最新北师大版九年级数学上册知识点总结
- 格式:doc
- 大小:1.16 MB
- 文档页数:5
北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形.三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形(一)、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
(1)1.菱形的性质与判定菱形的定义: 有一组邻边相等的平行四边形叫做菱形。
菱形的性质: ①菱形的四条边相等。
②菱形的对角线互相垂直。
③菱形具有平行四边形的一切性质。
(3)菱形的判定: ①有一组邻边相等的平行四边形是菱形。
③四条边都相等的四边形是菱形。
2、矩形的性质与判定矩形的定义: 有一个角是直角的平行四边形叫做矩形。
矩形的性质: ①矩形的四个角都是直角。
②矩形的对角线相等。
③矩形具有平行四边形的一切性质。
矩形的判定: ①有一个角是直角的平行四边形是矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
3、正方形的性质与判定正方形的定义: ①有一组邻边相等, 并且有一个角是直角的平行四边形叫做正方形。
正方形的性质: ①正方形的四个角都是直角, 四条边相等。
正方形的判定: ①有一组邻边相等, 并且有一个角是直角的平行四边形是正方形。
②对角线相等的菱形是正方形。
③对角线垂直的矩形是正方形。
④有一个叫是直角的菱形是正方形。
第二章一元二次方程1.认识一元二次方程(1)整式方程及一元二次方程的概念整式方程: 方程两边都是关于未知数的整式;一元二次方程:只含有一个未知数x的整式方程, 并且都可以化作ax2+bx+c=0(a,b,c为常数, a≠0)的形式。
(2)一元二次方程的一般式及各系数含义一般式: ax2+bx+c=0(a,b,c为常数, a≠0), 其中, a是二次项系数, b是一次项系数, c是常数项。
(3)一元二次方程解的估算:当某一x的取值使得这个方程中的ax2+bx+c的值无限接近于0时, x的值即可看做一元二次方程ax2+bx+c=0的近似解2.配方法将一元二次方程转化为(x+m)2=n的形式, 它的一边是一个完全平方式, 另一边是一个常数。
当n≥0时, 两边同时开平方, 转化为一元一次方程, 便可以求出它的根。
(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。
九年级上册数学知识点总结第一章 证明(二)一、全等三角形的判定:SSS 、SAS 、AAS 、ASA 、HL二、等腰三角形1、等腰三角形“三线合一”顶角的平分线、底边上的中线、底边上的高2、等腰三角形:等边对等角,等角对等边。
三、等边三角形(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)“三线合一” 四、直角三角形1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、常用关系式:由三角形面积公式可得:两直角边的积=斜边与斜边上的高的积五、角的平分线及其性质与判定1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
(如图1所示,AO=BO=CO )3、角的平分线的判定定理:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
六、线段垂直平分线的性质与判定1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
2、线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
3、定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(如图2所示,OD=OE=OF)线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
A CB O 图1 图2 O A CBD E F第二章 一元二次方程一、一元二次方程1. 一元二次方程定义只含有一个未知数x 的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程. 一元二次方程必须同时满足以下三点; (1)方程是整式方程. (2)它只含有一个未知数.(3)未知数的最高次数是2,即化简为ax 2+bx+c=0时,a ≠0. 2. 一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
北师大版九年级数学知识点汇总(总16页)第一章整式与代数式一、定义1、定义1:整式整式是由常数和未知数的乘积以及未知数的幂次构成的一个或多个项的表达式。
2、定义2:代数式代数式是数学中由常数、未知数、及他们的运算符号组成的符号表达式的总称。
二、运算1、加减运算在加减运算中,同类项要求具有相同的底数和指数,再将它们的系数相加减,整式中一些未知数有相同指数,可以合并为一项。
2、乘除运算乘除运算中,同一式子中的若干未知数及其指数要求相同,否则将它们拆开,系数则相乘、相除,未知数则相乘、相除。
三、同类因式1、定义:同类因式是指有相同底数和指数的项。
2、形式当底数相同,有两种形式出现:(1)乘积形式,如:(a+b)2;(2)对比形式,如a2:b2;当指数相同,有三种形式出现:(1)口诀形式,如:a2b2;(2)引号形式,如:(a+b)2;(3)下标形式,如:a2/b2。
第二章平方差一、定义1、定义1:平方平方是数学中指一个数的平方,也可以表示为n²。
2、定义2:差差是指在数学中表示两个或多个数之间的差,也可以表示为a-b。
二、运算1、解平方差要解方程:x²-a=b,须将a和b分别平方,变为x²-a²=b²,再根据等式左右两边分别加或减a²,变为:x²±2a x±a²=b²,再用平方根法求出x的值。
2、完全平方差要解方程:ax²+2bx+c=0,首先设:x²+2px+q=0,其中p=b/a,q=c/a,再将上式化为完全平方差的形式:(x+p)²=q-p²,最后解出 x=–p±√q–p² 。
三、巧解平方差当a、b、c的数值比较简单且不能完全平方差时,则可用巧解方法。
只要将a、b、c 做互质处理,即将a与b、c求公约数,将a、b、c分解为两个数的乘积,如果形式中乘积可以分解完全平方式,则可用巧解方法解方程。
北师大九年级数学上册一、章节知识点总结。
1. 特殊平行四边形。
- 矩形。
- 定义:有一个角是直角的平行四边形是矩形。
- 性质:- 四个角都是直角。
- 对角线相等。
- 既是轴对称图形(对称轴有两条,对边中点连线所在直线)又是中心对称图形(对称中心是对角线交点)。
- 判定:- 有一个角是直角的平行四边形是矩形。
- 对角线相等的平行四边形是矩形。
- 有三个角是直角的四边形是矩形。
- 菱形。
- 定义:有一组邻边相等的平行四边形是菱形。
- 性质:- 四条边都相等。
- 对角线互相垂直,且每条对角线平分一组对角。
- 是轴对称图形(对称轴是两条对角线所在直线),也是中心对称图形。
- 判定:- 有一组邻边相等的平行四边形是菱形。
- 对角线互相垂直的平行四边形是菱形。
- 四条边都相等的四边形是菱形。
- 正方形。
- 定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。
- 性质:- 四条边都相等,四个角都是直角。
- 对角线相等且互相垂直平分,每条对角线平分一组对角。
- 既是轴对称图形(有四条对称轴,两条对角线所在直线和两组对边中点连线所在直线)又是中心对称图形。
- 判定:- 有一组邻边相等的矩形是正方形。
- 有一个角是直角的菱形是正方形。
2. 一元二次方程。
- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。
- 解法:- 直接开平方法:对于形如x^2=k(k≥slant0)的方程,x=±√(k)。
- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥slant0)。
初三上册数学知识点归纳北师大版
一、数的基本概念
1. 数的定义:数是用来表示物体数量的符号。
2. 计数单位:计数单位有个、十、百、千、万等。
3. 数的种类:自然数、真分数、假分数、分数、整数、有理数、无理数等。
二、数论
1. 因数分解:把一个数拆分成几个乘积,这几个乘积就是这个数的因数。
2. 最大公约数:两个或多个数的公约数中最大的一个数叫做这几个数的最大公约数。
3. 最小公倍数:两个或多个数的公倍数中最小的一个数叫做这几个数的最小公倍数。
4. 约分:把一个分数的分子和分母都除以它们的最大公约数,使分子分母不再有公约数,这称为约分。
三、代数
1. 平方根:一个数的平方根是指这个数的平方等于这个数的数。
2. 平方差:平方差是指两个数的平方之差。
3. 平方和:平方和是指两个数的平方之和。
4. 立方根:一个数的立方根是指这个数的立方等于这个数的数。
四、几何
1. 平面几何:平面几何是指在平面上的几何图形、角、弧、圆等的计算。
2. 空间几何:空间几何是指在三维空间上的几何图形、体积、表面积等的计算。
3. 直角三角形:直角三角形是指三角形中有一个内角为90°的
三角形。
4. 等腰三角形:等腰三角形是指三角形中两条边长相等的三角形。
九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。
※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。
九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。
※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。
北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
第一章 特殊平行四边形第1节 菱形的性质与判定一、菱形的性质1、菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)菱形的对边平行且相等。
(2)菱形的对角相等,邻角互补。
(3)菱形的对角线互相平分。
2、菱形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)菱形的四条边相等。
(2)菱形的对角线互相垂直且每一条对角线平分一组对角。
【说明】①菱形是轴对称图形,对角线所在的直线是它的对称轴,所以菱形有两条对称轴。
②菱形是中心对称图形,两条对角线的交点是它的对称中心。
③菱形的两条对角线把菱形分成四个全等的直角三角形,所以菱形的面积等于对角线乘积的一半。
不仅如此,凡是对角线互相垂直的四边形的面积都可以用两条对角线乘积的一半来计算。
④菱形的面积有两种求法,第一种是等于对角线乘积的一半,第二种是底乘以高。
⑤菱形中如果有一个角为60°倍。
二、菱形的判定1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、四条边都相等的四边形是菱形。
第2节 矩形的性质与判定一、矩形的性质1、矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)矩形的对边平行且相等。
(2)矩形的对角相等,邻角互补。
(3)矩形的对角线互相平分。
2、矩形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)矩形的四个角都相等,都是直角。
(2)矩形的对角线相等。
【说明】①矩形是轴对称图形,经过每组对边中点的直线是它的两条对称轴。
②矩形是中心对称图形,两条对角线的交点是它的对称中心。
③直角三角形斜边上的中线等于斜边的一半。
④若一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形。
⑤矩形的周长等于长与宽的和的2倍,矩形的面积等于长与宽的积。
二、矩形的判定1、有一个角是直角的平行四边形叫做矩形。
(定义)2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
北师大九年级上数学必背知识点一、整式运算1. 整式的概念:由常数、变量及它们的乘积与积的和组成的代数式,称为整式。
2. 整式的加减法:将同类项的系数相加(或相减),并保持同类项不变。
3. 整式的乘法:将各项的乘积相加,并合并同类项。
4. 整式的除法:用整式除以整式时,先用除数的首项去除被除数的首项,得商的首项,然后用商的首项乘以除数的每一项,并将所得乘积加至被除式中,再用除数的首项去除被除数的首项,重复上述步骤,直到被除数的次数小于除数的次数为止。
二、一次函数与线性方程1. 一次函数的概念:形如y = kx + b(其中k、b为常数,k≠0)的函数称为一次函数,也叫线性函数。
2. 一次函数的图像特征:一次函数的图像是一条直线,斜率k决定了直线的斜率方向和倾斜程度,截距b决定了直线与y轴的交点。
3. 线性方程的解法:对于形如ax + b = 0(其中a、b为常数,a≠0)的方程,可以通过变形、移项和合并同类项等方法求解。
三、多边形与三角形1. 多边形的概念:由若干条线段组成的封闭图形称为多边形。
2. 多边形的内角和:n边形的内角和为180°×(n-2)。
3. 三角形的分类:根据边长和角度的关系,三角形可分为等边三角形、等腰三角形和一般三角形。
4. 直角三角形的性质:直角三角形的两条直角边的平方和等于斜边的平方。
5. 三角形的相似性:两个三角形对应角相等且对应边成比例,则称这两个三角形相似。
四、平面坐标系与图形的性质1. 平面直角坐标系:平面直角坐标系是由两条相互垂直的数轴组成,分别称为x轴和y轴,它们的交点称为原点O。
2. 点的坐标:在平面直角坐标系中,每个点都有唯一的坐标表示,横坐标表示x轴上的位置,纵坐标表示y轴上的位置。
3. 图形的对称性:图形可以关于某一直线、某一点或原点对称。
4. 图形的平移:将图形中的每个点按照指定的方向和距离进行移动,保持图形的大小和形状不变。
5. 图形的旋转:将图形绕指定的点旋转一定的角度,保持图形的大小和形状不变。
北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
一、数与代数1.数的概念与数的读法2.数的比较大小3.整数的四则运算4.分数的概念与分数的四则运算5.小数的概念与小数的四则运算6.百分数的概念与百分数的四则运算7.有理数的概念与有理数的四则运算8.正数、负数与绝对值9.代数式与代数方程10.一次代数方程的解11.二次根式的概念与运算12.分式的概念与运算13.根式的概念与运算14.简单的函数与函数的图象二、几何1.平行线与平行四边形2.相交线与相交角3.三角形的分类与性质4.角的概念与角的分类5.直角三角形与斜角三角形6.相似三角形与比例7.圆的概念与性质8.圆内接四边形与正多边形9.三视图与棱柱、棱锥、棱台、圆柱、圆锥、圆台的概念三、统计与概率1.统计调查与统计图表2.频率分布直方图与频率分布折线图3.统计数据的分析与统计平均数、中位数、众数4.概率的概念与概率的计算四、函数与方程1.函数的概念与函数的性质2.函数关系与函数图象3.函数与方程的思想与方法4.一次函数的概念与性质5.一次函数图象与应用6.一次函数方程与问题7.二次函数的概念与性质8.二次函数的图象与应用9.二次函数方程与问题的解法五、计量与单位1.长度、面积与体积2.常用度量单位与换算3.时间与速度4.英制单位与国际单位六、解析几何初步1.平面直角坐标系2.点的坐标与位置关系3.直线的方程与性质4.圆的方程与性质5.解直线与圆的方程及几何应用七、三角函数的初步研究1.角的三要素2.角度与弧度3.正弦定理与余弦定理4.解三角形的问题以上是北师大版九年级数学的主要知识点汇总,涵盖了数与代数、几何、统计与概率、函数与方程、计量与单位、解析几何初步、三角函数的初步研究等各个方面。
对于学生来说,掌握这些知识点将有助于他们在九年级数学学习中取得更好的成绩。
九年级北师版数学上知识点九年级数学上学期知识点分为数字与运算、代数与函数、几何与测量、统计与概率四个部分。
下面将针对这四个部分的各个知识点进行详细介绍。
一、数字与运算1. 分数与小数- 分数的基本概念及表示法- 分数的加减乘除运算- 有理数的分类与比较- 小数的读写与四则运算2. 指数与幂- 指数的概念与性质- 幂的概念与性质- 含有指数的基本运算法则3. 根与实数- 开平方的概念与性质- 平方根与立方根的计算- 实数的性质及运算法则4. 方程与不等式- 方程的解及求解方法- 一次方程、整式方程与分式方程 - 不等式的解及求解方法- 一元一次不等式、一元二次不等式二、代数与函数1. 代数式与整式- 代数式的基本概念及性质- 整式的基本运算法则- 同类项的合并与分解2. 一元一次方程与一元一次不等式- 一元一次方程的解及求解方法 - 一元一次不等式的解及求解方法 - 联立方程与联立不等式3. 函数与函数关系- 函数的概念与性质- 函数的表示法与图像特征- 函数的四则运算及复合函数- 反比例函数与一次函数4. 平面直角坐标系与图形的性质- 平面直角坐标系的构建与性质 - 点与坐标的关系- 直线、线段、角的性质- 与直角坐标系相关的图形的性质三、几何与测量1. 三角形- 三角形的分类与性质- 三角形的内角和与外角性质- 三角形的边长关系及应用2. 平面镜像与对称- 平面镜像的概念与性质- 对称图形的判断与性质- 对称关系在几何问题中的应用3. 立体图形- 空间几何体的分类与性质- 空间几何体的表面积与体积计算 - 空间几何体的展开与拼装4. 三角函数与三角变换- 三角比的定义与计算- 三角函数的性质与图像特征- 三角变换(平移、旋转、对称)的概念与性质四、统计与概率1. 统计图表的分析- 条形图、折线图、饼图的读取与分析- 数据的收集与整理2. 概率与事件- 基本概率概念与性质- 事件的组合与计算- 独立事件与互斥事件以上是九年级北师版数学上学期的主要知识点介绍,通过学习这些知识点,同学们能够对数学的基本概念与运算法则有更深入的理解,为下一步的学习打下坚实的基础。
最新新北师大版九年级数学(上册)知识点汇总第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形.※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.菱形是轴对称图形,每条对角线所在的直线都是对称轴.※菱形的判别方法:一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.1.2 矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形...※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).对角线相等的平行四边形是矩形.四个角都相等的四边形是矩形.※推论:直角三角形斜边上的中线等于斜边的一半.1.3 正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形.※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形.正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.※※鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等. 同一底上的两个内角相等的梯形是等腰梯形.※三角形的中位线平行于第三边,并且等于第三边的一半. ※夹在两条平行线间的平行线段相等.※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程2.1 认识一元二次方程...... 2.2 ...用.配方法求解.....一元二次方程...... 2.3 用公式法求解一元二次方程 2.4 用因式分解法求解一元二次方程 2.5 一元二次方程的跟与系数的关系 2.6 应用一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为 常数,a ≠0)的形式,这样的方程叫一元二次方程....... ※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项.※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式>②公式法 aacb b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解.(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1; ③把常数项移到方程的右边; ④两边加上一次项系数的一半的平方; ⑤把方程转化成0)(2=+m x 的形式;⑥两边开方求其根.※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根; 当b 2-4ac<0时,方程无实数根.※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x ab x x =⋅-=+2121. ※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=-④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式.(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x(4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程).※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 概率的进一步认识3.1 用树状图或表格求概率 3.2 用频率估计概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率==在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1.因此,各个小长方形的面积的和等于1.※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观.用一件事件发生的频率来估计这一件事件发生的概率. 可用列表的方法求出概率,但此方法不太适用较复杂情况.※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100x 估算出鱼的条数.(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生.概率的求法:(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=nm(2)、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法. (3)树状图法通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法. (当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.)第四章 图形的相似4.1 成正比线段 4.2 平行线段成比例 4.3 形似多边形4.4 探索三角形相似的条件 4.5 相似三角形判定定理的证明 4.6 利用相似三角形测高 4.7 相似三角形的性质 4.8 图形的位似一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB , CD 的长度分别是m 、n ,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dc b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k ,说明a 是b 的k 倍; ②由于线段a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a , b a与ab 互为倒数; ⑤比例的基本性质:若dc b a =, 则ad=bc; 若ad=bc , 则dcb a = 二. 黄金分割_图1_ B_ C_ A※1. 如图1,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC ※2.黄金分割点是最优美、最令人赏心悦目的点. 四. 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形※1. 在相似多边形中,最为简简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比. ※6. 相似三角形面积的比等于相似比的平方. 六.探索三角形相似的条件 ※1. 相似三角形的判定方法:_ D _A _l基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l 1 // l 2 // l 3,则EFBCDE AB. ※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方. 九. 图形的放大与缩小※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比. ◎3. 位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.第五章投影与视图5.1 投影5.2 视图※三视图包括:主视图、俯视图和左视图.三视图之间要保持长对正,高平齐,宽相等.一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边.主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上.※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体).※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线..物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影...太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影....探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影..... ※区分平行投影和中心投影:①观察光源;②观察影子.眼睛的位置称为视点..;由视点发出的线称为视线..;眼睛看不到的地方称为盲区... ※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影. ①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度.③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状.第六章 反比例函数6.1 反比例函数6.2 反比例函数的图像与性质6.3 反比例函数的应用※反比例函数的概念:一般地,xk y (k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数. (x 为自变量,y 为因变量,其中x 不能为零)※反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k xk y ←→ )0(1≠=-k kx y ←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>.(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征).※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大; ③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交.※反比例函数图象的几何特征:(如图4所示)点P(x ,y)在双曲线上都有|21||||S k xy S AOB OAPB ===∆矩形。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
北师大版初中数学九年级(上册)各章知识点第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
1.2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
〔矩形是轴对称图形,有两条对称轴〕※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
由莲山课件提供://5ykj/资源全部免费1.3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
〔正方形是轴对称图形,有两条对称轴〕※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
一个内角为直角菱形※一条腰和底垂直的梯形叫做直角梯形。
一组邻边相等〔或对角线相等〕平行四边形一组邻边相等且一个内角为直角〔或对角线互相垂直平分〕正方形一邻边相等矩形一内角为直角或对角线垂直鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
最新北师大版九年级数学上册知识点总结
第一章证明(一)
1、你能证明它吗?
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等
判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.
判定定理:有一个角是60度的等腰三角形是等边三角形.或者三个角都相等的三角形是等边三角形.
(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半. 2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方.
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理.
(3)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
3、线段的垂直平分线
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等.
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
(2)三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.
(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.
4、角平分线
(1)角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.
(2)三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.
(3)如何用尺规作图法作出角平分线
第二章 一元二次方程
1、花边有多宽
(1)整式方程及一元二次方程的概念
整式方程:方程两边都是关于未知数的整式;
一元二次方程:只含有一个未知数x 的整式方程,并且都可以化作ax 2+bx+c=0(a ,b ,c 为常数,a ≠0)的形式.
(2)一元二次方程的一般式及各系数含义
一般式:ax 2+bx+c=0(a ,b ,c 为常数,a ≠0),其中,a 是二次项系数,b 是一次项系数,c 是常数项.
2、配方法
(1)直接开平方法的定义
利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法.
(2)配方法的步骤和方法
一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m )2=n(n ≥0)的形式;三、直接用开平方法求出它的解.
3、公式法
(1)求根公式
b 2
-4ac ≥0时,x=a ac b b 242-±- (2)求一元二次方程的一般式及各系数的含义
一、将方程化为一元二次方程的一般ax 2+bx+c=0(a ,b ,c 为常数,a ≠0);二、计算b 2-4ac
的值,当b 2-4ac ≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根.
4、分解因式法
(1)分解因式的概念
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a ·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式.
(2)分解因式法解一元二次方程的一般步骤
一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解.
5、为什么是0.618
(1)什么叫黄金比
线段AB 上一点C 分线段AB 成两条线段AC ,BC ,若
AB AC =AC BC ,则C 点叫线段AB 的黄金分割点,其中AB
AC 叫黄金比,其值为0.618. (2)列一元二次方程解应用题的一般步骤
一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答
第三章 证明(三)
1、平行四边行
(1)平行四边形的定义、性质及判定
定义:两组对边分别平行的四边形叫平行四边形
性质:平行四边形的对边分别平行;平行四边形的对边分别相等;平行四边形的对角分别相等;平行四边形的对角线互相平分.
判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边行. (2)等腰梯形的性质及判定
性质:等腰梯形在同一底上的两个角相等;等腰梯形的两条对角线相等.
判定:同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形.
(3)三角形中位线定义及性质
定义:连接三角形两边中点的线段叫做三角形的中位线.
性质:三角形的中位线平行于第三边,且等于第三边的一半.
2、特殊平行四边形
(1)矩形、菱形、正方形、直角三角形的性质及判定
第四章视图与投影
1、视图
(1)三视图的种类及三种视图之间的关系
三视图有主视图、左视图和俯视图;
三种视图间的关系:主、俯长对正;主、左高平齐;俯、左宽相等;
(2)会画圆柱、圆锥、球的三视图
2、太阳光与影子
(1)投影与平行投影的含义、平行投影的性质
一般地,用光线照射物体,在某个平面上得到的影子叫做投影;由平行光线形成的投影是平行投影.
平行投影的性质:物体上的点以及影子上的对应点的连线互相平行;当物体与投影面平行时,所形成的影子与物体全等;同一时刻,在平行光线下,互相平行的物体的高度与影子长度的比值相等.
(2)物体影长的变化规律,会将影长与相似结合起来进行计算
在太阳光的照射下,不同时刻,物体影子的长短也不一样,早晚影子长,中午影子短.
(3)平行投影与视图之间的关系
视图实际上就是该物体在某一平行光线下的投影.
3、灯光与影子
(1)中心投影的概念及应用,区别平行投影与中心投影
从一点发出的光线形成的投影称为中心投影.
(2)视点、视线与盲区的概念
眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区.
第五章 反比例函数
1、反比例函数
(1)反比例函数的概念
一般地,如果两个变量x ,y 之间的关系可以表示成y=
x
k 的形式,那么称y 是x 的反比例函数.反比例函数的自变量x 不能为0.
(2)掌握求反比例函数的解析式的方法
将一组x ,y 的值代入解析式中确定k 的值即可.
2、反比例函数的图象与性质
(1)反比例函数图象的画法
一般采用描点法:先列表,再描点,再连线.
(2)反比例函数的图象及性质,其表达式与图象的关系,函数值大小的比较(表5-1)
3、反比例函数的应用
(1)用反比例函数解决实际问题的一般思路
1、根据问题情境,设出所求的反比例函数表达式;
2、由问题中的已知数据,代入所求表达式,列出方程(或方程组),求出方程的解,确定出待定系数的值,从而确定函数表达式;
3、根据函数表达式,去解决实际问题.
(2)反比例函数与正比例函数的区别及综合应用(表5-1)
表5-1。