武汉大学弹塑性力学简答题以及答案
- 格式:doc
- 大小:76.50 KB
- 文档页数:4
弹塑性力学习题答案弹塑性力学习题答案弹塑性力学是力学中的一个重要分支,研究物体在外力作用下的弹性变形和塑性变形。
通过学习弹塑性力学,我们可以更好地理解材料的变形行为以及结构的稳定性。
下面是一些弹塑性力学学习题的答案,希望对大家的学习有所帮助。
1. 什么是弹性变形和塑性变形?弹性变形是指物体在外力作用下发生的可逆变形,当外力撤除后,物体可以恢复到原来的形状。
而塑性变形是指物体在外力作用下发生的不可逆变形,即使外力撤除,物体也无法完全恢复到原来的形状。
2. 什么是弹性模量和塑性模量?弹性模量是衡量物体抵抗弹性变形的能力的物理量,记作E。
它的单位是帕斯卡(Pa)。
弹性模量越大,物体越难发生弹性变形。
塑性模量是衡量物体抵抗塑性变形的能力的物理量,记作G。
它的单位也是帕斯卡(Pa)。
塑性模量越大,物体越难发生塑性变形。
3. 什么是屈服点和屈服强度?屈服点是指物体在外力作用下发生塑性变形的临界点,即当外力超过一定程度时,物体开始发生塑性变形。
屈服强度是指物体在屈服点处所承受的最大外力,也就是物体开始发生塑性变形时的外力大小。
4. 什么是弹性极限和断裂强度?弹性极限是指物体在外力作用下能够恢复到原来形状的最大外力,也就是物体发生弹性变形的临界点。
断裂强度是指物体在外力作用下发生断裂的最大外力,也就是物体完全破坏的外力大小。
5. 什么是杨氏模量和泊松比?杨氏模量是衡量物体在弹性变形时应力和应变之间关系的物理量,记作Y。
它的单位是帕斯卡(Pa)。
杨氏模量越大,物体越难发生弹性变形。
泊松比是衡量物体在受到外力作用时,横向收缩相对于纵向伸长的比例关系的物理量,记作ν。
它是一个无单位的数值,通常在0和0.5之间。
泊松比越大,物体在受到外力作用时横向收缩的程度越大。
这些弹塑性力学学习题的答案只是对相关概念的简单解释,实际的弹塑性力学问题可能更加复杂。
在解决实际问题时,我们需要综合运用弹塑性力学的理论知识,并结合实际情况进行分析和计算。
第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。
A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。
A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。
A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。
4.展开一个张量时,对于自由下标操作的原则是按其变程C。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
5.展开一个张量时,对于哑脚标操作的原则是按其变程B。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是 A。
A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。
A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。
8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。
A. 18个; B. 9个; C. 6个; D. 2个。
9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。
A.主应力值; B.极大值; C.极小值; D.零。
10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。
A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。
11.平衡微分方程是 C 间的关系。
A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
工程弹塑性力学课后答案【篇一:弹塑性力学思考题答案】一点的应力状态?答:通过一点p 的各个面上应力状况的集合⒉一点应变状态?答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 p 的邻域内线段与线段间夹角的改变⒊应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量j2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合??x?xy?xz???????????yxyyz???zx?zy?z???。
其中:?=?,?=?,?=?。
xzzxxyyxyzzy应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即j1,j2,j3是不变量,不随着坐标轴的变换而发生变化。
所以j1,j2,j3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0???x-?m?xy?xz???m0??+???ij??0?0????mymyz?,等式右端第一个张量称为应力球张量,第二个张量称为应???yx?0?m??zy?z??m??0????zx?力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力11平均应力:?m?(?x??y??z)?(?1??2??3),?m为不变量,与坐标无关。
33偏应力第二不变量j2的物理意义:形状变形比能。
单向应力状态:两个主应力为零的应力状态。
纯剪应力状态的应力张量:给出应力分分量,计算第一,第二不变量。
(带公式)⒋应变张量?应变张量的不变量?应变球张量?体积应变?平均应变?应变偏张量?应变张量:几何方程给出的应变通常称为工程应变,这些应变分量的整体,构成一个二阶的对称张版权所有,翻版必究量,称为应变张量,记为:即。
塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。
A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。
7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。
8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。
三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。
10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。
答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。
- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。
- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。
7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。
常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。
弹塑性力学简答题2002年1 什么是偏应力状态?什么是静水压力状态?举例说明?P24静水压力状态时指微六面体的每个面只有正应力作用,应力大小均为平均应力。
偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2 从数学和物理的不同角度,阐述相容方程的意义。
P48从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。
从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续。
3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。
4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?P156平衡微分方程和静力边界条件。
不涉及物理本构方程。
适用于塑性力学问题。
5 应力状态是否可以位于加载面外?为什么?P239当应力状态从加载面上向加载面外变化时,将产生新的塑性变形,引起内变量增加,这时,加载面会随之改变,使得更新的应力状态处在更新的加载面上.6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?P250加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。
卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。
中性变载:应力增量沿着加载面,即与加载面相切.应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。
7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?P93协调方程和边界条件。
8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?P121平面内应力分量(x y xy σστ、、)最大,最主要的是应力,横向剪应力(z y xz ττ、)较小,是次要的应力;z 方向的挤压应力z σ最小,是更次要的应力。
本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:假如ijji a a =,如此0ijk jk e a =。
〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
塑性力学测试题及答案一、单项选择题(每题2分,共10分)1. 塑性力学中,材料的屈服强度是指材料在受到何种应力条件下开始产生塑性变形的应力值?A. 单轴拉伸应力B. 单轴压缩应力C. 多轴应力D. 任何应力条件下答案:A2. 塑性变形与弹性变形的主要区别是什么?A. 塑性变形是可逆的,弹性变形是不可逆的B. 塑性变形是不可逆的,弹性变形是可逆的C. 塑性变形和弹性变形都是可逆的D. 塑性变形和弹性变形都是不可逆的答案:B3. 根据塑性力学理论,下列哪种材料可以被视为理想塑性材料?A. 脆性材料B. 弹性材料C. 塑性材料D. 粘弹性材料答案:C4. 在塑性力学中, Tresca 屈服准则与 Von Mises 屈服准则的主要区别是什么?A. Tresca 屈服准则基于最大剪应力,Von Mises 屈服准则基于最大正应力B. Tresca 屈服准则基于最大正应力,Von Mises 屈服准则基于最大剪应力C. Tresca 屈服准则和 Von Mises 屈服准则都基于最大剪应力D. Tresca 屈服准则和 Von Mises 屈服准则都基于最大正应力答案:C5. 塑性力学中,材料的硬化指数 n 表示什么?A. 材料的弹性模量B. 材料的屈服强度C. 材料的塑性变形能力D. 材料的断裂韧性答案:C二、填空题(每题2分,共10分)1. 塑性力学中,材料的______是指材料在受到应力作用下,从弹性状态转变为塑性状态的应力值。
答案:屈服强度2. 塑性变形与弹性变形的主要区别在于塑性变形是______的。
答案:不可逆3. 在塑性力学中,理想塑性材料是指在达到屈服点后,材料的应力______保持不变。
答案:不再增加4. Tresca 屈服准则认为,当材料的______达到一定值时,材料开始屈服。
答案:最大剪应力5. 塑性力学中,材料的硬化指数 n 越大,表示材料的______能力越强。
答案:塑性变形三、简答题(每题10分,共20分)1. 简述塑性力学中,塑性变形与弹性变形的主要区别。
应力解平衡方程:0F z y x x =+∂∂+∂∂+∂∂zx yx x ττσ,几何方程:xux ∂∂=x ε,x u y u y x xy ∂∂+∂∂=γ, 物理方程:v x λεεσ+=2G x ,xy γτG xy =,边界条件x zx yx x T n m l =++ττσ 1、如图所示的楔形体受水压力作用,水的容重为γ,试写出边界条件解:在x =0上,l = -1,m =0, (σx )x=0⋅ (-1) +(τyx )x =0⋅0 = γy (τxy )x =0⋅ (-1) +(σy )x =0⋅0 = 0 (σx )x =0=-γy (τxy )x =0⋅在斜边上 l = cos α,m = -sin ασx cos α - τyx sin α = 0 τxy cos α -σy sin α = 02、半无限空间体受均布荷载作用根据问题的对称性,位移应只是z 的函数 u z =w (z ) 体积应变是dzdwz u y u x u z y x v =∂∂+∂∂+∂∂=ε 代入平衡微分方程()0222=++g dzwd G ρλ,()()()()B A z g E w ++--+-=212211ρννν应力是()A z G vvy x +--==ρσσ1,()A z G z +-=ρσ,0===zx yz xy τττ 应用边界条件求待定常数:l =m =0,n =1,0==y x T T ,q T z =边界条件是:σz ⎪z =0=q 得A =q /ρg ,B 代表刚度位移,应由位移边界条件确定3、用应力函数ϕ=dxy 3+bxy 求解悬臂梁一端受集中力作用下问题的应力解(不考虑体积力)。
解:(1)显然满足变形协调方程(2)满足静力边界条件 由应力函数求应力分量dx y 6y 22=∂∂=ϕσx ,0x22=∂∂=ϕσy ,b dy 3y x 22--=∂∂∂-=ϕτxy (a )边界条件:在2hy ±=处,()02=±=h y y σ,()02=±=h y xy τ (b ) (a )代入(b )得: 0)2(32=--b hd (c )在x =0的边界(l = -1,m = 0)上,力边界条件要求0dxy 61m l X 0=-=⋅-=+==x x yx x στσ,b dy 31m l Y 2+=⋅-=+=xy y xy τστO α1yx应用圣维南原理近似满足:bh dh 41bydy 1dy Y P 3223+=+=⋅=-⎰h h (d ) 联立(c )和(d )得,h P 23b =,3hP2d -= (e ) 将(e )代入(a )并由12I 3h =,28S 22y h -=,Px -=M 得 y I M =x σ,σy = 0 ,IPS -=xy τ4、简支梁收均匀分布荷载作用,梁高度h ,跨度2L ,试求应力分量和跨中挠度设σy 仅是y 的函数,σy =f(y),即()y f x y =∂∂=22ϕσ,得()()()y f y xf y f x 21221++=ϕ 代入协调方程022=∇∇ϕ得,022122424414442=+++dyfd dy f d dy f d x dy f d x 对于-L ≤x ≤L ,上面方程都成立,所以44dy fd =0,414dy f d =0,224242dy f d dy f d +=0 积分得: f(y)=A y 3+B y 2+C y +D , f 1(y)=E y 3+F y 2+G y +R ,()M Ly Ky Hy y B y A y f ++++--=23452610 因此 ()()⎪⎭⎫⎝⎛++--+++++++=23452323261021Ky Hy y B y A Gy Fy Ey x D Cy By Ay x ϕ 得:()()K Hy By Ay F Ey x B Ay x yx 262226323222++--+++=∂∂=ϕσ DCy By Ay xy +++=∂∂=2322ϕσ()()G Fy Ey C By Ay x yx xy++-++-=∂∂∂-=2323222ϕτ由σx ,σy ,是x 的偶函数,τxy 是x 的奇函数得:E=F=G=0 上下边界条件:()q h y y -=-=2σ,()02==h y y σ,()02=-=h y xy τ,()02==h y xy τ将σx ,σy ,τxy 代入得A=-2q/h 3 ,B=0,C=3q/2h ,D=-q/2由对称性,两端边界条件:()01=*=+==L x x yx x x m l T στσ,()⎪⎭⎫ ⎝⎛+--=*=+==h q y hqL m l T L x xy y xy y 236123τστ,由圣维南原理,()0222===--⎰⎰dy dy T Lx h h x h h x σ,()qL dy dy T Lx h h xyh h y -===--⎰⎰2222τ,()022===--⎰⎰ydy dy y T Lx h h x h h x σ 将σx ,σy ,τxy 代入得h q hqL H 1032-= ,K=0,将以上常数代入σx ,σy ,τxy 得出应力解为⎪⎪⎭⎫ ⎝⎛-+=53422h y h y q y I M x σ,22112⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=h y h y q y σ,I QSxy =τ 其中,()222x L q M -=,qx Q -= RITZ 法1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x y D V by b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω 两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
一、简答题1答:(1)如图1所示,理想弹塑性力学模型:e s seE E σεεεσεσεε=≤==>当当(2)如图2所示,线性强化弹塑性力学模型:()1e s s eE E σεεεσσεεεε=≤=+->当当(3)如图3所示,幂强化力学模型:nA σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性:0s sεσσεσσ=≤=>当不确定当(b )线性强化钢塑性:()0/s s sEεσσεσσσσ=≤=->当当图1理想弹塑性力学模型图2线性强化弹塑性力学模型图3幂强化力学模型(a ) (b ) 图4钢塑性力学模型2答:3答:根据德鲁克公设,()00,0pp ij ij ij ij ij d d d σσεσε-≥≥。
在应力空间中,可将0ij ijσσ-作为向量ij σ与向量0ij σ之差。
由于应力主轴与应变增量主轴是重合的,因此,在应力空间中应变增量也看作是一个向量。
利用向量点积的定义:()00cos 0p p ijij ij ij ij ij d σσεσσεϕ-=-≥,ϕ为两个向量的夹角。
由于0ij ij σσ-和p ij ε都是正值,要使上式成立,ϕ必须为锐角,因此屈服面必须是凸的。
4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。
半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。
如果能满足弹性力学的全部条件,则这个解就是正确的解答。
否则需另外假定,重新求解。
二、计算题1解:对于a 段有:0N a a a aF A E a a σσεε==∆=,对b 段有:0N b b bbP F A E b b σσεε-==∆=又a b ∆=∆ 则N bPF a b=+ 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=,3 1.5MPa σ=-()0123/3 5.33MPa σσσσ=++=08.62MPa τ==3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=,310MPa σ=-12352MPa σστ-=±=±,132152MPa σστ-=±=±,123102MPa σστ-=±=±所以max 15MPa τ=(2)代入公式,160I =,21075I =,35250I =故主应力:130MPa σ=,222.1MPa σ=,37.9MPa σ=1237.12MPa σστ-=±=±,13211.052MPa σστ-=±=±,123 3.952MPa σστ-=±=±所以max 11.05MPa τ=4 证明:将213132σσσσμσσ--=-中,化简得:13=将0τ=13max 2σστ-=代入maxττ中,化简得:0max13ττ=所以,等式得证。
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学题库与答案第二章应力理论和应变理论2―3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa)并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
…解:在右图示单元体上建立xoy坐标,则知σx -10 σy -4 τxy -2(以上应力符号均按材力的规定)代入材力有关公式得:代入弹性力学的有关公式得:己知σx -10 σy -4 τxy +2 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2―6. 悬挂的等直杆在自重W作用下(如图所示)。
材料比重为γ弹性模量为 E,横截面面积为A。
试求离固定端z处一点C的应变εz与杆的总伸长量Δl。
解:据题意选点如图所示坐标系xoz,在距下端(原点)为z处的c点取一截面考虑下半段杆的平衡得:c截面的内力:Nz γ??A??z ;c截面上的应力:;所以离下端为z处的任意一点c的线应变εz为:;则距下端(原点)为z的一段杆件在自重作用下,其伸长量为:;显然该杆件的总的伸长量为(也即下端面的位移):;(W γAl)2―9.己知物体内一点的应力张量为:σij应力单位为kg/cm2 。
试确定外法线为ni{,,}(也即三个方向余弦都相等)的微分斜截面上的总应力、正应力σn及剪应力τn 。
解:首先求出该斜截面上全应力在x、y、z三个方向的三个分量:n’ nx ny nzPx n’Py n’Pz n’所以知,该斜截面上的全应力及正应力σn、剪应力τn均为零,也即:Pn σn τn 02―15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx ax+by,σy cx+dy-γy ,τxy -dx-ay;试根据直边及斜边上的边界条件,确定常数a、b、c、d。
解:首先列出OA、OB两边的应力边界条件:OA边:l1 -1 ;l2 0 ;Tx γ1y ; Ty 0 则σx -γ1y ;τxy 0代入:σx ax+by;τxy -dx-ay 并注意此时:x 0得:b -γ1;a 0;OB边:l1 cosβ;l2 -sinβ,Tx Ty 0则:………………………………(a)将己知条件:σx -γ1y ;τxy -dx ;σy cx+dy-γy代入(a)式得:化简(b)式得:d γ1ctg2β;化简(c)式得:c γctgβ-2γ 1 ctg3β2―17.己知一点处的应力张量为试求该点的最大主应力及其主方向。
研究生弹塑性力学复习思考题1. 简答题:(1) 什么是主平而、主应力、应力主方向?简述求一点主应力的步骤? (2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量丿2的物理意义是什么?(5) 什么是屈服面、屈服函数? Tresca 屈服条件和Mises 屈服条件的儿何 与物理意义是什么?(6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一 Illi 线假定?(9) 什么是平而应力问题?什么是平而应变问题?在弹性范用内这两类问题之间有 和联系和区别?(10) 论述薄板小挠度弯曲理论的基木假定?二、计算题1、已知P 点的应力张量为「3 1 r叭=10 21 2 0求该点的主应力、主方向及最人剪应力2、利用应变协调条件检杳其应变状态是否存在存在?° 红 i f + YP ________ OiLti -------- 二.=0dx idx j dXjdXtt, dx i dx h(1) e x =Axy 2, £y =Bx 2y, y xy =0, A^ B 为常数=k(x 2+ y 2\= ky 2,/vv = 2kxy k 为常数y xz z z2z 25x 2⑵ % = y 23、写出如下问题的边界条件(a)用直角坐标,(b)用极坐标°ly4、正方形薄板三边固定,另一边承受法向压力p = -p. sin —,如图所示,设位移函数为 b利用Ritz 法求位移近似解(泊松比v=0)o5、 悬臂梁在自 由端受亲中力P 作用,如图所示。
试用极小势能原理求最大挠度dP丿 -Z ----------------------------------------- 1z/ X< -------------------- -------------------------- >、'y第5题图提示设梁的挠1111线为2 3vv = a 2x +a 3x6、 对给定的应力函数: (1) (p } = = Cxy 3,试确定它们哪个能作为平面问题的应力函数,并分析它们能解什么问题?3F xv 3 P(2) 证明0= —[xy - ^-] + — b 可以作为应力函数,并求在区域xAO,—cYyYc 区4c " 3c~ 4c'域内的应力分量,并分析该应力函数可以解决那类平|何问题。
弹塑性力学简答题2002年1 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2 从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。
从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。
3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。
4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?平衡微分方程和静力边界条件。
不涉及物理方程。
适用于塑性力学问题。
5 应力状态是否可以位于加载面外?为什么?不可以。
保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。
卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。
中性变载:应力增量沿着加载面,即与加载面相切。
应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。
7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。
8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。
9 什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少?在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。
剪切应力是最大剪应力。
20041 对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,,,222x X xy xyy y yz yz z z zx zxG G G G G G νννσελετγσελετγσελετγ=+==+==+=,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。
2 应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3虚位移原理等价于哪两组方程?这说明了什么?平衡微分方程和力边界条件,说明了虚位移原理是以能量形式表示的静力平衡。
4最小势能原理的适用范围是什么?为什么?仅对弹性保守系统有效,因为是在条件弹性保守系统的假定下进行的。
5使用应力作为基本未知数求解弹性力学问题,应力应满足哪些方程? 本构方程和协调方程。
6 两个弹性力学问题,一个为平面应力,一个为平面应变,所有其它条件都相同,试问两者的应力分布是否相同?不相同。
前面一个是(,)(,)0x x y y z x y x y σσσσσ===,后面是1()2z x y σσσ=+≠0。
7 弹性应变能可以分解为哪两种应变能?体积改变能和形状改变能。
8 在薄板弯曲中,哪些应力和应变分量较大?哪些应力分量较小?,(,)(,)x y xy yz zx z σστττσ>≥。
9 对于各向同性弹性体,弹性应变能是否可以一定可以表示为应力不变量(或应变不变量)的函数?为什么?可以。
弹性应变能是客观存在的,它与坐标系的选择无关。
10 对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+。
11 给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。
12 中性变载是否会产生塑性变形?是否会产生弹性变形?分别是为什么?中性变载是应力增量沿着加载面,即与加载面相切。
因应力在同一个面上变化,内变量βξ将保持不变,不会产生新的塑性变形(连续性条件),但因为应力改变,会产生塑性应变。
14 使用Mises 屈服条件和Drucker-Prager 屈服条件,说明金属材料和岩土材料屈服条件最本质的区别是什么?Mises 屈服条件是22/30S f J σ=-=,Drucker-Prager 屈服条件是10aI k =,区别是前一个只考虑偏应力,而后面一个在考虑偏应力的基础上还要考虑静水压力。
15 对于非稳定材料,正交流动法则是否成立?为什么?不成立。
有应变软化存在,所以不成立。
20061 为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。
2 应变协调方程的物理意义是什么?对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。
多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。
3 解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
4 举例说明屈服条件为各向同性的物理含义?5 比较两种塑性本构理论的特点?增量理论和全量理论。
增量理论将整个加载历史看成是一系列的微小增量加载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系,再沿加载路径依次积分应变增量得最终的应变。
全量理论不去考虑应力路径的影响,直接建立应变全量与应力全量直接的关系。
6 固体力学解答必须满足的三个条件是什么?可否用其他条件代替? 可以。
能量原理处于整个系统。
20081 已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?一定,从几何角度看,微单元体之间就会出现裂缝或者相互嵌入,即产生不连续现象、而实际物体在变形后应保持连续,因此,6个应变分量不能任意给定,必须满足一定的协调关系,否则,就会导致位移不单值,不连续现象产生2 对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此说明在线性弹性情况下独立的弹性常数只有两个。
3 与Ritz 法相比较,有限元方法的优点主要是哪些?在使用Ritz 法进行近似求解时,需要在整个物体构造位移试验函数,对于复杂的几何开头,这往往比较困难、有限元的基本思想则是:把整个求解区域分成许多个有限小区域,这些小区域称之为单元。
单元与单元之间保持位移连续;然后,在每一个单元上求热能,将所有单元上的势能加起来得弹性体的总势能,最后应用最小势能原理求解单元节点位移。
4 最小势能原理能否适用于分析塑性力学问题?为什么?5 物体稳定的充分条件如何用应力增量和应变增量表示?并说明对于线弹性该条件是满足的。
6 用简单的位错模型说明为什么金属材料的屈服条件可以假定与静水压力无关?金属材料产生的塑性变形的原因可能是位错在晶体内运动,引起晶体内原子层沿滑动面滑动,即可解释为在剪切作用下的位错移动,即剪切滑移,与静水压力无关。
7 理想塑性材料本构关系的塑性因子是通过什么来确定的?实际问题中,如果微单元体周围物体还牌弹性阶段,由于要满足变形协调条件,微单元体的塑性变形必然受到周围物体的限制,而不可能任意发展,这时塑性因子的值是确定的,不过它不是通过微单元体本身的本构关系确定的,面是由问题的整体条件来确定。
理想弹塑性问题,就在平稳、几何和本构方程的基础上,结合屈服条件一起求解8 以Mises等向硬化模型为例,试说明如何根据实验确定加载面的演化方程?9 物体在一部分区域产生塑性变形后,便卸去所有荷载,假象将卸载后的物体分割成许许多多的微小单元体,再将它们拼在一起,会产生何现象?为什么?弹性本构关系和塑性本构关系的各自主要特点是什么?对于弹性体,一点的应力应取决于该是点的应变状态,即应力是应变函数:,进入塑性状态后,应变不仅取决于应力状态,而且取决于应力状态,而且还取决于应力历史虚功原理是否适用于塑性力学问题?为什么?可以,因为虚功原理没有涉及物体的本构方程,没有规定应力应变之间的具体关系塑性内变量是否可以减小?为什么?内变量,微观上:宏观上:通过塑性应变和其他宏观变量构造而成Tresca屈服条件和Mises屈服条件是否适用于岩土材料?为什么?不能,因为Tresca各MISES屈服条件假定屈服条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈服条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈服面下次,不存在塑性体积变形,而且拉伸和压缩的塑性几乎一致,这些假定对于金属材料基本满足,但对于岩石砼一类脆性材料不适用。
Pie平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?。