山东省临清市2017-2018学年八年级上期末考试数学试题含答案
- 格式:docx
- 大小:316.75 KB
- 文档页数:9
2017-2018学年上学期期末八年级数学试卷一.选择题(共16小题)1.下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y2.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D. x2+2x+1 3.若分式的值为零,则x的值是()A.0 B.±2 C.4D.﹣44.下列分式是最简分式的()A.B.C.D.5.化简÷的结果是()A.m B.C.m﹣1 D.6.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A.1 B.3C.1.5 D.27.若一组数据﹣1,0,2,4,x的极差为7,则x的值是()A.﹣3 B.6C.7D.6或﹣38.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是()A.甲B.乙C.丙D.丁9.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长(9) (10)10.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°11.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9C.10 D.11(11) (12) (13) (16)12.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC13.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7C.8D.1014.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1615.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.1个B.2个C.3个D.4个16.图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.B.1C.D.7二.填空题(共4小题)17.分解因式:9a2﹣30a+25=_________.18.分解因式:a3b﹣2a2b2+ab3=_________.19.若分式方程:有增根,则k=_________.20.平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产_________台机器.三.解答题(共9小题)21.因式分解:(1)4a2b2﹣(a2+b2)2;(2)(a+x)4﹣(a﹣x)4.(3)分解因式:(x﹣y)2﹣4(x﹣y﹣1)(4)a2﹣4ax+4a;(5)(x2﹣1)2+6(1﹣x2)+9.22.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值23.(1)解方程:.(2)解分式方程:+=﹣1.24.前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?25.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.26.(2014•深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.参考答案一.选择题(共16小题)1.B.2.D.3.C.4.B.5.A.6.D.7.D.8.D.9.D.10.C.11.C.12.C.13.C.14.C.15.B.16.A.二.填空题(共4小题)17.(3a﹣5)2.18.ab(a﹣b)2.19.k=1.20.200三.解答题(共9小题)21.解:(1)4a2b2﹣(a2+b2)2=(2ab)2﹣(a2+b2)2=(2ab+a2+b2)(2ab﹣a2﹣b2)=﹣(a+b)2(a﹣b)2;(2)(a+x)4﹣(a﹣x)4=[(a+x)2+(a﹣x)2][(a+x)2﹣(a﹣x)2],=(a2+x2+2ax+a2+x2﹣2ax)(a2+x2+2ax﹣a2﹣x2+2ax),=2(a2+x2)×4ax,=8ax(a2+x2).(3) 解:(x﹣y)2﹣4(x﹣y)+4=(x﹣y﹣2)2.(4) 解:a2﹣4ax+4a=a(a﹣4x+4);(5) 解:(x2﹣1)2+6(1﹣x2)+9=(x2﹣1﹣3)2=(x+2)2(x﹣2)2.22.解:原式=•=2x+8,当x=1时,原式=2+8=10.23、(1)解:方程的两边同乘(x+1)(x﹣1),得x(x+1)+1=x2﹣1,解得x=﹣2.检验:把x=﹣2代入(x+1)(x﹣1)=3≠0.∴原方程的解为:x=﹣2.(2)解:去分母得:﹣(x+2)2+16=4﹣x2,去括号得:﹣x2﹣4x﹣4+16=4﹣x2,解得:x=2,经检验x=2是增根,分式方程无解.24、解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.25、证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴△AFE≌△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.26、(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,解得:x=,∴=,∴AC=2AE=.。
一.选择题(共12 小题,满分 36 分,每题 3 分)1.以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B.C.D.2.王师傅用 4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?(A.0 根B.1 根C.2 根D.3 根3.以以下图,已知△ ABE≌△ ACD,∠1=∠ 2,∠ B=∠ C,不正确的等式是()A .AB=AC B.∠ BAE= ∠ CAD C. BE=DC D AD = DE)4.如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠ β的度数是()A. 180° B . 220°C. 240° D . 300°5.以下计算正确的选项是()A .2a+3b=5ab B.( x+2 )2=x 2+4 C.( ab3)2=ab6 D.(﹣ 1)0=16.如图,给出了正方形 ABCD 的面积的四个表达式,此中错误的选项是()A.( x+a)( x+a) B . x2+a2+2ax C.( x﹣ a)(x﹣ a) D .( x+a) a+( x+a)x 7.( 3 分)以下式子变形是因式分解的是()A .x2﹣ 5x+6= B.x2﹣5x+6= C.( x﹣ 2)( x﹣ 3)=x 2﹣ 5x+6 D.x2﹣ 5x+6=x( x﹣ 5)+6 ( x﹣ 2)( x﹣ 3)( x+2)( x+3 )8.若分式存心义,则 a 的取值范围是()A .a=0 B.a=1 C.a≠﹣ 1 D.a≠09.化简的结果是()A .x+1 B.x﹣ 1 C.﹣ x D.x10.以下各式:① a0=1;② a2 ?a3=a5;③ 2 ﹣ 2﹣;④ ﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0;⑤ x2+x 2=2x 2,此中=正确的选项是()A.① ②③B.① ③⑤C.② ③④D.② ④⑤11.跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公交车均匀每小时走x 千米,依据题意可列方程为()A .B.C.D.12.如图,已知∠ 1=∠ 2,要获得△ ABD ≌△ ACD ,从以下条件中补选一个,则错误选法是()A. AB=AC B . DB=DC C.∠ ADB= ∠ ADC D.∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)分解因式: x3﹣ 4x2﹣ 12x= _________ .14.( 4 分)若分式方程:有增根,则 k= _________ .15.( 4 分)以下图,已知点 A 、 D 、B 、 F 在一条直线上, AC=EF , AD=FB ,要使△ ABC ≌△ FDE ,还需增添一个条件,这个条件能够是_________ .(只需填一个即可)16.( 4 分)如图,在△ ABC 中, AC=BC ,△ABC 的外角∠ ACE=100 °,则∠ A= _______ 度.17.( 4 分)如图,边长为m+4 的正方形纸片剪出一个边长为 m 的正方形之后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为 4,则另一边长为_________ .三.解答题(共 7 小题,满分64 分)18.先化简,再求值: 5( 3a2b﹣ ab2)﹣ 3( ab2+5a2b),此中 a= , b=﹣.19.( 6 分)给出三个多项式:x2+2x﹣ 1,x2+4x+1 ,x2﹣ 2x.请选择你最喜爱的两个多项式进行加法运算,并把结果因式分解.20.( 8 分)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)如图, CE=CB , CD=CA ,∠ DCA= ∠ ECB ,求证: DE=AB .23.( 12 分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?参照答案一.选择题(共12 小题,满分36 分,每题 3 分)1.( 3 分))在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B.C.D.考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解: A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;C、不是轴对称图形,不切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.(3 分)王师傅用 4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上 AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ ACD 及△ ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A. AB=AC B.∠ BAE= ∠CAD C.BE=DC D. AD=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ ABE ≌△ ACD ,∠ 1=∠2,∠ B= ∠C,∴AB=AC ,∠ BAE= ∠ CAD , BE=DC , AD=AE ,故 A、 B、C 正确;AD 的对应边是AE 而非 DE ,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠ β的度数是()A. 180°B.220°C.240°D. 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠ α+ ∠ β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣60°=120°;∴∠ α+∠ β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为180 °,四边形的内角和是360°等知识,难度不大,属于基础题5.( 3 分)以下计算正确的选项是()2=x2+4 C.( ab3)2=ab6 D.(﹣ 1)0=1A . 2a+3b=5ab B.( x+2 )考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析:A、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D、任何不为0 的数的 0 次幂都等于1.解答:解: A、不是同类项,不可以归并.故错误;B、(x+2)2=x2+4x+4 .故错误;C、(ab3)2=a2b6.故错误;D、(﹣ 1)0=1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()2+a2+2ax C.( x﹣ a)(x﹣a)D.(x+a)a+(x+a )xA .(x+a)( x+a)B.x考点:整式的混淆运算.剖析:依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答:解:依据图可知,5应选 C.评论:本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)以下式子变形是因式分解的是()A . x2﹣5x+6=x ( x ﹣5) +6B.x 2﹣5x+6= (x﹣2)(x ﹣ 3)C.( x﹣ 2)( x﹣3)=x 2﹣ 5x+6D. x2﹣ 5x+6= ( x+2 )( x+3 )考点:因式分解的意义.剖析:依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解: A、 x 2﹣ 5x+6=x ( x﹣ 5)+6 右侧不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6= ( x﹣2)(x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6 是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣ 5x+6= ( x﹣ 2)( x ﹣3),故本选项错误.应选 B.评论:本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)若分式存心义,则 a 的取值范围是()A . a=0 B.a=1 C.a≠﹣1 D. a≠0考点:分式存心义的条件.专题:计算题.剖析:依据分式存心义的条件进行解答.解答:解:∵分式存心义,∴ a+1≠0,∴ a≠﹣ 1.应选 C.评论:本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点:(1)分式无心义 ? 分母为零;(2)分式存心义 ? 分母不为零;9.( 3 分)化简的结果是()A . x+1 B.x ﹣ 1 C.﹣ x D. x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:= ﹣===x,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.10.(3分)以下各式:①a0=1;②a2?a3=a5;③ 2﹣2=﹣;④ ﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,此中正确的选项是()A.① ②③B.① ③⑤C.② ③④D.② ④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;② 切合同底数幂的乘法法例,故本小题正确;﹣2 ﹣p( a≠0, p 为正整数),故本小题错误;③ 2 = ,依据负整数指数幂的定义 a =④ ﹣( 3﹣5) +(﹣ 2)4÷8×(﹣ 1)=0 切合有理数混淆运算的法例,故本小题正确;⑤x2+x2=2x2,切合归并同类项的法例,本小题正确.应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公交车均匀每小时走x 千米,依据题意可列方程为()A .B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15 分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.(3 分)如图,已知∠1= ∠2,要获得△ ABD ≌△ ACD ,还需从以下条件中补选一个,则错误的选法是()A. AB=AC B.DB=DC C.∠ ADB= ∠ADC D.∠ B=∠ C考点:全等三角形的判断.剖析:先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中C、AB=AC 与∠ 1=∠2、AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答:解: A、∵ AB=AC ,∴,∴△ ABD ≌△ ACD (SAS);故此选项正确;B、当 DB=DC 时, AD=AD ,∠ 1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ ADB= ∠ ADC ,∴,∴△ ABD ≌△ ACD (ASA );故此选项正确;D、∵∠ B= ∠C,∴,∴△ ABD ≌△ ACD (AAS );故此选项正确.应选: B.评论:本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即AAS 、 ASA 、 SAS、SSS,但 SSA 没法证明三角形全等.二.填空题(共 5 小题,满分20 分,每题 4 分)13.(4分)分解因式:x3﹣ 4x2﹣12x= x( x+2 )( x ﹣6).考点:因式分解 -十字相乘法等;因式分解-提公因式法.剖析:第一提取公因式 x,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答:解: x3﹣ 4x2﹣12x=x(x2﹣4x﹣12)=x( x+2)( x﹣6).故答案为: x( x+2 )( x ﹣6).评论:本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.(4 分)若分式方程:有增根,则k= 1 或 2.考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣2=0, 2﹣x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2)+1﹣kx= ﹣ 1,整理得:( 2﹣ k)x=2 ,当 2﹣k=0 时,此方程无解,∵分式方程有增根,∴ x﹣ 2=0,2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣k )x=2 得: k=1 .故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(4 分)以下图,已知点 A、 D 、B 、 F 在一条直线上, AC=EF , AD=FB ,要使△ ABC ≌△ FDE ,还需增添一个条件,这个条件能够是∠A= ∠ F 或 AC∥ EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ ABC ≌△ FDE,已知 AC=FE ,AD=BF ,则 AB=CF ,具备了两组边对应相等,故增添∠A= ∠ F,利用 SAS 可证全等.(也可增添其余条件).解答:解:增添一个条件:∠A= ∠ F,明显能看出,在△ ABC 和△ FDE 中,利用 SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠ F 或 AC∥ EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、AAS 、 SAS、SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.(4 分)如图,在△ ABC 中, AC=BC ,△ ABC 的外角∠ ACE=100 °,则∠ A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠A= ∠ B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵ AC=BC ,∴∠ A=∠B,∵∠ A+ ∠ B=∠ ACE ,∴∠ A=∠ ACE=×100°=50°.故答案为: 50.评论:本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为 4,则另一边长为 2m+4 .考点:平方差公式的几何背景.剖析:依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则 4x=(m+4 )2﹣ m2=(m+4+m)(m+4﹣m),解得 x=2m+4 .故答案为: 2m+4.评论:本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.(6 分)先化简,再求值: 5( 3a 2b ﹣ab 2)﹣ 3( ab 2+5a 2b ),此中 a=, b=﹣ .考点: 整式的加减 —化简求值.剖析:第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变. 解答:解:原式 =15a 2b ﹣ 5ab 2﹣3ab 2﹣ 15a 2 b=﹣ 8ab 2,当 a= ,b=﹣ 时,原式 = ﹣8× ×= ﹣ .评论:娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6 分)给出三个多项式: x 2+2x ﹣ 1, x 2+4x+1 , x 2﹣ 2x .请选择你最喜爱的两个多项式进行加法运算,并把结果因式分解.考点: 提公因式法与公式法的综合运用;整式的加减. 专题: 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答:解:状况一:x 2+2x ﹣ 1+ x 2+4x+1=x 2+6x=x (x+6).状况二:x 2+2x ﹣ 1+ x 2﹣2x=x 2 ﹣1=(x+1)( x ﹣ 1).状况三:x 2+4x+1+ x 2﹣ 2x=x 2+2x+1= ( x+1 )2.评论:本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点. 熟记公式构造是分解因式的重点.平方差公式:a 2﹣b 2=( a+b )(a ﹣ b );完整平方公式: a 2±2ab+b 2=(a ±b )2.20.(8 分)解方程:.考点: 解分式方程.剖析: 察看可得最简公分母是( x+2 )( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解. 解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2),得 x ( x+2 )﹣( x+2 )( x ﹣2)=8.( 4 分)化简,得 2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,(x+2 )( x ﹣2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. (8 分)评论:本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.(10 分)已知:如图, △ ABC 和△ DBE 均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析:(1)要证 AD=CE ,只需证明△ ABD ≌△ CBE,因为△ABC 和△ DBE 均为等腰直角三角形,因此易证得结论.(2)延伸 AD ,依据( 1)的结论,易证∠AFC= ∠ ABC=90 °,因此 AD ⊥ CE.解答:解:( 1)∵△ ABC 和△ DBE 均为等腰直角三角形,∴ AB=BC ,BD=BE ,∠ ABC= ∠ DBE=90 °,∴∠ ABC ﹣∠ DBC= ∠ DBE ﹣∠ DBC ,即∠ ABD= ∠ CBE,∴△ ABD ≌△ CBE ,∴ AD=CE .(2)垂直.延伸AD 分别交 BC 和 CE 于 G 和 F,∵△ ABD ≌△ CBE ,∴∠ BAD= ∠ BCE,∵∠ BAD+ ∠ ABC+ ∠BGA= ∠ BCE+ ∠ AFC+ ∠ CGF=180°,又∵∠ BGA= ∠ CGF,∴∠ AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.(10 分)如图, CE=CB ,CD=CA ,∠ DCA= ∠ ECB,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠ DCE=∠ ACB ,依据 SAS 证△DCE ≌△ ACB ,依据全等三角形的性质即可推出答案.解答:证明:∵∠ DCA= ∠ ECB,∴∠ DCA+ ∠ ACE= ∠ BCE+∠ ACE ,∴∠ DCE=∠ ACB ,∵在△ DCE 和△ ACB 中,∴△ DCE ≌△ ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.(12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.(1)这项工程的规准时间是多少天?(2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:( 1)设这项工程的规准时间是x 天,依据题意得:( + )×15+ =1.解得: x=30 .经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.(2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18 ×( 6500+3500) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.(12 分)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点 P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线l 的对称点 B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ ABC 中,点 D、 E 分别是 AB 、 AC 边的中点, BC=6 ,BC 边上的高为4,请你在BC 边上确立一点P,使△ PDE 得周长最小.(1)在图中作出点P(保存作图印迹,不写作法).(2)请直接写出△PDE 周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料 DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D′,连结 D ′E,与 BC 交于点 P, P 点即为所求;(2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:( 1)作 D 点对于 BC 的对称点 D′,连结 D ′E,与 BC 交于点 P,P点即为所求;(2)∵点 D 、E 分别是 AB 、 AC 边的中点,∴ DE 为△ ABC 中位线,∵ BC=6,BC 边上的高为 4,∴ DE=3,DD ′=4,∴ D′E===5,∴△ PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△ PDE周长的最小值,求出DP+PE 的最小值即但是解题重点.。
数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。
2017-2018学年八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB 的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与 ∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC.∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于x 的分式方程223m x x x+=-无解,则m 的值为( ) A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B落在点B '处,若∠2=40°,则图中∠1的度数为 A.115° B.120° C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2B.36 4C.35 3D.36 311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( ) A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( ) A.90606x x=- B.90606x x=+ C.90606x x =+ D.90606x x =- 二、填空题(共5小题:每小题3分,共15分)13.如图,C 、D 点在BE 上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC ≌△FED.14.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x 及其方差S 2如下表所示:17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y 轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
山东临清市2017-2018八年级数学上册期末试题(带答案新人教版)2017-2018学年八年级上学期期末检测数学试题(时间120分钟满分120分)一、单选题(共12题:每小题3分,共36分)1.下列图形中,是轴对称图形的是()ABCD2.等腰三角形有一个角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°3.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.64.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+∠AD.∠BOC=90°-∠A5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+bc)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠DD.AB=DC,∠ACB=∠DBC7.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD 等于()A.30°B.45°C.60°D.75°8.若关于x的分式方程无解,则m的值为()A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠2=40°,则图中∠1的度数为A.115°B.120°C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是()A.352B.364C.353D.36311.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.B.C.D.二、填空题(共5小题:每小题3分,共15分)13.如图,C、D点在BE上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC≌△FED.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数及其方差S2如下表所示:甲乙丙丁1'05"331'04"261'04"261'07"29S21.11.11.31.6如果选拨一名学生去参赛,应派__________去.17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)(2)19.(7分)先化简,再求值:,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB 的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与 ∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC.∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为321,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于的分式方程223m x x x+=-无解,则m 的值为( ) A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B落在点B '处,若∠2=40°,则图中∠1的度数为 A.115° B.120° C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2B.36 4C.35 3D.36 311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( ) A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做个零件,那么下面所列方程中正确的是( ) A.90606x x=- B.90606x x=+ C.90606x x =+ D.90606x x =- 二、填空题(共5小题:每小题3分,共15分)13.如图,C 、D 点在BE 上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC ≌△FED.14.若点P 1(a+3,4)和P 2(-2,b -1)关于轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x 及其方差S 2如下表所示:17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y 轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA ≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+=2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ………………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. ……………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ………………………………………6分 =24xy y -. ………………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分 (2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=………………………………… 3分 解得 x =20 ………………………………… 4分经检验,x =20是原方程的解. ………………………………… 5分此时,1.2x =24 ………………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,………………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) ……………………………………… 5分 ∴∠EAB =∠AOB =60°. ……………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 . ……………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;………2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) ……………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . …………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) ……………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,……………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . ……………………………………… 10分。
八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB 的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与 ∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC.∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为321,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于的分式方程223m x x x+=-无解,则m 的值为( ) A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若∠2=40°,则图中∠1的度数为 A.115° B.120° C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2B.36 4C.35 3D.36 311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( ) A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做个零件,那么下面所列方程中正确的是( ) A.90606x x =- B.90606x x =+ C.90606x x =+ D.90606x x =- 二、填空题(共5小题:每小题3分,共15分)13.如图,C 、D 点在BE 上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC ≌△FED.14.若点P 1(a+3,4)和P 2(-2,b -1)关于轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x 及其方差S 2如下表所示:17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y 轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA ≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
2017-2018学年八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB 的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与 ∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC.∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于x 的分式方程223m x x x+=-无解,则m 的值为( ) A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B落在点B '处,若∠2=40°,则图中∠1的度数为 A.115° B.120° C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2B.36 4C.35 3D.36 311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( ) A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( ) A.90606x x =- B.90606x x =+ C.90606x x =+ D.90606x x =- 二、填空题(共5小题:每小题3分,共15分)13.如图,C 、D 点在BE 上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC ≌△FED.14.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x 及其方差S 2如下表所示:17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y 轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
2017-2018学年八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB 的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与 ∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC.∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为321,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于的分式方程223m xx x+=-无解,则m的值为()A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠2=40°,则图中∠1的度数为A.115°B.120°C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:A.35 2B.36 4C.35 3D.36 311.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画于12MN的弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做个零件,那么下面所列方程中正确的是()A.90606x x=-B.90606x x=+C.90606x x=+D.90606x x=-二、填空题(共5小题:每小题3分,共15分)13.如图,C、D点在BE上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC≌△FED.14.若点P1(a+3,4)和P2(-2,b-1)关于轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x及其方差S2如下表所示:17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA ≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
八年级上数学期末检测(时间120分钟满分120分)一、单选题(共12题:每小题3分,共36分)1.下列图形中,是轴对称图形的是()A B C D2.等腰三角形有一个角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°3.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.64.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A. ∠BOC=2∠AB. ∠BOC=90°+∠AC.∠BOC=90°+12∠A D. ∠BOC=90°-12∠A5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠DD.AB=DC,∠ACB=∠DBC7.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A.30°B.45°C.60°D.75°8.若关于x的分式方程223m xx x+=-无解,则m的值为()A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B 落在点B'处,若∠2=40°,则图中∠1的度数为A.115°B.120°C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:编号 1 2 3 4 5 方差平均成绩得分38 34 ■37 40 ■37A.35 2B.36 4C.35 3D.36 311.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.90606x x=-B.90606x x=+C.90606x x=+D.90606x x=-二、填空题(共5小题:每小题3分,共15分)13.如图,C、D点在BE上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC≌△FED.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x及其方差S2如下表所示:甲乙丙丁x1'05"33 1'04"26 1'04"26 1'07"29S2 1.1 1.1 1.3 1.617.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y 轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2017-2018学年八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB 的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC. ∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于x 的分式方程223m x x x+=-无解,则m 的值为( ) A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若∠2=40°,则图中∠1的度数为 A.115° B.120° C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:那么被遮盖的两个数据依次是( ) A.35 2B.36 4C.35 3D.36 311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( ) A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( ) A.90606x x =- B.90606x x =+ C.90606x x =+ D.90606x x =-二、填空题(共5小题:每小题3分,共15分)13.如图,C、D点在BE上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC≌△FED.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x及其方差S2如下表所示:如果选拨一名学生去参赛,应派__________去.17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD. (1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
(1)A、B两种花木的数量分别是多少棵.(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务.24.(12分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.使用手机的目的使用手机的时间图①图②(0~1表示大于0同时小于等于1,以此类推)请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.25.(12分)将一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使用B,F,C,D在同一直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.2017—2018学年度第一学期期末检测八年级数学评分说明一、选择题(每小题3分,共36分)1—5 ADACC ;6—10 DBDAB ; 11—12 BD ; 二、填空题(每小题3分,共15分) 13、AC=DF (或∠A=∠F 或∠B=∠E )14、a=-5,b=-315、9016、乙17、()10.502n --,三、解答题(本题共8小题,共69分) 18.(每题4分,共8分)(1)x=2是方程的增根,此方程无解 (2)x=-219.(7分)234441112a a a a a a a -+⎛⎫-+÷+- ⎪++-⎝⎭23(1)(1)141(2)2a a a a a a a --++=⋅+-+-- 2(2)(2)4(2)2a a a a a -+-=+---2422a a a a --=+--- (2)2a a a --=--1a =--,……(4分)由分式的概念可知,分母不能为0,所以10a +≠且20a -≠,即1a ≠-且2a ≠, 所以0a =,所以原式=-0-1=-1。
……(3分) 20.(6分)解:原式=22222()()()()()a b a b a b a b a b a b++---⋅-+ ()a b a b =-+=--,(4分)代入a 、b 的值可得:原式=-4035……(2分)21.(8分)因为△ABC 、△CDE 是等腰直角三角形,所以CA=CB ,CD=CE 。
因为∠ACB=∠DCE=90°,其中∠ACB=∠BCE+∠ECA ,∠DCE=∠ECA+∠ACD , 所以∠BCE=∠ACD 。
……(4分)在△CDA 和△CEB 中,CA CB ACD BCE CD CE =⎧⎪∠=⎨⎪=⎩,所以△CDA ≌CEB (SAS ).(8分) 22.(每题4分,共8分) 解:(1)∵MN 垂直平分BC ∴DC=BDCE=EB……(2分) 又∵EC=4 ∴BE=4又∵△BDC 的周长=18 ∴BD+DC=10 ∴BD=5……(4分) (2)∵∠ADM=50° ∴∠CDN=50° 又∵MN 垂直平分BC ∴∠DNC=90° ∴∠C=40° 又∵∠C=∠DBC=40° ∠ABD=20° ∴∠ABC=60°∴∠A=180°-∠C -∠ABC=80°……(4分) 23.(每题4分,共8分)(1)设A 种花木数量x 棵,B 种花木数量y 棵。
根据题意可得方程组:66002600x y x y +=⎧⎨=-⎩①②,……(2分) 将②代入①可得:26006600y y -+=,解得y=2400,代入②可得x=4200,所以原方程组的解为42002400x y =⎧⎨=⎩,故A 种花木数量是4200棵,B 种花木数量是2400棵。
……4分(2)设安排n 个人种植A 种花木,则安排(26-n)个人种植B 种花木,则由题意可得方程:420024006040(26)n n =-,化简得706026n n =-,……(2分) 解得:14n =。
经检验,0260n n ≠-≠,,故n=14是方程的解。
故应安排14个人种植A 花木,12个人种植B 花木。
……(4分) 24.(12分)解:(1)根据题意得:1-(40%+18%+7%)=35%, 则“玩游戏”对应的圆心角度数是360°×35%=126° 因此,本题正确答案是:126°……(4分) (2)根据题意得:40÷40%=1200(人),∴3小时以上的人数为100-(2+16+18+32)=32(人),……(4分) 补全条形统计图,如图所示:使用手机的目的使用手机的时间图①图②(0~1表示大于0同时小于等于1,以此类推)(3)根据题意得:1200×64%=768(人),则每周使用手机时间在2小时以下(不含2小时)的人数约有768人。
……(4分) 25.(12分)证明:(1)由题意得,∠A+∠B=90°, ∠A=∠D, ∴∠D+∠B=90°, ∴AB ⊥DE.……(5分)(2)△ABC ≌△DBP ,……(2分)。