =5能级,由于氢原子是大量的,故辐射的光子种类是n n -12=5×5-12=10种.答案 B1.对能级图的理解:由E n =E 1n 2知,量子数越大,能级越密.量子数越大,能级差越小,能级横线间的距离越小.n =1是原子的基态,n →∞是原子电离时对应的状态.2.跃迁过程中吸收或辐射光子的频率和波长满足hν=|E m -E n |,h c λ=|E m -E n |.3.大量处于n 激发态的氢原子向基态跃迁时,最多可辐射n n -12种不同频率的光,一个处于激发态的氢原子向基态跃迁时,最多可辐射(n -1)种频率的光子.针对训练 图3为氢原子能级的示意图,现有大量的氢原子处于n =4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是( )图3A .最容易表现出衍射现象的光是由n =4能级跃迁到n =1 能级产生的B .频率最小的光是由n =2能级跃迁到n =1能级产生的C .这些氢原子总共可辐射出3种不同频率的光D .用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34 eV 的金属铂能发生光电效应答案 D解析 由ΔE =hc λ,知λ=hcΔE,则由n =4跃迁到n =1能级产生的光子能量最大,波长最短,所以该光子最不容易发生衍射现象,A 项错误;因由n =2能级跃迁到n =1能级产生的光子能量大于由n =4能级跃迁到n =3能级产生光子的能量,故其频率不是最小的,所以B 项错误;大量的氢原子由n =4的激发态向低能级跃迁,可能辐射出6种不同频率的光子,故C 项错误;由n =2能级跃迁到n =1能级辐射出光子的能量E =-3.4 eV -(-13.6)eV =10.2 eV.因E >W 逸=6.34 eV ,故D 项正确.三、玻尔理论的局限性1.玻尔理论的成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律.2.玻尔理论的局限性保留了经典粒子的观念,仍然把电子的运动看做经典力学描述下的轨道运动.1.(对玻尔理论的理解)根据玻尔的原子结构模型,原子中电子绕核运转的轨道半径( )A .可以取任意值B .可以在某一范围内取任意值C .可以取不连续的任意值D .是一些不连续的特定值答案 D解析 按玻尔的原子理论:原子的能量状态对应着电子不同的运动轨道,由于原子的能量状态是不连续的,则其核外电子的可能轨道是分立的,且是特定的,故上述选项只有D 正确.2.(对玻尔理论的理解)氢原子辐射出一个光子后,根据玻尔理论,下列说法中正确的是( )A .电子绕核旋转的半径增大B .氢原子的能量增大C .氢原子的电势能增大D .氢原子核外电子的速率增大答案 D解析 氢原子辐射一个光子时能量减少,所以电子的轨道半径减小,速度增大,电势能减小,故选项D正确.3.(氢原子能级及跃迁)(多选)如图4所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是( )图4A.能量和频率最大、波长最短的是B光子B.能量和频率最小、波长最长的是C光子C.频率关系为νB>νA>νC,所以B的粒子性最强D.波长关系为λB>λA>λC答案ABC解析从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B光子的能量和频率最大,波长最短;能量和频率最小、波长最长的是C光子,所以频率关系式νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C 正确,D错误.4.(氢原子能级及跃迁)(多选)用光子能量为E的光束照射容器中的氢气,氢原子吸收光子后,能发射频率为ν1、ν2、ν3的三种光子,且ν1<ν2<ν3.入射光束中光子的能量应是( ) A.hν3B.h(ν1+ν2)C.h(ν2+ν3) D.h(ν1+ν2+ν3)答案AB解析氢原子吸收光子后发射三种频率的光,可知氢原子由基态跃迁到了第三能级,能级跃迁如图所示,由图可知该氢原子吸收的能量为hν3或h(ν1+ν2).题组一对玻尔理论的理解1.(多选)玻尔在他提出的原子模型中所做的假设有( )A.原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子D.电子在绕原子核做圆周运动时,稳定地产生电磁辐射答案ABC解析原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量,故A 正确;原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的,故B正确;电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子,故C正确;电子在绕原子核做圆周运动时,不会产生电磁辐射,只有跃迁时才会出现,故D错误.2.(多选)关于玻尔原子理论的基本假设,下列说法中正确的是( )A.原子中的电子绕原子核做圆周运动,库仑力提供向心力B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的C.原子的能量包括电子的动能和系统的势能,电子动能可取任意值,系统的势能只能取某些分立值D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)光子频率等于电子绕核运动的频率答案AB解析根据玻尔理论的基本假设知,原子中的电子绕原子核做圆周运动,库仑力提供向心力,故A正确;玻尔原子模型结合氢原子光谱,则表明氢原子的能量是不连续的.故B正确;原子的能量包括电子的动能和系统的势能,由于轨道是量子化的,则电子动能也是特定的值,故C错误;电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子能量等于两能级间的能级差,D错误.3.(多选)下列说法正确的是( )A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立B.玻尔理论可以成功解释氢原子的光谱现象C.玻尔继承了卢瑟福原子模型,但对原子能量和电子轨道引入了量子化假设D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征答案BCD解析卢瑟福通过α粒子散射实验建立了原子核式结构模型,故A错误;玻尔理论成功地解释了氢原子的光谱现象.故B正确;玻尔的原子模型对应的是电子轨道的量子化,卢瑟福的原子模型核外电子可在任意轨道上运动,故C正确;玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征,故D正确.4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( )A .可能吸收一系列频率不同的光子,形成光谱中的若干条暗线B .可能发出一系列频率不同的光子,形成光谱中的若干条亮线C .只吸收频率一定的光子,形成光谱中的一条暗线D .只发出频率一定的光子,形成光谱中的一条亮线答案 B解析 当原子由高能级向低能级跃迁时,原子将发出光子,由于不只是两个特定能级之间的跃迁,所以它可以发出一系列频率的光子,形成光谱中的若干条亮线.5.根据玻尔理论,氢原子有一系列能级,以下说法正确的是( )A .当氢原子处于第二能级且不发生跃迁时,会向外辐射光子B .电子绕核旋转的轨道半径可取任意值C .处于基态的氢原子可以吸收10 eV 的光子D .大量氢原子处于第四能级向基态跃迁时会出现6条谱线答案 D解析 氢原子处于第二能级且向基态发生跃迁时,才会向外辐射光子.故A 错误.根据玻尔原子理论可知,电子绕核旋转的轨道半径是特定值.故B 错误.10 eV 的能量不等于基态与其他能级间的能级差,所以该光子能量不能被吸收.故C 错误.根据C 24=6知,大量处于n =4能级的氢原子跃迁时能辐射出6种不同频率的光子.故D 正确.6.根据玻尔理论,某原子从能量为E 的轨道跃迁到能量为E ′的轨道,辐射出波长为λ的光.以h 表示普朗克常量,c 表示真空中的光速,E ′等于( )A .E -h λcB .E +h λcC .E -h c λD .E +h c λ 答案 C解析 释放的光子能量为hν=h c λ,所以E ′=E -hν=E -h c λ.题组二 氢原子能级及跃迁7.氢原子的基态能量为E 1,下列四个能级图,正确代表氢原子的是( )答案 C解析 由氢原子能级图可知,量子数n 越大,能级越密,且各能级能量E n =E 1n2,所以C 正确.8.汞原子的能级图如图1所示,现让一束光子能量为8.8 eV 的单色光照射到大量处于基态(能级数n =1)的汞原子上,能发出6种不同频率的色光.下列说法中正确的是( )图1A .最长波长光子的能量为1.1 eVB .最长波长光子的能量为2.8 eVC .最大频率光子的能量为2.8 eVD .最大频率光子的能量为4.9 eV答案 A解析 由题意知,吸收光子后汞原子处于n =4的能级,向低能级跃迁时,最大频率的光子能量为(-1.6+10.4)eV =8.8 eV ,最大波长(即最小频率)的光子能量为(-1.6+2.7)eV =1.1 eV ,故A 正确.9.(多选)如图2是氢原子的能级图,一群氢原子处于n =3能级,下列说法中正确的是( )图2A.这群氢原子发出的光子中,能量最大为10.2 eVB.从n=3能级跃迁到n=2能级时发出的光波长最长C.这群氢原子能够吸收任意光子的能量而向更高能级跃迁D.如果发出的光子中只有一种能使某金属产生光电效应,那一定是由n=3能级跃迁到n=1能级发出的答案BD解析由n=3能级跃迁到n=1能级,辐射的光子能量最大,ΔE=13.6 eV-1.51 eV=12.09 eV,从n=3能级跃迁到n=2能级辐射的光子能量最小,频率最小,则波长最长,故A错误,B正确;一群处于n=3能级的氢原子发生跃迁,吸收的能量必须等于两能级的能级差,故C 错误;如果发出的光子只有一种能使某金属产生光电效应,知这种光子为能量最大的一种,即由n=3能级跃迁到n=1能级发出的.故D正确.10.如图3所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.处在n=4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光中,波长最长的是( )图3A.n=4跃迁到n=1时辐射的光子B.n=4跃迁到n=3时辐射的光子C.n=2跃迁到n=1时辐射的光子D.n=3跃迁到n=2时辐射的光子答案 B11.(多选)如图4所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在自发跃迁中放出一些光子,用这些光子照射逸出功为2.25 eV的钾,下列说法正确的是( )图4A.这群氢原子能发出三种不同频率的光B.这群氢原子发出光子均能使金属钾发生光电效应C.金属钾表面逸出的光电子最大初动能一定小于12.09 eVD.金属钾表面逸出的光电子最大初动能可能等于9.84 eV答案 ACD解析 根据C 23=3知,这群氢原子能辐射出三种不同频率的光子,故A 正确;从n =3跃迁到n =1辐射的光子能量为13.6 eV -1.51 eV =12.09 eV>2.25 eV ,从n =2跃迁到n =1辐射的光子能量为13.6 eV -3.4 eV =10.2 eV>2.25 eV ,从n =3跃迁到n =2辐射的光子能量为3.4 eV -1.51 eV =1.89 eV<2.25 eV ,所以能发生光电效应的光有两种,故B 错误;从n =3跃迁到n =1辐射的光子能量最大,发生光电效应时,产生的光电子最大初动能最大,根据光电效应方程得,E km =hν-W 0=12.09 eV -2.25 eV =9.84 eV.故C 、D 正确. 题组三 综合应用12.如图5所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,图5(1)有可能放出几种能量的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?(普朗克常量h =6.63×10-34 J·s,光速c =3.0×108 m/s)答案 (1)6 (2)第四能级向第三能级 1.88×10-6 m解析 (1)由N =C 2n ,可得N =C 24=6种;(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hc λ=E 4-E 3=-0.85-(-1.51) eV =0.66 eV ,λ=hc E 4-E 3=6.63×10-34×3×1080.66×1.6×10-19 m≈1.88×10-6 m.13.氢原子在基态时轨道半径r 1=0.53×10-10m ,能量E 1=-13.6 eV.求氢原子处于基态时.(1)电子的动能;(2)原子的电势能;(3)用波长是多少的光照射可使其电离?答案 (1)13.6 eV (2)-27.2 eV (3)9.14×10-8 m解析 (1)设处于基态的氢原子核外电子速度大小为v 1,则k e 2r 21=mv 21r 1,所以电子动能 E k1=12mv 21=ke 22r 1=9×109× 1.6×10-1922×0.53×10-10×1.6×10-19 eV ≈13.6 eV.(2)因为E 1=E k1+E p1,所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.(3)设用波长为λ的光照射可使氢原子电离,有hc λ=0-E 1 所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19 m ≈9.14×10-8 m.。