高考物理二轮复习专题四电磁场类问题电磁复合场练习
- 格式:doc
- 大小:483.00 KB
- 文档页数:44
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
组合场复合场叠加场典型习题1.如图所示,匀强电场方向水平向右,匀强磁场方向垂直纸面向里,将带正电的小球在场中静止释放,最后落到地面上.关于该过程,下述说法正确的是( )A.小球做匀变速曲线运动B.小球减少的电势能等于增加的动能C.电场力和重力做的功等于小球增加的动能D.若保持其他条件不变,只减小磁感应强度,小球着地时动能不变解析:选C.重力和电场力是恒力,但洛伦兹力是变力,因此合外力是变化的,由牛顿第二定律知其加速度也是变化的,选项A错误;由动能定理和功能关系知,选项B错误,选项C正确;磁感应强度减小时,小球落地时的水平位移会发生变化,则电场力所做的功也会随之发生变化,选项D错误.2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动解析:选C.带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确.3.(多选)质量为m、电荷量为q的微粒以速度v与水平方向成θ角从O点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A,下列说法中正确的是( )A.该微粒一定带负电荷B .微粒从O 到A 的运动可能是匀变速运动C .该磁场的磁感应强度大小为mgqv cos θD .该电场的场强为Bv cos θ解析:选AC.若微粒带正电荷,它受竖直向下的重力mg 、水平向左的电场力qE 和斜向右下方的洛伦兹力qvB ,知微粒不能做直线运动,据此可知微粒应带负电荷,它受竖直向下的重力mg 、水平向右的电场力qE 和斜向左上方的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有:qvB cos θ=mg ,qvB sin θ=qE ,得磁场的磁感应强度B =mgqv cos θ,电场的场强E =Bv sin θ,故选项C 正确,D 错误.4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UEgC .小球做匀速圆周运动的周期为T =2πEBgD .若电压U 增大,则小球做匀速圆周运动的周期增加解析:选BC.小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿第二定律和动能定理可得:Bqv =mv 2r ,Uq =12mv 2,联立两式可得:小球做匀速圆周运动的半径r =1B2UE g ,由T =2πr v 可以得出T =2πE Bg,与电压U 无关,所以B 、C 正确,D 错误.5.(多选)如图所示,在第二象限中有水平向右的匀强电场,在第一象限内存在垂直纸面向外的匀强磁场.有一重力不计的带电粒子(电荷量为q ,质量为m )以垂直于x 轴的速度v 0从x 轴上的P 点进入匀强电场,恰好与y 轴正方向成45°角射出电场,再经过一段时间又恰好垂直于x 轴进入第四象限.已知OP 之间的距离为d ,则( )A .带电粒子通过y 轴时的坐标为(0,d )B .电场强度的大小为mv 202qdC .带电粒子在电场和磁场中运动的总时间为(3π+4)d2v 0D .磁感应强度的大小为2mv 04qd解析:选BC. 粒子在电场中做类平抛运动,因为进入磁场时速度方向与y 轴正方向成45°角,所以沿x 轴正方向的分速度v x =v 0,在x 轴正方向做匀加速运动,有d =0+v 02t ,沿y 轴正方向做匀速运动,有s =v 0t =2d ,故选项A 错误.沿x 轴正方向做匀加速运动,根据v x =v 0=Eq m ×2d v 0=2Eqd mv 0,解得E =mv 202qd,故选项B 正确.粒子进入磁场后做匀速圆周运动,轨迹如图所示,由图可知粒子在磁场中运动的半径R =22d ,圆心角θ=135°=34π,所以在磁场中的运动时间为t 1=2πR ×1353602v 0=3π×22d 42v 0=3πd2v 0;在电场中的运动时间为t 2=2d v 0,所以总时间为t =t 1+t 2=(3π+4)d 2v 0,故选项C 正确.由qvB =mv2R 可知,磁感应强度B =m ×2v 0q ×22d =mv 02qd,故选项D 错误.6.在某空间存在着水平向右的匀强电场E 和垂直于纸面向里的匀强磁场B ,如图所示,一段光滑且绝缘的圆弧轨道AC 固定在纸面内,其圆心为O 点,半径R =1.8 m ,OA 连线在竖直方向上,AC 弧对应的圆心角θ=37°.今有一质量m =3.6×10-4kg 、带电荷量q =+9.0×10-4C 的带电小球(可视为质点),以v 0=4.0 m/s 的初速度沿水平方向从A 点射入圆弧轨道内,一段时间后从C 点离开,小球离开C 点后做匀速直线运动.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)匀强电场的场强E ;(2)小球刚离开C 点时的速度大小;(3)小球刚射入圆弧轨道时,轨道对小球的瞬间支持力.解析:(1)当小球离开圆弧轨道后,对其受力分析如图甲所示,由平衡条件得F 电=qE=mg tan θ,代入数据解得E =3 N/C.(2)小球从进入圆弧轨道到离开圆弧轨道的过程中,由动能定理得F 电R sin θ-mgR (1-cos θ)=mv 22-mv 22,代入数据得v =5 m/s.(3)由(1)可知F 洛=qvB =mgcos θ,解得B =1 T ,小球射入圆弧轨道瞬间竖直方向的受力情况如图乙所示,由牛顿第二定律得F N +Bqv 0-mg =mv 20R,代入数据得F N =3.2×10-3N.答案:(1)3 N/C (2)5 m/s (3)3.2×10-3N7. 如图所示,在直角坐标系xOy 平面内,虚线MN 平行于y 轴,N 点坐标为(-L,0),MN 与y 轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的矩形有界匀强磁场(图中未画出).现有一质量为m 、电荷量为-e 的电子,从虚线MN 上的P 点,以平行于x 轴正方向的初速度v 0射入电场,并从y 轴上点A ()0,0.5L 射出电场,射出时速度方向与y 轴负方向成30°角,进入第四象限后,经过矩形磁场区域,电子过点Q ⎝⎛⎭⎪⎫36L ,-L ,不计电子重力,求:(1)匀强电场的电场强度E 的大小;(2)匀强磁场的磁感应强度B 的大小和电子在磁场中运动的时间t ; (3)矩形有界匀强磁场区域的最小面积S min .解析:(1)设电子在电场中运动的加速度为a ,时间为t ,离开电场时,沿y 轴方向的速度大小为v y ,则L =v 0ta =eE mv y =at v y =v 0tan 30°解得:E =3mv 2eL(2) 设轨迹与x 轴的交点为D ,OD 距离为x D ,则x D =0.5L tan 30°=36L 所以,DQ 平行于y 轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ 上,电子运动轨迹如图所示.设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r ,则evB =m v 2rv =v 0sin 30°由几何关系有 r +r sin 30°=L ,即r =L3联立以上各式解得 B =6mv 0eL电子转过的圆心角为120°,则得 t =T3T =2πm eB ⎝⎛⎭⎪⎫或T =2πr v =πL 3v 0 得t =πL9v 0(3)以切点F 、Q 的连线长为矩形的一条边,与电子的运动轨迹相切的另一边作为其FQ 的对边,有界匀强磁场区域面积为最小.S min =3r ×r2得S min =3L218答案:(1)3mv 2eL (2)6mv 0eL πL 9v 0 (3)3L2188.如图所示,圆柱形区域的半径为R ,在区域内有垂直于纸面向里、磁感应强度大小为B 的匀强磁场;对称放置的三个相同的电容器,极板间距为d ,板间电压为U ,与磁场相切的极板,在切点处均有一小孔,一带电粒子,质量为m ,带电荷量为+q ,自某电容器极板上的M 点由静止释放,M 点在小孔a 的正上方,若经过一段时间后,带电粒子又恰好返回M 点,不计带电粒子所受重力.求:(1)带电粒子在磁场中运动的轨道半径; (2)U 与B 所满足的关系式;(3)带电粒子由静止释放到再次返回M 点所经历的时间. 解析:(1)由几何关系解得r =3R . (2)设粒子加速后获得的速度为v , 由动能定理得qU =12mv 2-0,由洛伦兹力提供向心力,得qvB =m v 2r,联立解得B =1R2mU 3q. (3)根据运动电荷在磁场中做匀速圆周运动的周期T =2πmqB=2πR3m 2qU, 依题意分析可知粒子在磁场中运动一次所经历的时间为16T ,故粒子在磁场中运动的总时间t 1=3×16T =πR3m 2qU, 而粒子在匀强电场中所做运动类似竖直上抛运动,设每次上升或下降过程经历的时间为t 2,则有d =12at 22, a =qU md, 解得t 2=d2m qU,粒子在电场中运动的总时间为t 3=6t 2=6d2m qU.带电粒子由静止释放到再次返回M 点所经历的时间为t =t 1+t 3=πR3m2qU+6d 2mqU.答案:(1)3R (2)B =1R2mU 3q(3)πR3m2qU+6d 2mqU9.如图所示,在xOy 平面第一象限内有平行于y 轴的匀强电场和垂直于xOy 平面的匀强磁场,匀强电场电场强度为E .一带电荷量为+q 的小球从y 轴上离坐标原点距离为L 的A 点处,以沿x 正向的初速度进入第一象限,如果电场和磁场同时存在,小球将做匀速圆周运动,并从x 轴上距坐标原点L2的C 点离开磁场.如果只撤去磁场,并且将电场反向,带电小球以相同的初速度从A 点进入第一象限,仍然从x 轴上距坐标原点L2的C 点离开电场.求:(1)小球从A 点出发时的初速度大小; (2)磁感应强度B 的大小和方向.解析:(1)由带电小球做匀速圆周运动知mg =Eq 所以电场反向后竖直方向受力Eq +mg =ma 得a =2g小球做类平抛运动,有L 2=v 0t ,L =12at 2得v 0=12gL(2)带电小球做匀速圆周运动时,洛伦兹力提供向心力,有qv 0B =mv 20R 得B =mv 0qR由圆周运动轨迹分析得(L -R )2+⎝ ⎛⎭⎪⎫L 22=R 2R =5L 8代入得B =4E gL5gL由左手定则得,磁感应强度垂直于xOy 平面向外. 答案:(1)12gL (2)4E gL5gL,垂直于xOy 平面向外10.如图甲所示,建立Oxy 坐标系.两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l .在第一、四象限有磁感应强度为B 的匀强磁场,方向垂直于Oxy 平面向里.位于极板左侧的粒子源沿x 轴向右连续发射质量为m 、电荷量为+q 、速度相同、重力不计的带电粒子.在0~3t 0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响).已知t =0时刻进入两板间的带电粒子恰好在t 0时刻经极板边缘射入磁场.上述m 、q 、l 、t 0、B 为已知量.(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U 0的大小;(2)求12t 0时刻进入两板间的带电粒子在磁场中做圆周运动的半径;(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.解析:(1)t =0时刻进入两板间的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为12l ,则有E =U 0l ①qE =ma ②12l =12at 20③ 联立①②③式,解得两板间偏转电压为U 0=ml 2qt 20④(2)12t 0时刻进入两板间的带电粒子,前12t 0时间在电场中偏转,后12t 0时间两板间没有电场,带电粒子做匀速直线运动.带电粒子沿x 轴方向的分速度大小为v 0=l t 0⑤带电粒子离开电场时沿y 轴负方向的分速度大小为v y =a ·12t 0⑥带电粒子离开电场时的速度大小为v =v 20+v 2y ⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有qvB =m v 2R⑧联立③⑤⑥⑦⑧式解得R =5ml 2qBt 0⑨(3)2t 0时刻进入两板间的带电粒子在磁场中运动时间最短.带电粒子离开电场时沿y 轴正方向的分速度为v y ′=at 0⑩设带电粒子离开电场时速度方向与y 轴正方向夹角为α,则tan α=v 0v y ′⑪ 联立③⑤⑩⑪式解得 α=π4⑫带电粒子在磁场中运动轨迹如图所示,圆弧所对的圆心角2α=π2,所求最短时间为t min =14T ⑬带电粒子在磁场中运动的周期为T =2πmqB⑭联立⑬⑭式得t min =πm2qB答案:(1)ml 2qt 20 (2)5ml 2qBt 0 (3)2t 0 πm2qB。
高三物理总复习:复合场参考答案与试题解析一、选择题1.(3分)如图所示,空间存在着由匀强磁场B和匀强电场E组成的正交电磁场,电场方向水平向左,磁场方向垂直纸面向里.有一带负电荷的小球P,从正交电磁场上方的某处自由落下,那么带电小球在通过正交电磁场时()A.一定作曲线运动B.不可能作曲线运动C.可能作匀速直线运动D.可能作匀加速直线运动考点:带电粒子在混合场中的运动.专题:共点力作用下物体平衡专题.分析:对小球受力分析后,得到合力的方向,根据曲线运动的条件进行判断.解答:解:小球进入两个极板之间时,受到向下的重力,水平向右的电场力和水平向左的洛伦兹力,若电场力与洛伦兹力受力平衡,由于重力的作用,小球向下加速,速度变大,洛伦兹力变大,洛伦兹力不会一直与电场力平衡,故合力一定会与速度不共线,故小球一定做曲线运动;故A正确,B错误;在下落过程中,重力与电场力不变,但洛伦兹力变化,导致合力也变化,则做变加速曲线运动.故CD均错误;故选A.点评:本题关键要明确洛伦兹力会随速度的变化而变化,故合力会与速度方向不共线,粒子一定做曲线运动.2.(3分)如图所示,在某空间同时存在着相互正交的匀强电场E匀强磁场B电场方向竖直向下,有质量分别为m1,m2的a,b两带负电的微粒,a电量为q1,恰能静止于场中空间的c点,b电量为q2,在过C点的竖直平面内做半径为r匀速圆周运动,在c点a、b相碰并粘在一起后做匀速圆周运动,则()A.a、b粘在一起后在竖直平面内以速率做匀速圆周运动B.a、b粘在一起后仍在竖直平面内做半径为r匀速圆周运动C.a、b粘在一起后在竖直平面内做半径大于r匀速圆周运动D.a、b粘在一起后在竖直平面内做半径为的匀速圆周运动考点:带电粒子在混合场中的运动;牛顿第二定律;向心力.专题:带电粒子在复合场中的运动专题.分析:粒子a、b受到的电场力都与其受到的重力平衡;碰撞后整体受到的重力依然和电场力平衡,洛伦兹力提供向心力,根据牛顿第二定律列式,再结合动量守恒定律列式求解.解答:解:粒子b受到的洛伦兹力提供向心力,有解得两个电荷碰撞过程,系统总动量守恒,有m2v=(m1+m2)v′解得整体做匀速圆周运动,有故选D.点评:本题关键是明确两个粒子的运动情况,根据动量守恒定律和牛顿第二定律列式分析计算.3.(3分)设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是()A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点时,将沿原曲线返回A点考点:带电粒子在混合场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)由离子从静止开始运动的方向可知离子必带正电荷;(2)在运动过程中,洛伦兹力永不做功,只有电场力做功根据动能定理即可判断BC;(3)达B点时速度为零,将重复刚才ACB的运动.解答:解:A.离子从静止开始运动的方向向下,电场强度方向也向下,所以离子必带正电荷,A正确;B.因为洛伦兹力不做功,只有静电力做功,A、B两点速度都为0,根据动能定理可知,离子从A到B运动过程中,电场力不做功,故A、B位于同一高度,B正确;C.C点是最低点,从A到C运动过程中电场力做正功做大,根据动能定理可知离子在C点时速度最大,C 正确;D.到达B点时速度为零,将重复刚才ACB的运动,向右运动,不会返回,故D错误.故选:ABC.点评:本题主要考查了带电粒子在混合场中运动的问题,要求同学们能正确分析粒子的受力情况,再通过受力情况分析粒子的运动情况,要注意洛伦兹力永不做功,难度适中.4.(3分)回旋加速器是用来加速带电粒子的装置,如图所示.如果用同一回旋加速器分别加速氚核()和α粒子()比较它们所加的高频交流电源的周期和获得的最大动能的大小,有()A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大考点:质谱仪和回旋加速器的工作原理.专题:带电粒子在磁场中的运动专题.分析:回旋加速器是通过电场进行加速,磁场进行偏转来加速带电粒子.带电粒子在磁场中运动的周期与交流电源的周期相同,根据T=比较周期.当粒子最后离开回旋加速器时的速度最大,根据qvB=m求出粒子的最大速度,从而得出最大动能的大小关系.解答:解:带电粒子在磁场中运动的周期与交流电源的周期相同,根据T=,知氚核(13H)的质量与电量的比值大于α粒子(24He),所以氚核在磁场中运动的周期大,则加速氚核的交流电源的周期较大.根据qvB=m得,最大速度v=,则最大动能E Km=mv2=,氚核的质量是α粒子的倍,氚核的电量是倍,则氚核的最大动能是α粒子的倍,即氚核的最大动能较小.故B正确,A、C、D错误.故选:B.点评:解决本题的关键知道带电粒子在磁场中运动的周期与交流电源的周期相同,以及会根据qvB=m求出粒子的最大速度.5.(3分)(2013•重庆)如图所示,一段长方体形导电材料,左右两端面的边长都为a和b,内有带电量为q的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B.当通以从左到右的稳恒电流I时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为()A.,负B.,正C.,负D.,正考点:霍尔效应及其应用.专题:压轴题.分析:上表面的电势比下表面的低.知上表面带负电,下表面带正电,根据左手定则判断自由运动电荷的电性.抓住电荷所受的洛伦兹力和电场力平衡求出电荷的移动速度,从而得出单位体积内自由运动的电荷数.解答:解:因为上表面的电势比下表面的低,根据左手定则,知道移动的电荷为负电荷.因为qvB=q,解得v=,因为电流I=nqvs=nqvab,解得n=.故C正确,A、B、D错误.故选C.点评:解决本题的关键掌握左手定则判断洛伦兹力的方向,以及知道最终电荷在电场力和洛伦兹力作用下处于平衡.二、解答题6.在同时存在匀强电场和匀强磁场的空间中,取正交坐标系O﹣xyz(z轴正方向竖直向上)如图所示,已知电场方向沿z轴正方向,大小为E;磁场方向沿y轴正方向,磁感应强度大小为B.重力加速度为g,问:一质量为m、带电量为+q的质点从原点出发能否在坐标轴(x、y、z )上以速度v做匀速运动?若能,m、q、E、B、v及g应满什么关系?若不能,说明理由.考点:带电粒子在混合场中的运动.专题:带电粒子在复合场中的运动专题.分析:根据正电荷受到的电场力与电场线方向相同,受到洛伦兹力与磁场方向相垂直,结合受力平衡条件,即可求解.解答:解:已知带电质点受电场力的方向沿z轴正方向,大小为qE;质点受重力的方向沿z轴负方向,大小为mg (1)若质点在x轴上做匀速运动,则它受到的洛仑兹力必沿x轴正方向或负方向,即有:qvB+qE=mg 或qE=mg+qvB(2)若质点在y轴上做匀速运动,则它受到的洛仑兹力必为零,即有:qE=mg(3)若质点在z轴上做匀速运动,则它受到的洛仑兹力必平行于x轴,而电场力和重力都平行于z轴,三力的合力不可能为零,即质点不可能在z轴上做匀速运动.答:理由如上.点评:考查正电荷受到的电场力与洛伦兹力的方向,掌握左手定则的应用,注意与右手定则的区别.同时理解受力平衡条件的应用.7.如图(甲)所示为电视机中显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图象,不计逸出电子的初速度和重力.已知电子的质量为m、电荷量为e,加速电场的电压为U,偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示.在每个周期内磁感应强度都是从﹣B0均匀变化到B0.磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s.由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用.(1)求电子射出加速电场时的速度大小(2)为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值B0(3)荧光屏上亮线的最大长度是多少.考点:带电粒子在匀强电场中的运动;动能定理的应用.专题:压轴题;带电粒子在电场中的运动专题.分析:(1)根据动能定理求出电子射出加速电场时的速度大小.(2)根据几何关系求出临界状态下的半径的大小,结合洛伦兹力提供向心力求出磁感应强度的最大值.(3)粒子在磁场中做匀速圆周运动,出磁场做匀速直线运动,通过最大的偏转角,结合几何关系求出荧光屏上亮线的最大长度.解答:解:(1)设电子射出电场的速度为v,则根据动能定理,对电子加速过程有解得(2)当磁感应强度为B0或﹣B0时(垂直于纸面向外为正方向),电子刚好从b点或c点射出,设此时圆周的半径为R1.如图所示,根据几何关系有:R2=l2+(R﹣)2解得R=电子在磁场中运动,洛仑兹力提供向心力,因此有:,解得(3)根据几何关系可知,设电子打在荧光屏上离O′点的最大距离为d,则由于偏转磁场的方向随时间变化,根据对称性可知,荧光屏上的亮线最大长度为答:(1)电子射出加速电场时的速度大小为.(2)偏转线圈产生磁场的磁感应强度的最大值.(3)荧光屏上亮线的最大长度是.点评:考查电子受电场力做功,应用动能定理;电子在磁场中,做匀速圆周运动,运用牛顿第二定律求出半径表达式;同时运用几何关系来确定半径与已知长度的关系.8.(2009•重庆)如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略粒子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角φ;(2)求质量为m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处.求S1和S2之间的距离以及能打在NQ上的正离子的质量范围.考点:动能定理的应用;平抛运动;运动的合成和分解;带电粒子在匀强磁场中的运动.专题:压轴题.分析:(1)正离子被电压为U0的加速电场加速后的速度可以通过动能定理求出,而正离子垂直射入匀强偏转电场后,作类平抛运动,最终过极板HM上的小孔S离开电场,根据平抛运动的公式及几何关系即可求出电场场强E0,φ可以通过末速度沿场强方向和垂直电场方向的速度比求得正切值求解;(2)正离子进入磁场后在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,根据向心力公式即可求得半径;(3)根据离子垂直打在NQ的位置及向心力公式分别求出运动的半径R1、R2,再根据几何关系求出S1和S2之间的距离,能打在NQ上的临界条件是,半径最大时打在Q上,最小时打在N点上,根据向心力公式和几何关系即可求出正离子的质量范围.解答:解:(1)正离子被电压为U0的加速电场加速后速度设为V1,则对正离子,应用动能定理有eU0=mV12,正离子垂直射入匀强偏转电场,作类平抛运动受到电场力F=qE0、产生的加速度为a=,即a=,垂直电场方向匀速运动,有2d=V1t,沿场强方向:Y=at2,联立解得E0=又tanφ=,解得φ=45°;(2)正离子进入磁场时的速度大小为V2,解得V2=正离子在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,qV2B=,解得离子在磁场中做圆周运动的半径R=2;(3)根据R=2可知,质量为4m的离子在磁场中的运动打在S1,运动半径为R1=2,质量为16m的离子在磁场中的运动打在S2,运动半径为R2=2,又ON=R2﹣R1,由几何关系可知S1和S2之间的距离△S=﹣R1,联立解得△S=4(﹣1);由R′2=(2 R1)2+(R′﹣R1)2解得R′=R1,再根据R1<R<R1,解得m<m x<25m.答:(1)偏转电场场强E0的大小为,HM与MN的夹角φ为45°;(2)质量为m的离子在磁场中做圆周运动的半径为2;(3)S1和S2之间的距离为4(﹣1),能打在NQ上的正离子的质量范围为m<m x<25m.点评:本题第(1)问考查了带电粒子在电场中加速和偏转的知识(即电偏转问题),加速过程用动能定理求解,偏转过程用运动的合成与分解知识结合牛顿第二定律和运动学公式求解;第(2)问考查磁偏转知识,先求进入磁场时的合速度v,再由洛伦兹力提供向心力求解R;第(3)问考查用几何知识解决物理问题的能力.该题综合性强,难度大.9.(2009•中山市模拟)如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为l的绝缘细杆,沿电场线放置在虚线上方的场中,b端在虚线上,将一套在杆上的带正电的小球从a端由静止释放后,小球先作加速运动,后作匀速运动到达b端,已知小球与绝缘杆间的动摩擦系数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是,求带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值.考点:带电粒子在匀强磁场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动;带电粒子在混合场中的运动.专题:带电粒子在磁场中的运动专题.分析:根据对研究对象的受力分析,结合受力平衡条件,再根据牛顿第二定律,由洛伦兹力提供向心力,及几何关系,可求出小球在b处的速度,并由动能定理,即可求解.解答:解:小球在沿杆向下运动时,受力情况如图,向左的洛仑兹力F,向右的弹力N,向下的电场力qE,向上的摩擦力fF=Bqv,N=F=Bqv∴f=μN=μBqv当小球作匀速运动时,qE=f=μBqV b小球在磁场中作匀速圆周运动时又R=,∴v b=小球从a运动到b过程中,由动能定理得所以答:带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值为.点评:考查牛顿第二定律、动能定理等规律的应用,学会受力分析,理解洛伦兹力提供向心力.10.(2009•武汉模拟)如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感应强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在磁场中的运动专题.分析:带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动.粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点.解答:解:如图所示,设粒子进入磁场区的速度大小为V,根据动能定理,有Uq=mv2;设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有:Bqv=m由上面分析可知,要回到S点,粒子从a到d必经过圆周,所以半径R必定等于筒的外半径r,即R=r.由以上各式解得:U=;答:两极间的电压为.点评:本题看似较为复杂,实则简单;带电粒子在磁场运动解决的关键在于要先明确粒子可能的运动轨迹,只要能确定圆心和半径即可由牛顿第二定律及向心力公式求得结果.11.(2004•江苏)汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A′中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P′间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O′点,(O′与O点的竖直间距为d,水平间距可忽略不计.此时,在P和P′间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏O点的电子速度的大小.(2)推导出电子的比荷的表达式.考点:带电粒子在混合场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动.专题:计算题;压轴题;带电粒子在电场中的运动专题.分析:当电子受到电场力与洛伦兹力平衡时,做匀速直线运动,因此由电压、磁感应强度可求出运动速度.电子在电场中做类平抛运动,将运动分解成沿电场强度方向与垂直电场强度方向,然后由运动学公式求解.电子离开电场后,做匀速直线运动,从而可以求出偏转距离.解答:(1)当电子受到的电场力与洛沦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为v,则evB=eE得即(2)当极板间仅有偏转电场时,电子以速度v进入后,竖直方向作匀加速运动,加速度为电子在水平方向作匀速运动,在电场内的运动时间为这样,电子在电场中,竖直向上偏转的距离为离开电场时竖直向上的分速度为电子离开电场后做匀速直线运动,经t2时间到达荧光屏t2时间内向上运动的距离为这样,电子向上的总偏转距离为可解得.点评:考查平抛运动处理规律:将运动分解成相互垂直的两方向运动,因此将一个复杂的曲线运动分解成两个简单的直线运动,并用运动学公式来求解.12.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.考点:带电粒子在匀强磁场中的运动;电势差;带电粒子在匀强电场中的运动.专题:带电粒子在磁场中的运动专题.分析:带电粒子在电场中被直线加速,由动能定理可求出粒子被加速后的速度大小,当进入匀强磁场中在洛伦兹力作用下做匀速圆周运动,要使粒子能打在荧光屏上离O点最远,则粒子必须从磁场中垂直射出,由于粒子已是垂直射入磁场,所以由磁感应强度大小相等,方向相反且宽度相同得粒子在两种磁场中运动轨迹是对称的,在磁场中正好完成半个周期,则运动圆弧的半径等于磁场宽度.若不能打到荧光屏,则半径须小于磁场宽度,粒子就不可能通过左边的磁场,也就不会打到荧光屏.所以运动圆弧的半径大于或等于磁场宽度是粒子打到荧光屏的前提条件.可设任一圆弧轨道半径,由几何关系可列出与磁场宽度的关系式,再由半径公式与加速公式可得出打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.解答:解:(1)根据动能定理,得:解得:(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有r<d而:,由此即可解得:(3)若电子在磁场区域做圆周运动的轨道半径为r,穿过磁场区域打在荧光屏上的位置坐标为x,则由轨迹图可得:,注意到:和:所以,电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为:答:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0为;(2)两金属板间电势差U在范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为.点评:题中隐含条件是:粒子能打到荧光屏离O点最远的即为圆弧轨道半径与磁场宽度相等时的粒子.13.如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场.匀强磁场的磁感应强度为B,方向水平并垂直纸面向外,电场沿水平方向,一个质量为m、带电量为﹣q的带电微粒在此区域沿与水平方向成45°斜向上做匀速直线运动,如图所示(重力加速度为g).求:(1)电场强度的大小和方向及带电微粒的速度大小;(2)若某时刻微粒运动到场中距地面高度为H的P点时,将电场方向改成竖直向下,微粒至少须经多长时间运动到距地面最高点?(3)微粒运动P点时,突然撤去磁场,电场强度不变,则该微粒运动中距地面的最大高度是多少?考点:带电粒子在匀强磁场中的运动.专题:带电粒子在磁场中的运动专题.分析:(1)带电粒子在电场和磁场及重力场能做匀速直线运动,则有三力合力为零,从而根据平衡条件可确定电场强度的大小与方向;(2)由粒子所受洛伦兹力提供向心力,从而求出运动圆弧的半径与周期,再根据几何关系来确定圆弧最高点与地面的高度及运动时间;(3)当撤去磁场时,粒子受到重力与电场力作用,从而做曲线运动.因此此运动可看成竖直方向与水平方向两个分运动,运用动能定理可求出竖直的高度,最终可算出结果.解答:解:(1)微粒受力分析如图,根据平衡条件可知电场力方向向右,电场力大小为:qE=mg则E=,方向水平向左;qvB=mg则有:v=;。
高三物理复合场例题与习题(含答案)例1.设在地面上方的真空室内,存在匀强电场和匀强磁场。
已知电场强度和磁感强度的方向是相同的,电场强度的大小E =4.0V/m ,磁感强度的大小B =0.15T 。
今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向。
例2.一带电液滴在如图所示的正交的匀强电场和匀强磁场中运动。
已知电场强度为E ,竖直向下;磁感强度为B ,垂直纸面向内。
此液滴在垂直于磁场的竖直平面内做匀速圆周运动,轨道半径为R 。
问:(1)液滴运动速率多大?方向如何?(2)若液滴运动到最低点A 时分裂成两个液滴,其中一个在原运行方向上作匀速圆周运动,半径变为3R ,圆周最低点也是A ,则另一液滴将如何运动?例3.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中。
已知小球所受电场力与重力的大小相等。
磁场的磁感强度为B 。
则 (1)在环顶端处无初速释放小球,小球的运动过程中所受的最大磁场力。
(2)若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件?例4.如图所示,直角坐标系xOy 位于竖直平面内,其x 轴沿水平方向,在该空间有一沿水平方向足够长的匀强磁场区域,磁场方向垂直于xOy 平面向里,磁感强度为B ,磁场区域的上、下边界面距x 轴的距离均为d 。
一质量为m 、电量为q 的带正电的微粒从坐标原点O 沿+x 方向发射。
求:(1)若欲使该微粒发射后一直沿x 轴运动,求发射速度的值v 0(2)若欲使发射后不从磁场区域的上界面飞出磁场,求发射速度允许的最大值v 0m复合场(习题)1. 如图3-4-1所示,带电平行板中匀强电场竖直向上,匀强磁场方向 垂直纸面向里,某带电小球从光滑绝缘轨道上的a 点滑下,经过轨道 端点P 进入板间后恰好沿水平方向做直线运动,现使小球从稍低些的 b 点开始自由滑下,在经过P 点进入板间的运动过程中 A 、 动能将会增大 B 、其电势能将会增大C 、 受的洛伦兹力增大D 、小球所受的电场力将会增大2.如图3-4-2所示的正交电磁场区,有两个质量相同、带同种电荷的带电粒子,电量分别为q a 、、q b ,它们沿水平方向以相同速率相对着直线穿过电磁场区,则A 、它们若带负电,则 q a 、>q bB 、它们若带负电,则 q a 、<qb C 、它们若带正电,则 q a 、>q b D 、它们若带正电,则q a 、<q b3.氢原子进入如图3-4-3所示的磁场中,在电子绕核旋转的角速度不变的前提下 A 、如电子逆时针转,旋转半径增大 B 、如电子逆时针转,旋转半径减小 C 、如电子顺时针转,旋转半径增大 D 、如电子顺时针转,旋转半径减小4.如图3-4-4所示,带电粒子在没有电场和磁场的空间以v 从坐标原点O 沿x 轴方向做匀速直线运动,若空间只存在垂直于xoy 平面的匀强磁场时,粒子通过P 点时的动能为E k ;当空间只存在平行于y 轴的匀强电场时,则粒子通过P 点时的动能为 A 、E k B 、2E k C 、4E k D 、5E k5.质量为m ,电量为q 带正电荷的小物块,从半径为R 场强度E ,磁感应强度为B 的区域内,如图3-4-56.如图3-4-6所示,空间分布着图示的匀强电场E (宽为L )和匀强磁场B ,一带电粒子质量为m ,电量为q (重力不计)。
2020年高考物理原创电磁组合场压轴计算题1.如图所示,在一二象限内范围内有竖直向下的运强电场E,电场的上边界方程为。
在三四象限内存在垂直于纸面向里,边界方程为的匀强磁场。
现在第二象限中电场的上边界有许多质量为m,电量为q的正离子,在处有一荧光屏,当正离子达到荧光屏时会发光,不计重力和离子间相互作用力。
(1)求在处释放的离子进入磁场时速度。
(2)若仅让横坐标的离子释放,它最后能经过点,求从释放到经过点所需时间t.(3)若同时将离子由静止释放,释放后一段时间发现荧光屏上只有一点持续发出荧光。
求该点坐标和磁感应强度。
【答案】(1)(2),;(3)【解析】(1)于x处释放离子,由动能定理得,得离子进入磁场时的速度;(2)由(1)得在处释放的离子到达x轴时速度为,从释放到到达x轴时间为,第一种情况:离子直接从经磁场达处。
在磁场中经历半圆时间,总时间,第二种情况:离子直接从经磁场达处进入电场返回磁场再到处易得在磁场中时间仍然为,在电场中时间为,总时间为;(3)在磁场B中,所以运动半径;可以看出,B一定时,必有,当时,(离子经磁场偏转从逼近原点出磁场)因此,所有离子都从原点(0,0)点出磁场,击中荧光屏上,则有;因为;所以。
2.如图所示,相距3L的AB,CD两直线间的区域存在着两个大小不同,方向相反的有界匀强电场,其中PT上方的电场I的场强方向竖直向下,PT下方的电场II的场强方向竖直向上,电场I的场强大小是电场Ⅱ的场强大小的两倍,在电场左边界AB上有点Q,PQ间距离为L。
从某时刻起由Q以初速度v0沿水平方向垂直射入匀强电场的带电粒子,电量为+q,质量为m。
通过PT上的某点R进入匀强电场I后从CD边上的y点水平射出,其轨迹如图,若PR两点的距离为2L。
不计粒子的重力。
试求:(1)匀强电场I的电场强度E的大小和yT之间的距离;(2)有一边长为a,由光滑弹性绝缘壁围成的正三角形容器,在其边界正中央开有一小孔S,将其置于CD右侧且紧挨CD边界,若从Q点射入的粒子经AB,CD间的电场从S孔水平射入容器中。
精品文档带电粒子在电、磁场中的运动学进辅导高三物理学习资料---2012-11-17轴正方向的匀强电场y1.在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大x和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿轴负方向抛出,xa,从y轴上y=h处的P点以一定的水平速度沿小相等。
一质量为m,带电荷量大小为q的质点1 y轴上方y= -2h的P点进入第Ⅳ象限,试求:= -2它经过xh处的P点进入第Ⅲ象限,恰好做匀速圆周运动,又经过32a到达P点时速度的大小和方向;⑴质点2⑵第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;进入第Ⅳ象限且速度减为零时的位置坐标⑶质点a 分)如图所示。
(2解.v,由(1)质点在第Ⅱ象限中做平抛运动,设初速度为012gth? 2分)①( (2)(2分)2h=vt……②0hv?2g(1分)解得平抛的初速度0ghgt?2?v(1在P点,速度v的竖直分量分)2y x gh分)所以,v =2(,其方向与1轴负向夹角θ=45°)带电粒子进入第Ⅲ象限做匀速圆周运动,必有(2 (2分)mg=qE……③PP又恰能过负y轴2h为圆的直径,转动半径处,故32OP2?h2?22h??2……④(1R=分)222v gm2m?qvB = (2分)/q (1分);又由 B 可解得……⑤(2分). E =mg R hq mg2,方向与角进入第Ⅳ象限,所受电场力与重力的合力为(3)带电粒以大小为v,方向与x轴正向夹45°P点的速度方向相反,故带电粒做匀减速直线运动,设其加速度大小为a,则:过32mg2ghv422g?2a?h?2as?2,得s??O?v?2 分)由(;……⑥(2分)m a2g22??h?h,分)(由此得出速度减为0时的位置坐标是1、第轴沿水平方向,y轴沿竖直方向在x轴上空间一2.如图所示的坐标系,x场轴正方向的匀电强第二象限内,既无电场也无磁场,在第三象限,存在沿y场、y轴负方向和垂直xy平面(纸面)向里的均强磁场,在第四象限,存在沿电带强大小与第三象限电场场强相等的匀强电场。
1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。
⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。
求入射粒子的速度。
解:qB mv =v由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移221tan 2t mqE d h ⋅⋅==φ,由以上各式可得3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。
一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。
粒子在磁场中的运动轨迹与y 轴交于M 点。
已知OP=l ,l OQ 32=。
不计重力。
求(1)M 点与坐标原点O 间的距离;(2)粒子从P 点运动到M 点所用的时间。
【解析】(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为0v ,粒子从P 点运动到Q 点所用的时间为1t ,进入磁场时速度方向与x 轴正方向的夹角为θ,则qEa m=① 012y t a=② 001x v t =③ 其中0023,x l y l ==。
又有1tan at v θ= ④ 联立②③④式,得30θ=︒因为M O Q 、、点在圆周上,=90MOQ ∠︒,所以MQ 为直径。
从图中的几何关系可知。
23R l = ⑥ 6MO l = ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为2t , 则有0 cos v v θ=⑧ 2Rt vπ= ⑨ 带电粒子自P 点出发到M 点所用的时间为t 为12+ t t t = ⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+ 1mlt qE π⎛⎫= ⎪ ⎪⎝⎭⑾4、如图所示,在0≤x≤a 、o≤y≤2a 2a范围内有垂直手xy 平面向外φOyEB A φC φd h xxy OP QMv 0的匀强磁场,磁感应强度大小为B 。
高二物理复合场试题1.(12分)如图所示,匀强电场场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里。
质量m=1kg的带正电小物体A,从M点沿粗糙、绝缘的竖直墙壁无初速下滑,它滑行h=0.8m到N点时脱离墙壁做曲线运动,在通过P点瞬时,A受力平衡,此时其速度与水平方向成θ=45°角,且P点与M点的高度差为H=1.6m,当地重力加速度g取10m/s2。
求:;(1)A沿墙壁下滑时,克服摩擦力做的功Wf(2)P点与M点的水平距离s。
=-6J,(2) s=0.6m【答案】(1)Wf【解析】,由题意分析物体受力情况,物体在N点恰脱离墙面,有:(1)设物体滑到N点时速度为v1①M→N过程,由动能定理有:②联解①②并代入数据得:=-6J,即克服摩擦力做功6J。
③Wf(2)设物体运动到P点时速度为v,由题意和左手定则知物体在P点受力平衡,有:2④⑤N→P过程,由动能定理知:⑥联解④⑤⑥并代入数据得:s=0.6m ⑦评分参考意见:本题满分12分,其中①②④⑤⑥式各2分,③⑦式各1分;若有其他合理解法且答案正确,可同样给分。
【考点】带电物体在复合场中的运动和动能定理2.如图所示,在x<0且y<0的区域内存在匀强磁场,磁场方向垂直于xy平面向里.磁感应强度大小为B,在x>0且y<0的区域内存在沿y轴正方向的匀强电场. 一质量为m、电荷量为q的带电粒子从x轴上的M点沿y轴负方向垂直射入磁场,结果带电粒子从y轴的N点射出磁场而进入匀强电场,经电场偏转后打到x轴上的P点,已知===l。
不计带电粒子所受重力,求:(1)带电粒子进入匀强磁场时速度的大小;(2)带电粒子从射入匀强磁场到射出匀强电场所用的时间;(3)匀强电场的场强大小.【答案】(1)(2)(3)【解析】(1)设带电粒子射入磁场时的速度大小为v,由带电粒子射入匀强磁场的方向和几何关系可知,带电粒子在磁场中做圆周运动,圆心位于坐标原点,半径为l。
专题四 电磁场类问题(电、磁、复合场)一、单选题1.如图所示,平行板电容器充电后形成一个匀强电场,大小保持不变。
让不计重力的相同带电粒子a 、b ,以不同初速度先、后垂直电场射入,a 、b 分别落到负极板的中央和边缘,则( ) A .b 粒子加速度较大 B .b 粒子的电势能变化量较大C .若仅使a 粒子初动能增大到原来的2倍,则恰能打在负极板的边缘D .若仅使a 粒子初速度增大到原来的2倍,则恰能打在负极板的边缘 2.如图甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处。
若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上。
则t 0可能属于的时间段是( ) A .0<t 0<T4B.T 2<t 0<3T 4C.3T4<t 0<T D .T <t 0<9T 83.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab 是圆的直径。
一带电粒子从a 点射入磁场,速度大小为v 、方向与ab 成30°角时,恰好从b 点飞出磁场,且粒子在磁场中运动的时间为t ;若同一带电粒子从a 点沿ab 方向射入磁场,也经时间t 飞出磁场,则其速度大小为( ) A.12v B.23v C.32v D.32v 4.自行车速度计利用霍尔效应传感器获知自行车的运动速率。
如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。
图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。
下列说法正确的是( )A .根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B .自行车的车速越大,霍尔电势差越高C .图乙中霍尔元件的电流I 是由正电荷定向移动形成的D .如果长时间不更换传感器的电源,霍尔电势差将增大5.科研人员常用磁场来约束运动的带电粒子,如图所示,粒子源位于纸面内一边长为a 的正方形中心O处,可以沿纸面向各个方向发射速度不同的粒子,粒子质量为m、电荷量为q、最大速度为v,忽略粒子重力及粒子间相互作用,要使粒子均不能射出正方形区域,可在此区域加一垂直纸面的匀强磁场,则磁感应强度B的最小值为( )A.2mvqaB.22mvqaC.4mvqaD.42mvqa二、多选题6.如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂线上某一点,O为AB连线的中点,且AO=OF,E和φ分别表示F处的场强大小和电势。
高考必做大题03:带电粒子与复合场一、综合题1.如图所示,大量的同种粒子从静止经电压U1加速后。
沿虚线方向射入正交的电磁场之中,恰好做直线运动,电场强度方向竖直向下,磁感应强度B1=0.2T。
方向垂直纸面向里,两平行板之间的距离d=6cm。
平行板右侧有一圆形磁场区域,圆心O在虚线上、半径r=10cm,圆内有垂直纸面向里的磁场B,B的大小可以调控。
边界上有磁场。
圆形区域的上方安装有荧光屏,荧光屏与虚线平行。
与O的距离l=20√3cm,M、N是荧光屏上两点,MO连线与屏垂直,N到M点之间的距离L=20cm。
已知加在平行板间的电压U2=1.2×104V,粒子的比荷为q m=108C/kg。
不计重力的影响,求:(1)加速电场U1大小;(2)要使粒子打到荧光屏上MN之间,圆形区域内的磁场B范围。
2.如图,在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形,图中OEFG区域也为边长为L的正方形且无电场。
已知电子的质量为m,电荷量为e,不计电子所受重力。
求:(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标(x,y);(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置坐标x、y间满足的关系;(3)若将左侧电场Ⅱ整体水平向右移动L3,仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置x、y满足的关系。
3.如图所示,一水平分界线KL把足够长的竖直边界NS和MT之间的空间分为上下两部分,KL上方区域存在竖直向下的匀强电场,KL下方区域存在垂直纸面向外的匀强磁场。
在NS和MT边界上,距KL高ℎ处分别有P、Q两点。
一电荷量为q、质量为m的带正电的粒子(重力不计)以初速度v0从P点垂直于边界NS进入匀强电场,经偏转后从边界KL进入匀强磁场,并恰好不从边界NS射出。
学进辅导高三物理学习资料---带电粒子在电、磁场中的运动1.在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿y轴正方向的匀强电场和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。
一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的P1点以一定的水平速度沿x轴负方向抛出,它经过x= -2h处的P2点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y轴上方y= -2h的P3点进入第Ⅳ象限,试求:点时速度的大小和方向;⑪质点a到达P⑫第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;⑬质点a进入第Ⅳ象限且速度减为零时的位置坐标象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的均强磁场,在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场。
一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限。
然后经过x轴上x= -2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y= -2h处的P3点进入第四象限。
已知重力加速度为g.求:(1)粒子到达P2点时速度的大小和方向;(2)第三象限空间中电场强度和磁感应强度的大小;限内存在着垂直于纸面向里的匀强磁场。
一个质量为m ,电量为+q 的带电质点,在第三象限中以沿x 轴正方向的速度v 做匀速直线运动,第一次经过y 轴上的M 点,M 点距坐标原点O 的距离为L ;然后在第四象限和第一象限的电磁场中做匀速圆周运动,质点第一次经过x 轴上的N 点距坐标原点O 的距离为L 3。
已知重力加速度为g ,求:⑪匀强电场的电场强度E 的大小。
⑫匀强磁场的磁感应强度B 1=2×10—2T 、方向垂直纸面向里的匀强磁场,虚线过y 轴上的P 点,OP =1.0m ,在x ≥O 的区域内有磁感应强度大小为B 2、方向垂直纸面向外的匀强磁场。
高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。
微专题4 带电粒子在复合场中的运动题型1 带电体在电场和重力场中的运动1.带电体在电场、重力场中运动的分析方法(1)对带电体的受力情况和运动情况进行分析,综合运用牛顿运动定律和匀变速直线运动的规律解决问题。
(2)根据功能关系或能量守恒的观点,分析带电体的运动时,往往涉及重力势能、电势能以及动能的相互转化,总的能量保持不变。
2.带电体在电场和重力场的叠加场中的圆周运动(1)等效重力法将重力与静电力进行合成,如图所示,则F合为等效重力场中的“重力”,g ′=F合m为等效重力场中的“等效重力加速度”,F合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向。
(2)等效最高点和最低点:在“等效重力场”中做圆周运动的小球,过圆心作合力的平行线,交于圆周上的两点即为等效最高点和最低点。
〔真题研究1〕(多选)(2022·全国甲卷,21,6分)地面上方某区域存在方向水平向右的匀强电场,将一带正电荷的小球自电场中P点水平向左射出。
小球所受的重力和静电力的大小相等,重力势能和电势能的零点均取在P点。
则射出后( BD )A.小球的动能最小时,其电势能最大B.小球的动能等于初始动能时,其电势能最大C.小球速度的水平分量和竖直分量大小相等时,其动能最大D.从射出时刻到小球速度的水平分量为零时,重力做的功等于小球电势能的增加量【审题指导】研究对象、物理过程物理模型带正电的小球同时受向下的重力和向右的静电力将电场和重力场合成为一个等效场合场力大小F=2mg,方向与水平方向成45°角带正电荷的小球自电场中P 点水平向左射出后的运动小球初速度与合场力方向成135°角,在等效场中做类斜抛运动【解析】 由题意知,Eq =mg ,故等效重力G ′的方向与水平方向成45°(如图所示)。
当v y =0时,速度最小为v min =v 1,由于此时v 1存在水平分量,电场力还可以向左做负功,故此时电势能不是最大,故A 错误;当如图中v 所示时,在水平方向上v 2=0=v 0-Eqmt ,在竖直方向上v =gt ,由于Eq =mg ,得v =v 0,故小球的动能等于初始动能。
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
1-4-10 带电粒子在组合场、复合场中的运动课时强化训练1.如图所示,从离子源发射出的正离子,经加速电压U 加速后进入相互垂直的电场(E 方向竖直向上)和磁场(B 方向垂直纸面向外)中,发现离子向上偏转。
要使此离子沿直线通过电磁场,需要( )A .增加E ,减小B B .增加E ,减小UC .适当增加UD .适当减小B[解析] 离子所受的电场力F =qE ,洛伦兹力F 洛=qvB ,qU =12mv 2,离子向上偏转,电场力大于洛伦兹力,故要使离子沿直线运动,可以适当增加U ,增加速度,洛伦兹力增大,C 正确;也可适当减小E 或增大B ,电场力减小或洛伦兹力增大,A 、B 、D 错误。
[答案] C2.(多选)质量为m ,带电量为q 的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B ,如图所示。
若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是( )A .小物块一定带正电荷B .小物块在斜面上运动时做匀加速直线运动C .小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D .小物块在斜面上下滑过程中,当小物块对斜面压力为零时的速率为mgcos θBq[解析] 小物块沿斜面下滑对斜面作用力为零时受力分析如图所示,小物块受到重力mg 和垂直于斜面向上的洛伦兹力F ,故小物块带负电荷,A 错误;小物块在斜面上运动时合力等于mg sin θ保持不变,做匀加速直线运动,B 正确,C 错误;小物块在斜面上下滑过程中,当小物块对斜面压力为零时有qvB =mg cos θ,则有v =mgcos θBq,D 正确。
[答案] BD3.(多选)在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN运动,如图所示。
由此可判断下列说法正确的是()A.如果油滴带正电,则油滴从M点运动到N点B.如果油滴带正电,则油滴从N点运动到M点C.如果电场方向水平向右,则油滴从N点运动到M点D.如果电场方向水平向左,则油滴从N点运动到M点[解析] 油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以油滴做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M点向N点运动,故选项A正确,B错误。
专题四电磁场类问题(电、磁、复合场)一、单选题1.如图所示,平行板电容器充电后形成一个匀强电场,大小保持不变。
让不计重力的相同带电粒子a、b,以不同初速度先、后垂直电场射入,a、b分别落到负极板的中央和边缘,则( )A.b粒子加速度较大B.b粒子的电势能变化量较大C.若仅使a粒子初动能增大到原来的2倍,则恰能打在负极板的边缘D.若仅使a粒子初速度增大到原来的2倍,则恰能打在负极板的边缘2.如图甲所示,两平行正对的金属板A、B间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处。
若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上。
则t0可能属于的时间段是( )A.0<t0<T4B.T2<t0<3T4C.3T4<t0<T D.T<t0<9T83.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab是圆的直径。
一带电粒子从a点射入磁场,速度大小为v、方向与ab成30°角时,恰好从b点飞出磁场,且粒子在磁场中运动的时间为t;若同一带电粒子从a点沿ab方向射入磁场,也经时间t飞出磁场,则其速度大小为( )A.12v B.23vC.32v D.32v4.自行车速度计利用霍尔效应传感器获知自行车的运动速率。
如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。
图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。
下列说法正确的是( )A.根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B.自行车的车速越大,霍尔电势差越高C.图乙中霍尔元件的电流I是由正电荷定向移动形成的D.如果长时间不更换传感器的电源,霍尔电势差将增大5.科研人员常用磁场来约束运动的带电粒子,如图所示,粒子源位于纸面内一边长为a的正方形中心O处,可以沿纸面向各个方向发射速度不同的粒子,粒子质量为m、电荷量为q、最大速度为v,忽略粒子重力及粒子间相互作用,要使粒子均不能射出正方形区域,可在此区域加一垂直纸面的匀强磁场,则磁感应强度B的最小值为( )A.2mvqaB.22mvqaC.4mvqaD.42mvqa二、多选题6.如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂线上某一点,O为AB连线的中点,且AO=OF,E和φ分别表示F处的场强大小和电势。
将某试探负点电荷由F处静止释放时,其电势能和加速度大小分别用ε和a表示,取无穷远处为电势零点,若将负点电荷N移走,则( )A.E不变B.φ升高C.ε变小D.a变大7.如图所示,电路中R1、R2均为可变电阻,电源内阻不能忽略,平行板电容器C的极板水平放置,闭合电键S,电路达到稳定时,带电油滴悬浮在两板之间静止不动。
如果仅改变下列某一个条件,油滴能向下运动的是( )A.增大R1的阻值B.增大R2的阻值C.增大两板间的距离D.断开电键S8.如图所示,一足够长的绝缘细杆处于磁感应强度为B=0.5 T的匀强磁场中,杆与磁场垂直且与水平方向的夹角为θ=37°。
一质量为m=0.1 g、电荷量为q=5×10-4 C的带正电圆环套在杆上,圆环与杆之间的动摩擦因数为μ=0.4。
现将圆环从杆上的某一位置无初速度释放。
则下列判断中正确的是(sin 37°=0.6,cos 37°=0.8,取重力加速度g=10 m/s2)( )A.圆环下滑过程中洛伦兹力始终做正功B.当圆环下滑的速度达到2.4 m/s时,圆环与杆之间的弹力为零C.圆环下滑过程中的最大加速度为6 m/s2D.圆环下滑过程中的最大速度为9.2 m/s9.如图所示为利用海流发电的磁流体发电机原理示意图,矩形发电管道水平东西放置,整个管道置于方向竖直向上、磁感应强度大小为B的匀强磁场中,其上、下两面是绝缘板,南、北两侧面M、N是电阻可忽略的导体板,两导体板与开关S和定值电阻R相连,已知发电管道长为L、宽为d、高为h,海水在发电管道内以恒定速率v朝正东方向流动。
发电管道内的海水在垂直流动方向的电阻为r,海水在管道内流动时受到的摩擦阻力大小恒为f,不计地磁场的影响,则( )A.N侧的电势高B.开关S断开时,M、N两端的电压为BdvC.开关S闭合时,发电管道进、出口两端压力差F=f+B2d2v R+rD .开关S 闭合时,电阻R 上的功率为B 2d 2v2R10.如图所示,在一个边长为a 的正六边形区域内存在磁感应强度为B ,方向垂直于纸面向里的匀强磁场,一个比荷为qm 的正粒子,从A 点沿AD 方向以一定的初速度射入匀强磁场区域,粒子在运动过程中只受磁场力作用;已知粒子从ED 边上的某一点垂直ED 边界飞出磁场区域。
则( ) A .粒子进入磁场区域的初速度大小为23Bqa3mB .粒子在磁场区域内运动的时间t =πm3BqC .粒子在磁场区域内运动的半径R =23aD .若改变B 和初速度的大小,使该粒子仍从ED 边界垂直飞出磁场区域,则粒子在磁场区域内运动的路程不变 三、计算题11.如图所示,等量异种点电荷固定在水平线上的M 、N 两点上,电荷量均为Q ,有一质量为m 、电荷量为+q(可视为点电荷)的小球,固定在长为L 的绝缘轻质细杆的一端,细杆另一端可绕过O 点且与MN 垂直的水平轴无摩擦地转动,O 点位于MN 的垂直平分线上距MN 为L 处,现在把杆拉到水平位置,由静止释放,小球经过最低点B 时速度为v ,取O 处电势为零,忽略+q 对+Q 、-Q 形成电场的影响。
求: (1)小球经过B 点时对杆的拉力大小;(2)在+Q 、-Q 形成的电场中,A 点的电势φA ;(3)小球继续向左摆动,经过与A 等高度的C 点时的速度。
12.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似。
如图所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动。
已知电场强度的大小分别是E 1=2.0×103N/C 和E 2=4.0×103 N/C ,方向如图所示。
带电微粒质量m =1.0×10-20 kg ,带电荷量q =-1.0×10-9C ,A 点距虚线MN 的距离d 1=1.0 cm ,不计带电微粒的重力,忽略相对论效应。
求:(1)B 点到虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t 。
13.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示。
一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。
粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y 轴距离与Q点到y轴距离相等。
不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比。
14.如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B。
一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动。
A、C两点间距离为h,重力加速度为g。
(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。
已知小滑块在D点时的速度大小为v D,从D 点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P。
15.如图甲所示,粒子源靠近水平极板M 、N 的M 板,N 板下方有一对长为L ,间距为d =1.5L 的竖直极板P 、Q ,再下方区域存在着垂直于纸面的匀强磁场,磁场上边界的部分放有感光胶片。
水平极板M 、N 中间开有小孔,两小孔的连线为竖直极板P 、Q 的中线,与磁场上边界的交点为O 。
水平极板M 、N 之间的电压为U 0,竖直极板P 、Q 之间的电压U PQ 随时间t 变化的图像如图乙所示,磁场的磁感强度B =1L2mU 0q。
粒子源连续释放初速不计、质量为m 、带电量为+q 的粒子,这些粒子经加速电场获得速度,进入竖直极板P 、Q 之间的电场后再进入磁场区域,都会打到感光胶片上。
已知粒子在偏转电场中运动的时间远小于电场变化的周期,粒子重力不计。
求:(1)粒子进入偏转电场时的动能E k ; (2)磁场上、下边界区域的最小宽度x ; (3)粒子打到磁场上边界感光胶片的落点范围。
专题四:电磁场类问题(电、磁、复合场)答案 1.解析:选D 加速度为a =qEm,a 、b 两个粒子相同,电场强度E 相同,则加速度相同,故A 错误;电场力做功为W =qEy ,可见,电场力做功相同,由能量守恒得知,a 、b 的电势能增量相同,故B 错误;若a 粒子的初动能增大到原来的2倍,由动能的定义式E k =12mv 2知,a 粒子的初速度增大到原来的2倍,粒子在电场中做类平抛运动,a 粒子到达下极板的时间不变,水平位移变为原来的2倍,a 粒子不能打到负极板的边缘,故C 错误;若仅使a 粒子初速度增大到原来的2倍,粒子到达下板的时间不变,水平位移变为原来的2倍,则a 恰能打在负极板的边缘,故D 正确。
2.解析:选B 两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,A 、D 错误;若t 0=T 2时刻释放粒子,则粒子恰好做方向不变的单向直线运动,一直向A 运动;若t 0=3T4时刻释放粒子,则粒子恰好在电场中固定两点间做往复运动,因此在T 2<t 0<3T4时间内释放该粒子,粒子的运动满足题意的要求,B 正确,C 错误。
3.[解析] 设圆形区域的半径为R ,带电粒子进入磁场中做匀速圆周运动,如图1所示,由洛伦兹力提供向心力,则有:qvB =m v 2r ,得 r =mvqB ,r ∝v 。
当粒子从b 点飞出磁场时,出射速度与入射速度与ab 的夹角恰好相等,所以速度的偏转角为60°,轨迹对应的圆心角为60°。
根据几何知识得,粒子的轨迹半径为 r 1=2R ;当粒子从a 点沿ab 方向射入磁场时,如图2所示,经过磁场的时间也是t ,说明轨迹对应的圆心角与第一种情况相等,也是60°。