武汉大学弹塑性力学简答题以及答案
- 格式:doc
- 大小:81.50 KB
- 文档页数:4
武汉大学弹塑性力学简答题以及答案弹塑性力学简答题2002年1 什么是偏应力状态?什么是静水压力状态?举例说明?P24静水压力状态时指微六面体的每个面只有正应力作用,应力大小均为平均应力。
偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2 从数学和物理的不同角度,阐述相容方程的意义。
P48从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。
从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。
3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。
4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?P156平衡微分方程和静力边界条件。
不涉及物理本构方程。
适用于塑性力学问题。
5 应力状态是否可以位于加载面外?为什么?P239 当应力状态从加载面上向加载面外变化时,将产生新的塑性变形,引起内变量增加,这时,加载面会随之改变,使得更新的应力状态处在更新的加载面上。
6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?P250加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。
卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。
中性变载:应力增量沿着加载面,即与加载面相切。
应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。
7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?P93 协调方程和边界条件。
第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。
A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。
A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。
A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。
4.展开一个张量时,对于自由下标操作的原则是按其变程C。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
5.展开一个张量时,对于哑脚标操作的原则是按其变程B。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是 A。
A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。
A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。
8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。
A. 18个; B. 9个; C. 6个; D. 2个。
9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。
A.主应力值; B.极大值; C.极小值; D.零。
10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。
A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。
11.平衡微分方程是 C 间的关系。
A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。
塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。
A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。
7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。
8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。
三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。
10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。
答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。
- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。
- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。
7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。
常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。
.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
塑性:弹性:2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。
证明: 〔1〕将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy yy x y yx x x f f τστσ 〔a 〕 0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ 〔b 〕 显然〔a 〕、〔b 〕是满足的〔2〕对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式⎪⎩⎪⎨⎧=+=+)()()()(s f l m s f m l y s xy y x s yx x τστσ 〔c 〕 那么有),cos(),cos(x n q x n x -=σ),cos(),cos(y n q y n y -=σ所以q x -=σ,q y -=σ。
对于单连体,上述条件就是确定应力的全部条件。
〔3〕对于多连体,应校核位移单值条件是否满足。
该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-=με,q Ey )1(-=με,0=xy γ 〔d 〕 然后,将〔d 〕的变形分量代入几何方程,得q Ex u )1(-=∂∂μ,q E y v )1(-=∂∂μ,0=∂∂+∂∂y u x v 〔e 〕 前而式的积分得到 )()1(1y f qx E u +-=μ,)()1(2x f qy Ev +-=μ 〔f 〕 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式〔f 〕代入〔e 〕的第三式得 dxx df dy y df )()(21=- 等式左边只是y 的函数,而等式右边只是x 的函数。
一、判断题(本题18分,每小题3分)1、弹性体的应力就是一种面力。
( ×)2、弹性体中任意一点都有x y r θσσσσ+=+ (√ )3、物体是弹性的就是说应力和应变之间的关系是直线。
( ×)4、极坐标系下的弹性力学方程只能用来描述具有轴对称性的受力物体。
( ×)5、下图为线性硬化弹塑性材料。
( √)图16、平面应力与平面应变问题的平衡方程、几何方程、物理方程完全相同。
(×) 二、概念解释(本题16分,每小题2分)1、塑性;2、屈服准则;3、外力(即外荷载);4、均匀性,各向同性;5、主应力和主方向;6、翻译:主应力,剪应变,平面应变问题 三、简答题(本题17分)1、简述半逆解法的适用条件及其实施的主要过程。
(6分)主要使用条件是常体力平面问题,这时候可以使用基于应力函数的解法。
半逆解法的主要实施过程(a )根据问题的条件(几何形状、受力特点、边界条件等),假设部分或者全部应力分量的某种函数形式;(b )根据应力分量与应力函数的关系以及用应力函数给出的变形协调关系,确定应力函数的形式;(c )再次利用应力分量与应力函数的关系求出应力分量,并让其满足边界条件,对于多联通域,还要满足位移单值条件。
2、简述圣维南原理及其作用 (6分)圣维南原理:若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。
可以推广为:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计3、在主轴坐标系下,线弹性体应变能密度是()11223312U σεσεσε=++,请将其写成约定求和的指标记法。
(5分)解答:()11223311 i=1,2,322i i U σεσεσεσε=++=四、证明题(本题12分)平面问题中,物体中任意两条微小线元PB 和PC ,线段长度如图2所示,变形以后,变到了P ’B ’和P ’C ’. 已知P 点的为,u v ,请证明变形几何方程(给出推导过程): ,,x y xy u v u vx y y xεεγ∂∂∂∂===+∂∂∂∂图2答案要点:,,A B A B u u u u dx u u dy x yv vv v dx v v dyx y∂∂=+=+∂∂∂∂=+=+∂∂12A x A y A B xy uu dx uu u u x dx dx xv v dx vv v v x dy dy xu v u dy v dx v v v u uv u y x dx dydx dy x yεεγαα∂+--∂∂===∂∂+--∂∂===∂∂∂++---∂∂∂∂=+=+=+=+∂∂五、计算题(本题37分)1、图3为某矩形截面墙体,其上面受到向下的堆载q 作用,右侧受到来自土的作用,且底端压力为γ,下端固定,请写出该挡土墙的全部边界条件。
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
应力解平衡方程:0F z y x x =+∂∂+∂∂+∂∂zx yx x ττσ,几何方程:xux ∂∂=x ε,x u y u y x xy ∂∂+∂∂=γ, 物理方程:v x λεεσ+=2G x ,xy γτG xy =,边界条件x zx yx x T n m l =++ττσ 1、如图所示的楔形体受水压力作用,水的容重为γ,试写出边界条件解:在x =0上,l = -1,m =0, (σx )x=0⋅ (-1) +(τyx )x =0⋅0 = γy (τxy )x =0⋅ (-1) +(σy )x =0⋅0 = 0 (σx )x =0=-γy (τxy )x =0⋅在斜边上 l = cos α,m = -sin ασx cos α - τyx sin α = 0 τxy cos α -σy sin α = 02、半无限空间体受均布荷载作用根据问题的对称性,位移应只是z 的函数 u z =w (z ) 体积应变是dzdwz u y u x u z y x v =∂∂+∂∂+∂∂=ε 代入平衡微分方程()0222=++g dzwd G ρλ,()()()()B A z g E w ++--+-=212211ρννν应力是()A z G vvy x +--==ρσσ1,()A z G z +-=ρσ,0===zx yz xy τττ 应用边界条件求待定常数:l =m =0,n =1,0==y x T T ,q T z =边界条件是:σz ⎪z =0=q 得A =q /ρg ,B 代表刚度位移,应由位移边界条件确定3、用应力函数ϕ=dxy 3+bxy 求解悬臂梁一端受集中力作用下问题的应力解(不考虑体积力)。
解:(1)显然满足变形协调方程(2)满足静力边界条件 由应力函数求应力分量dx y 6y 22=∂∂=ϕσx ,0x22=∂∂=ϕσy ,b dy 3y x 22--=∂∂∂-=ϕτxy (a )边界条件:在2hy ±=处,()02=±=h y y σ,()02=±=h y xy τ (b ) (a )代入(b )得: 0)2(32=--b hd (c )在x =0的边界(l = -1,m = 0)上,力边界条件要求0dxy 61m l X 0=-=⋅-=+==x x yx x στσ,b dy 31m l Y 2+=⋅-=+=xy y xy τστO α1yx应用圣维南原理近似满足:bh dh 41bydy 1dy Y P 3223+=+=⋅=-⎰h h (d ) 联立(c )和(d )得,h P 23b =,3hP2d -= (e ) 将(e )代入(a )并由12I 3h =,28S 22y h -=,Px -=M 得 y I M =x σ,σy = 0 ,IPS -=xy τ4、简支梁收均匀分布荷载作用,梁高度h ,跨度2L ,试求应力分量和跨中挠度设σy 仅是y 的函数,σy =f(y),即()y f x y =∂∂=22ϕσ,得()()()y f y xf y f x 21221++=ϕ 代入协调方程022=∇∇ϕ得,022122424414442=+++dyfd dy f d dy f d x dy f d x 对于-L ≤x ≤L ,上面方程都成立,所以44dy fd =0,414dy f d =0,224242dy f d dy f d +=0 积分得: f(y)=A y 3+B y 2+C y +D , f 1(y)=E y 3+F y 2+G y +R ,()M Ly Ky Hy y B y A y f ++++--=23452610 因此 ()()⎪⎭⎫⎝⎛++--+++++++=23452323261021Ky Hy y B y A Gy Fy Ey x D Cy By Ay x ϕ 得:()()K Hy By Ay F Ey x B Ay x yx 262226323222++--+++=∂∂=ϕσ DCy By Ay xy +++=∂∂=2322ϕσ()()G Fy Ey C By Ay x yx xy++-++-=∂∂∂-=2323222ϕτ由σx ,σy ,是x 的偶函数,τxy 是x 的奇函数得:E=F=G=0 上下边界条件:()q h y y -=-=2σ,()02==h y y σ,()02=-=h y xy τ,()02==h y xy τ将σx ,σy ,τxy 代入得A=-2q/h 3 ,B=0,C=3q/2h ,D=-q/2由对称性,两端边界条件:()01=*=+==L x x yx x x m l T στσ,()⎪⎭⎫ ⎝⎛+--=*=+==h q y hqL m l T L x xy y xy y 236123τστ,由圣维南原理,()0222===--⎰⎰dy dy T Lx h h x h h x σ,()qL dy dy T Lx h h xyh h y -===--⎰⎰2222τ,()022===--⎰⎰ydy dy y T Lx h h x h h x σ 将σx ,σy ,τxy 代入得h q hqL H 1032-= ,K=0,将以上常数代入σx ,σy ,τxy 得出应力解为⎪⎪⎭⎫ ⎝⎛-+=53422h y h y q y I M x σ,22112⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=h y h y q y σ,I QSxy =τ 其中,()222x L q M -=,qx Q -= RITZ 法1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x y D V by b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω 两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学简答题20XX 年1 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2 从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。
从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。
3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。
4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?平衡微分方程和静力边界条件。
不涉及物理方程。
适用于塑性力学问题。
5 应力状态是否可以位于加载面外?为什么?不可以。
保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。
卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。
中性变载:应力增量沿着加载面,即与加载面相切。
应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。
7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。
8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。
9 什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少?在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。
剪切应力是最大剪应力。
20041 对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,,,222x X xy xyy y yz yz z z zx zxG G G G G G νννσελετγσελετγσελετγ=+==+==+=,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。
2 应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3虚位移原理等价于哪两组方程?这说明了什么?平衡微分方程和力边界条件,说明了虚位移原理是以能量形式表示的静力平衡。
4最小势能原理的适用范围是什么?为什么?仅对弹性保守系统有效,因为是在条件弹性保守系统的假定下进行的。
5使用应力作为基本未知数求解弹性力学问题,应力应满足哪些方程? 本构方程和协调方程。
6 两个弹性力学问题,一个为平面应力,一个为平面应变,所有其它条件都相同,试问两者的应力分布是否相同?不相同。
前面一个是(,)(,)0x x y y z x y x y σσσσσ===,后面是1()2z x y σσσ=+≠0。
7 弹性应变能可以分解为哪两种应变能?体积改变能和形状改变能。
8 在薄板弯曲中,哪些应力和应变分量较大?哪些应力分量较小?,(,)(,)x y xy yz zx z σστττσ>≥。
9 对于各向同性弹性体,弹性应变能是否可以一定可以表示为应力不变量(或应变不变量)的函数?为什么?可以。
弹性应变能是客观存在的,它与坐标系的选择无关。
10 对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+。
11 给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。
12 中性变载是否会产生塑性变形?是否会产生弹性变形?分别是为什么?中性变载是应力增量沿着加载面,即与加载面相切。
因应力在同一个面上变化,内变量βξ将保持不变,不会产生新的塑性变形(连续性条件),但因为应力改变,会产生塑性应变。
14 使用Mises 屈服条件和Drucker-Prager 屈服条件,说明金属材料和岩土材料屈服条件最本质的区别是什么?Mises 屈服条件是22/30S f J σ=-=,Drucker-Prager 屈服条件是10aI k =,区别是前一个只考虑偏应力,而后面一个在考虑偏应力的基础上还要考虑静水压力。
15 对于非稳定材料,正交流动法则是否成立?为什么?不成立。
有应变软化存在,所以不成立。
20061 为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。
2 应变协调方程的物理意义是什么?对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。
多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。
3 解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
4 举例说明屈服条件为各向同性的物理含义?5 比较两种塑性本构理论的特点?增量理论和全量理论。
增量理论将整个加载历史看成是一系列的微小增量加载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系,再沿加载路径依次积分应变增量得最终的应变。
全量理论不去考虑应力路径的影响,直接建立应变全量与应力全量直接的关系。
6 固体力学解答必须满足的三个条件是什么?可否用其他条件代替?可以。
能量原理处于整个系统。
20081 已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?一定,从几何角度看,微单元体之间就会出现裂缝或者相互嵌入,即产生不连续现象、而实际物体在变形后应保持连续,因此,6个应变分量不能任意给定,必须满足一定的协调关系,否则,就会导致位移不单值,不连续现象产生2 对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此说明在线性弹性情况下独立的弹性常数只有两个。
3 与Ritz 法相比较,有限元方法的优点主要是哪些?在使用Ritz 法进行近似求解时,需要在整个物体构造位移试验函数,对于复杂的几何开头,这往往比较困难、有限元的基本思想则是:把整个求解区域分成许多个有限小区域,这些小区域称之为单元。
单元与单元之间保持位移连续;然后,在每一个单元上求热能,将所有单元上的势能加起来得弹性体的总势能,最后应用最小势能原理求解单元节点位移。
4 最小势能原理能否适用于分析塑性力学问题?为什么?5 物体稳定的充分条件如何用应力增量和应变增量表示?并说明对于线弹性该条件是满足的。
6 用简单的位错模型说明为什么金属材料的屈服条件可以假定与静水压力无关?金属材料产生的塑性变形的原因可能是位错在晶体内运动,引起晶体内原子层沿滑动面滑动,即可解释为在剪切作用下的位错移动,即剪切滑移,与静水压力无关。
7 理想塑性材料本构关系的塑性因子是通过什么来确定的?实际问题中,如果微单元体周围物体还牌弹性阶段,由于要满足变形协调条件,微单元体的塑性变形必然受到周围物体的限制,而不可能任意发展,这时塑性因子的值是确定的,不过它不是通过微单元体本身的本构关系确定的,面是由问题的整体条件来确定。
理想弹塑性问题,就在平稳、几何和本构方程的基础上,结合屈服条件一起求解8 以Mises等向硬化模型为例,试说明如何根据实验确定加载面的演化方程?9 物体在一部分区域产生塑性变形后,便卸去所有荷载,假象将卸载后的物体分割成许许多多的微小单元体,再将它们拼在一起,会产生何现象?为什么?弹性本构关系和塑性本构关系的各自主要特点是什么?对于弹性体,一点的应力应取决于该是点的应变状态,即应力是应变函数:,进入塑性状态后,应变不仅取决于应力状态,而且取决于应力状态,而且还取决于应力历史虚功原理是否适用于塑性力学问题?为什么?可以,因为虚功原理没有涉及物体的本构方程,没有规定应力应变之间的具体关系塑性内变量是否可以减小?为什么?内变量,微观上:宏观上:通过塑性应变和其他宏观变量构造而成Tresca屈服条件和Mises屈服条件是否适用于岩土材料?为什么?不能,因为Tresca各MISES屈服条件假定屈服条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈服条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈服面下次,不存在塑性体积变形,而且拉伸和压缩的塑性几乎一致,这些假定对于金属材料基本满足,但对于岩石砼一类脆性材料不适用。
Pie平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?。