二十世纪数学概观
- 格式:doc
- 大小:66.00 KB
- 文档页数:12
第十四章:现代数学概观-二十世纪的数学第十四章:现代数学概观-二十世纪的数学第一节五大新兴学科的建立一、数理逻辑1.符号逻辑数理逻辑作为一门数学学科,来源于对数学和逻辑基础的探讨,它最早可追溯到莱布尼茨,他关于逻辑演算的观念预示着布尔代数,而英国数学家布尔(G.Boole 1815—1864)在1847年出版《逻辑的数学分析》一书,正式推出所谓布尔代数,在逻辑上相当于命题演算.其后由英国数学家杰方斯(W.S.Jevons,1835—1882)和小皮尔斯(C.S.Peirce,1839—1914)在1874年加入次序关系,德国数学卷中加以公理化.第一个完全形式化的语言是德国数学家弗瑞格(G.Frege,1848—1925)在1879年出版的《概念文字》中引进的.他首先定义了全称量词及存在量词.并引进一般的谓词逻辑.不过相应的逻辑代数一直到1950年才由波兰数学家塔斯基(A.Tarski,1902—1983)所发展,他引进所谓“圆柱代数”.1955年美国数学家哈尔莫斯(P.Halmos,1916—)又引进多进代数,形成一般的逻辑代数理论.1889年意大利数学家皮亚诺(G.Peano,1858—1932)提出自然数的公理系统,即后来所谓皮亚诺算术公理.而戴德金在前一年也提出类似的公理系统.弗雷格在1884年出版的《算术基础》中开始提到算术无非是扩展的逻辑.戴德金也提出类似的观点.弗雷格在1893年出版的《算术的基本规律》第一卷中,用五条逻辑公理来推导算术命题.1902年6月罗素给弗雷格一封信,提出著名的罗素悖论,并指出弗雷格的矛盾.弗雷格在1903年出版的《算术的基本规律》第二卷附录中承认这是对他的巨大打击,正是这个悖论,揭开了数理逻辑新的一章.2.罗素悖论罗素的悖论是关于集合论的,康托尔已经意识到不加限制地谈论“集合的集合”会导致矛盾.其他人也发现集合论中存在矛盾.而罗素在1903年出版的《数学的原理》(Principles of Mathematics)中,则十分清楚地表现出集合论的矛盾,从而动摇了整个数学的基础.罗素的悖论是说:可以把集合分成两类:凡不以自身为元素的集合称为第一类集合,凡以自身做为元素的集合称为第二类的集合,每个集合或为第一类集合或为第二类集合.设M表示第一类集合全体所成的集合.如果M是第一类集现了这个矛盾之后,导致第三次数学危机,在数学界出现了各种意见,从抛弃集合论到尽可能保持集合论在数学中的基础地位的都有.由于20世纪数学的发展主流是建立在集合论基础之上,这里只考虑数学家如何消除悖论.在20世纪初,大致有两种办法,一个办法是罗素的分支类型论,它在1908年发表,在这个基础上罗素与怀特海(A.N.Whitehead,1861—1947)写出三大卷《数学原理》(principia Mathematica,1910—1913),成为数理逻辑最早一部经典著作.还有一个办法是公理方法限制集合,由此产生公理集合论.3.集合论的公理化康托尔本人没有对集合论进行公理化.集合论公理化是策梅罗(E.Zermelo,1871—1953)在1908年发表的.富兰克尔(A.Fraenkel,1891—1965)等人曾加以改进,形成著名的ZF系统,这是最常用的一个系统,因此大家都希望从中推出常用的选择公理(1904年策梅罗引进它来设与ZF系统是相容的.1963年,柯亨(P.Cohen,1934—)发明“力迫法”证明这两条“公理”的否定也不能在ZF系统中证明,从而推出其独立性.4.希尔伯特纲领为了使数学奠定在严格公理化基础上,1922年希尔伯特提出希尔伯特纲领,首先将数学形式化,构成形式系统,然后通过有限主义方法证明其无矛盾性.1928年希尔伯特提出四个问题作为实现其纲领的具体步骤:(1)分析的无矛盾性.1924年阿克曼(W.Ackermann,896—1962)和1927年冯·诺伊曼(J.Von Neumann,1903—1957)的工作使希尔伯特相信只要一些纯算术的初等引理即可证明分析的无矛盾性.1930年夏天,哥德尔开始研究这个问题,他不理解希尔伯特为什么要直接证明分析的无矛盾性.哥德尔认为应该把困难分解:用有限主义的算术证明算术的无矛盾性,再用算术的无矛盾性证明分析的无矛盾性.哥德尔由此出发去证明算术的无矛盾性而得出不完全性定理.(2)更高级数学的无矛盾性.特别是选择公理的无矛盾性.这个问题后来被哥德尔在1938年以相对的方式解决.(3)算术及分析形式系统的完全性.这个问题在1930年秋天哥尼斯堡的会议上,哥德尔已经提出了一个否定的解决.这个问题的否定成为数理逻辑发展的转折点.(4)一阶谓词逻辑的完全性,这个问题已被哥德尔在1930年完全解决.这样一来哥德尔把希尔伯特的方向扭转,使数理逻辑走上全新的发展道路.5.哥德尔的三项重大贡献除了连续统假设的无矛盾性之外,哥德尔在1929—1930年证明下面两大定理:(1)完全性定理:哥德尔的学位论文《逻辑函数演算的公理的完全性》解决了一阶谓词演算的完全性问题.罗素与怀特海建立了逻辑演算的公理系统及推演规则之后,数学家最关心的事就是公理系统的无矛盾性及完全性.所谓完全性就是,每一个真的逻辑数学命题都可以由这个公理系统导出,也就是可证明.命题演算的完全性已由美国数学家波斯特(E.Post,1897—1954)在1921年给出证明.而一阶谓词演算的完全性一直到1929年才由哥德尔给出证明.(2)不完全性定理:这是数理逻辑最重大的成就之一,是数理逻辑发展的一个里程碑和转折点.哥德尔证明不完全性定理是从考虑数学分析的无矛盾性问题开始的.1930年秋在哥尼斯堡会议上他宣布了第一不完全性定理:一个包括初等数论的形式系统,如果是无矛盾的,那就是不完全的.不久之后他又宣布:如果初等算术系统是无矛盾的,则无矛盾性在算术系统内不可证明.哥德尔的不完全定理造的是一个不自然的数论问题,数学家一直希望在一阶皮亚诺算术中找到一个数学表述既简单又有趣的数论问题,就像哥德巴赫猜想或费马大定理来说明算术的不完全性.这一直到1977年才由巴黎斯(J.Paris)等人造出,这更加证明希尔伯特纲领是不可能实现的.6.哥德尔以后的数理逻辑.哥德尔的不完全性定理从根本上动摇了数学的基础,它指出绝对的无矛盾性的证明是不可能实现的,数学家只能限制自己的领域及要求.数理逻辑也成为一个专门的学科,它分成四大分支:证明论、递归论、公理集合论及模型论,它们都在30年代发展起来.证明论仍然继续希尔伯特纲领,但不得不放宽有限主义的条件.其中最主要的成就是根岑(G.Gentzen,1909—1945)在1934年用超穷归纳法证明自然数算术的无矛盾性.递归论也奠定基础,1935年克林尼(S.Kleene,1909—1994)定义一般递归函数,1936年图林(A.Tuˉring,1912—)提出图林机概念.同年车尔赤(A.Church1903—)提出车尔赤论点:任何有效可计算函数均等价于一般递归函数.递归论与数学关系至为密切,它不仅为计算机科学奠定基础,同时一系列判定问题则直接涉及数学基本问题:如群的基本问题是问什么时侯两个群同构,对于有限表出群是1908年提出的,到50年后,苏联数学家阿其扬(C.И.A дьян,)在1957年及以色列数学家拉宾(M.O.Rabin,)在1958年独立证明这问题是不可解的.在这个基础上,小马尔科夫(A.A.MapkoB,1903—1979)证明拓扑学的基本问题——同胚问题也是不可解的,1970年最终证明希尔伯特第十问题是不可解的.模型论首先是处理真假问题,它指出一系列命题在某些模型下为真,而在另外模型下非真.其次它构造一批非标准模型.1934年斯科仑(T.Skolem,1887—1968)给出整数的非标准模型,1961年鲁宾逊(A.Robinson,1918—1974)提出非标准分析,使莱布尼茨的无穷小合法化,创立了非标准数学.二、抽象代数学代数学与拓扑学是现代数学的两大部门.它们构成现代数学的基础与核心.没有代数学和拓扑学,现代数学(除了那些较为孤立的、相对地讲不太重要的学科)可以说寸步难行.抽象代数学或近世代数学是在20世纪初发展起来的.1930—1931年范·德·瓦尔登(B.L.vander Waerden,1903—)的《近世代数学》(Moderne Algebra)一书问世,在数学界引起轰动,由此之后,抽象代数学或近世代数学成为代数学的主流,不久之后也就理所当然地把“抽象”及“近世”的帽子甩掉,堂尔皇之成为代数的正统.范·德·瓦尔登的书至今仍然是代数学的模式.它是根据德国女数学家E.诺特(E.Noether,1882—1935)和德国数学家阿廷(E.Artin,1898—1962)的讲义编写而成,在精神上基本来源于他们两位,特别是诺特,被公认为“近世代数学之母”.在诺特之前,不少大数学家都对近世代数学有过这样或那样的贡献,但是这种与经典代数学迥然不同的思想主要来源于戴德金和希尔伯特,戴德金不仅引进大多数抽象代数观念——如理想、模、环、格等,而且初步研究它们的结构及分类,而希尔伯特的抽象思维方式及公理方法则对现代整个数学都有举足轻重的影响.抽象代数学的研究对象与研究目标与经典代数学有着根本的不同:经典代数学的主要目标是求解代数方程和代数方程组,而抽象代数学的目标则是研究具有代数结构的集合的性质,刻划它们并加以分类,这些对象是用公理定义的.1.域论从古代起,人们就已经熟悉有理数和它们的运算——加法和乘法.这些运算满足加法交换律和加法结合律,乘法交换律和乘法结合律,以及分配律,而且对于加法存在零元素(0)及逆元素(倒数).所有有理数的集合是人们最早认识的具体的域,后来也知道实数集合、复数集合同样满足上述公理,它们也是城.除了这些最熟悉的域之以,在19世纪研究得最多的域是代数数域,这些都是含有无穷多元素的数域.有没有有限多个元素的域呢?1830年伽罗瓦已知有有限多个元素的域(后来被称为伽罗瓦域),其元素被称为伽罗瓦虚数,它们满足pa =0,其中p是一个素数,p称为域的特征.伽罗瓦曾具体证明,在一个特征为p的伽罗瓦域中,元素个数是p的一个幂.如在当时的情况一样,伽罗瓦所作的一切都是有具体表示的.到19世纪末,人们知道其他域的例子还有有理函数域及代数函数域.从整体结构上对域进行考察始自戴德金及克罗内克对代数数域的研究(从1855年起).但抽象域的观念则来自德国数学家韦伯(H.Weber,1842—1913),他的思想来自抽象群的观念.后来美国数学家狄克逊(L.E.Dickson,1874—1954)及亨廷顿(E.V.Huntington,1874—1952)给出域的独立的公理系统.在韦伯的影响下,德国数学家施泰尼茨(E.Steinitz,1871—1928)在1910年发表《域的代数理论》一文,为抽象域论奠定了基础.他把域分为两种类型:一种是特征为p的域,也即对所有元素a满足pa=0的域,它们一定包含最小的城(称为素域),最小的域一定是只含p个元素的伽罗瓦域.另一种是不存在这种p的域,称为特征0,其素域一定是有理数域.不管域属于哪一种类型,任何域均可由素域添加一些新元素“扩张”而成.所以域的根本问题是研究域的扩张.他对扩张进行了分类,其中主要的一类是添加系数在原域中的多项式的根后所得的扩张(代数扩张).当一个域通过代数扩张不能再扩大时称为代数封闭域.施泰尼茨证明,每个域均有唯一的代数封闭域.特别他还对特征p一般域胁许多特殊性质如不可分性、不完全性进行研究.关于抽象有限域,已经有了相当完整的结果:1893年美国数学家莫尔(E.H.Moore,1862—1932)证明,任何一有限域必定与某一个伽罗瓦域同构.反过来,对于任意素数p和正整数a,必定存在唯一一个伽罗瓦域,具有p a个元素.有限域理论在数论、编码理论、组合理论及数理统计等方面有着许多应用.在域论中引进p进域是一个重大成就.德国数学家亨泽尔(K.Hensel,1861—1941)在1908年出版的《代数数论》(Theorie der algebraischen Zahlen)中系统阐述了p进数,他对这种数规定了加、减、乘、除四种基本运算,构成一个域称p进域,而它是有理数域的一个完备化,如同实数域一样.但是与实数域性质的一个很大的不同是实数域具有阿基米德性质,也就是对任何两个实数a,b总存在一个正整数n,使na>b.p进域虽然也有一个自然的顺序,但却没有阿基米德性质.pˉ进数域是一种“局部”域,在它里面也可定义整数及代数数,它的建立大大有助于数论的发展.亨泽尔之后,抽象赋值论得到发展,在代数数论及代数几何学上有着重要应用.抽象理论的建立不仅使已有的零散知识系统化,而且有助于许多问题的解决,1927年阿廷解决希尔伯特第17问题就是靠他引进抽象的实域(他称为形式实域).实域k是把实数域的一个特性抽象化:即-1不能表示为k中元素的平方和.通过这个概念,他证明“任何正定有理函数都可表示为有理函数平方和”.2.环论环的概念原始雏型是整数集合.它与域不同之处在于对于乘法不一定有逆元素.抽象环论的概念来源一方面是数论,整数的推广——代数整数具有整数的许多性质,也有许多不足之处,比如唯一素因子分解定理不一定成立,这导致理想数概念的产生.戴德金在1871年将理想数抽象化成“理想”概念,它是代数整数环中的一些特殊的子环.这开始了理想理论的研究,在诺特把环公理化之后,理想理论被纳入环论中去.环的概念的另一来源是19世纪对数系的各种推广.这最初可追溯到1843年哈密顿关于四元数的发现.他的目的是为了扩张用处很大的复数.它是第一个“超复数系”也是第一个乘法不交换的线性结合代数.它可以看成是实数域上的四元代数.不久之后凯莱得到八元数,它的乘法不仅不交换,而且连结合律也不满足,它可以看成是第一个线性非结合代数.其后各种“超复数”相继出现.1861年,魏尔斯特拉斯证明,有限维的实数域或复数域上的可除代数,如满足乘法交换律,则只有实数及复数的代数(1884年发表).1870年戴德金也得出同样结果(1888年发表).1878年弗洛宾尼乌斯(F.G.Frobenius,1849—1917)证明实数域上有限维可除代数只有实数、复数及实四元数的代数.1881年小皮尔斯也独立得到证明.1958年用代数拓扑学方法证明,实数域上有限维可除代数,连非结合可除代数也算在内,只有1,2,4,8这四种已知维数.可见实数域及复数域具有独特的性质.关于域上线性结合代数的研究在19世纪末处于枚举阶段,1870年老皮尔斯(B.Peirce,1809—1880)发表《线性结合代数》,列举6维以下的线性结合代数162个.他还引进幂零元与幂等元等重要概念为后来的结构理论奠定基础.1898年、嘉当(E.Cartan)在研究李代数的结构基础上,对于结合代数进行类似的研究,1900年,德国数学家摩林(T.Molien,1861—1941)征明,复数域上维数≥2的单结合代数都与复数域上适当阶数的矩阵代数同构.线性结合代数的结构定理是1907年由美国数学家魏德本(J.HM.Wedderburn,1882—1948)得出的:线性结合代数可以分解为幂零代数及半单代数,而半单代数又可以表示为单代数的直和.单代数可表为域上可除代数的矩阵代数.这样结合代数就归结为可除代数的研究.可除代数有着以下的结果.1905年魏德本证明:有限除环都是(交换)域,也即伽罗瓦域.当时除了伽罗瓦域及四元数之外,不知道有别的除环.20世纪虽然发现了一些新的除环,但除环的整个理论至今仍不完善.从线性结合代数到结合环的过渡是阿廷完成的.1928年,阿廷首先引进极小条件环(即左、右理想满足降键条件的环,后称阿廷环),证明相应的结构定理.对于半单环的分类,雅可布孙(N.Jacobson,1910—)创立了他的结构理论.他认为对任意环均可引进根基的概念,而对阿廷环来说,根基就是一组真幂零元.对于非半单的阿廷环(主要出现于有限群的模表示中),如福洛宾尼乌斯代数及其推广也有许多独立的研究.而与阿廷环对应的是诺特环,对于有么无的环,秋月康夫(1902—1984)及霍普金斯(C.H opkins)证明阿廷环都是诺特环.对于诺特环,却长期没有相应的结构理论.一直到1958年英国数学家戈尔迪(A.W.Gold-ie)才取得突破,他证明任何诺特半素环都有一个阿廷半单的分式环,这才促进了新研究.与诺特环平行发展的是满足多项式等式的环.近来环表示论及同调方法的应用对结合环理论有极大促进.环论的另一来源是代数数论及代数几何学及它们导致的交换环理论.1871年戴德金引进理想概念,开创了理想理论.环这个词首先见于希尔伯特的数论报告.代数几何学的研究促使希尔伯特证明多项式环的基定理.在本世纪初英国数学家腊斯克(E.Lasker,1868—1941)及麦考莱(F.S.Macaulay,1862—1937)对于多项式环得出分解定理.对于交换环的一般研究来源于E.诺特.她对一般诺特环进行公理化,证明准素分解定理从而奠定交换环论乃至抽象代数学基础,其后克鲁尔(W.Krull,1899—1971)给出系统的研究,他还引进了最值得注意的局部环.四十年代,薛华荔、柯恩(I.S.Cohen,1917—1955)及查瑞斯基(O.Zariski,1899—1986)对局部环论进行了系统的研究.3.群论19世纪末抽象群开始成为独立研究的对象,当时主要问题仍是以置换群为模式的有限群,问题涉及列举给定阶数的所有群以及群的可解性的判据.当时主要的定理是由挪威数学家西洛(L.Sylow,1832—1918)在的.而19世纪90年代群论最主要成就是群表示论的出现,它是由德国数学家福洛宾尼乌斯奠定的.后由他的学生舒尔(I.Schur,1875—1941)所发展,成为研究群论不可缺少的工具.所谓群表示即是把群具体实现为某种结构的自同构群,例如域F上的有限维线性空间的线性变换群,通常是把群的元素与F上的n×n可逆矩阵相对应.在英国数学家伯恩塞德(W.Burnside,1852—1927)的经典著作《有限阶群论》(Theory of Groups of Finite Order)第二版(1911)已经进行综述并给出应用.20世纪有限群论的中心问题是有限单群的分类.很久以来,就已经知道一个相当长的有限单群的表,除了素数阶循环群之外,对于每一个整数n≥5存在一个n!/2阶单群,它由n个事物的所有偶置换构成,这就是所谓交错群.当n=5时,它就是二十面体群.另外还知道许多射影特殊线性变换群PSL(n,q),它们通过行列式为1的n×n矩阵群(元素取在有限域GL(q)中)的商群构造出来.另外对于正交矩阵、辛矩阵、酉矩阵也可以造出一批单群来.这些“典型群”,从若尔当时候起就已知道,后来经过美国数学家狄克逊、荷兰数学家范·德·瓦尔登、法国数学家丢东涅(J.Dieudonné,1906—1992)进行系统研究.真正重大的突破是1955年薛华荔在日本《东北数学杂志》上发表的“论某些单群”的论文,这篇论文的重要性不仅展示一些新单群,而且更重要的是对于以前知道的绝大部分通过李代数换基的办法进行统一的处理,从而得出九个系列的薛华荔群.其后,这些薛华荔群经过美国数学家斯坦伯格(R.Steinberg,1922—)、韩国数学家李林学、比利时数学家梯茨(J.Tits,1930—)、日本数学家铃木通夫(1926—)等人加以扩充,得出全部李型单群的16系列.除了上述这18个序列中的有限单群之外,还有几个不属于它们的所谓“散在单群”,其中头一个是7920阶的群M11是法国数学家马丢(E.L.Mathieu,1835—1890)在1861年发现的,他不久又发现另外4个单群M12,M22,M23,M24.一直到1965年之前再没有发现新的散在单群了.突然1965年南斯拉夫数学家严科(Z.Janko,1932—)发现了一个175560阶的新单群,其后10年间,陆续发现另外20个敬在单群,其中最大的称为费舍尔(B.Fischer,1936—)“魔群”,其阶大约为8.1053,到这时候是否所有单群均已找到,也就是有限单群的分类已经完成了呢?在这条漫长的路上,首先的突破是一系列群论性质及表示论的成果,其中包括1955年布劳尔(R.Brauer 1901—1977)的工作.第二个突破是1963年美国数学家费特(W.Feit,1930—)和汤姆逊(J.G.Thompson,1932—)证明除循环群之外,奇阶群都是可解群,这个长达250页的论文包括了极其丰富的信息.70年代,在群的结构研究上有了新的突破,最终导致1981年,有限单群的分类彻底完成,不过全文需要1万页以上,这是各国上百位群论专家通力合作的结果.对于无穷阶的离散群,也有一些重要的研究,其中重要的是与数理逻辑有关的“字的问题”,即两个符号序列何时相等,对于有限生成的具有有限个关系式的群,1955年左右苏联数学家诺维科夫(Π·C·Hовиков,1901—1975)、美国数学家布里顿(J.L.Britton)和布恩(W.Boone,1920—1983)证明一般的字的问题是不可解的,也就是不存在一个普遍的算法来判定两个字是否相等,但是另一方面德国数学家马格努斯(W.Magnus,1907—)在1932年解决一个关系式的有限生成群的字的问题.另一个重要的问题是伯恩赛德问题,他问一个有限生成的群如果其所有元素都是有限阶的,该群是否有限,这个问题一直到1964年由前苏联数学家考斯特利金(А.И.Кострикин,1929—)举出例子而得出否定的回答.另外还有一个狭义的伯恩赛德猜想,即有限生成群当所有元素x 满足x n=0是有限群,现在知道当n=2,3,4,6时,狭义伯恩赛德猜想成立,但如果n相当大,诺维科夫和布里顿等人也举出反例.三、测度与积分理论测度是长度、面积和体积概念的精密化及推广.各民族数学发展一开始均致力于测量长度和面积,得出相应的公式及方法,而统一的求积方法一直到牛顿和莱布尼茨建立微积分之后才得到.这时求积问题变成一个特殊的积分问题.但积分是一个相当复杂的概念,19世纪由于分析的严格化才导致由柯西、黎曼及达布相继改进的黎曼积分的概念,最后确定下来.随着康托尔点集论的建立,要求对更一般的点集的“大小”进行比较及量度,这要求定义测度.先是对黎曼可积性条件中函数的不连续点集的“测度”给出定义.最早是哈那克(A.Harnack,1851—1888)、杜布瓦—瑞芒(P.du Bois Rey-mond,1831—1889)、史托尔茨(O.Stolz,1842—1905)及康托尔在1881到1885试着做出定义,他们均采用覆盖区间长度的下确界,但是这样定义有毛病.例如,两个无公共点集的并集的“测度”有时能够小于两集的“测度”之和,除了上述定义的“外”测度之外,最先定义“内”测度的是皮亚诺,他在1887年定义“可测”集为内、外测度相等,这样虽然克服上述困难,但有界开集并不一定可测.若尔当在他的《分析教程》第一卷第二版(1893)中也做了类似的定义,同样也有类似的毛病.对这些毛病的补救来自波莱尔(E.Borel,1871—1956),他在《函数论教程》中大大改进了以前的测度观念,利用可数可加性对任一有界开集构造地定义测度.他还考虑零测度集(实际上这个观念可以追溯到黎曼).而真正把波莱尔的方法同皮亚诺—若尔当的办法结合而形成系统测度论的则是波莱尔的学生勒贝格,这些发表在他的博士论文《积分、长度、面积》当中.勒贝格的功绩不仅在于建立系统的测度理论,更主要的是建立系统的积分理论.在勒贝格之前,除了黎曼积分之外,还有斯蒂尔吉斯(T.J.Stieltjes,1856—1894)积分.斯蒂尔吉斯在1894年发表的“连分式的研究”中证明:如连分式数F(Z),F(Z)可表为。
20世纪数学概观(Ⅰ)纯粹数学的主要趋势科学知识的增长是非线性的过程.在19世纪变革与积累的基础上,20世纪数学呈现出指数式的飞速发展.现代数学不再仅仅是代数、几何、分析等经典学科的集合,而已成为分支众多的、庞大的知识体系,并且仍在继续急剧地变化发展之中.大体说来,数学核心领域(即核心数学,也称纯粹数学)的扩张,数学的空前广泛的应用,以及计算机与数学的相互影响,形成了现代数学研究活动的三大方面.下面我们将按这三大方面来概括介绍20世纪数学的发展.本章叙说纯粹数学的主要趋势;第12章阐述应用数学的发展和计算机的影响,最后在第13章中选讲一些有代表性的成就来进一步说明20世纪数学的特征. 纯粹数学是19世纪的遗产,在20世纪得到了巨大的发展.20世纪纯粹数学的前沿不断挺进,产生出令人惊异的成就.与19世纪相比,20世纪纯粹数学的发展表现出如下主要的特征或趋势:①更高的抽象性;②更强的统一性;③更深入的基础探讨.本章对20世纪纯粹数学的论述,将以这三项特征为线索.11.1 新世纪的序幕1900年8月,德国数学家希尔伯特在巴黎国际数学家大会上作了题为《数学问题》的著名讲演.他的讲演是这样开始的:“我们当中有谁不想揭开未来的帷幕,看一看今后的世纪里我们这门科学发展的前景和奥秘呢?我们下一代的主要数学思潮将追求什么样的特殊目标?在广阔而丰富的数学思想领域,新世纪将会带来什么样的新方法和新成果?”希尔伯特在讲演的前言和结束语中,对各类数学问题的意义、源泉及研究方法发表了许多精辟的见解,而整个演说的主体,则是他根据19世纪数学研究的成果和发展趋势而提出的23个数学问题,这些问题涉及现代数学的许多重要领域.一个世纪以来,这些问题一直激发着数学家们浓厚的研究兴趣.以下是希尔伯特的数学问题及解决简况:1.连续统假设.自然数(可数)集基数0S 与实数集(连续统)基数02SC 之间不存在中间基数.1963年,美国数学家科恩(P.Cohen)证明了:连续统假设的真伪不可能在策梅洛—弗兰克尔公理系统内判别.2.算术公理的相容性.1931年,哥德尔(K.Godel)证明了希尔伯特关于算术公理相容性的“元数学”纲领不可能实现.相容性问题至今未决.3.两等底等高四面体体积之相等.1900年德恩(M.Dehn)证明了确实存在着等底等高却不剖分相等,甚至也不拼补相等的四面体.第三问题成为最先获解的希尔伯特问题.4.直线为两点间的最短距离问题提得过于一般.5.不要定义群的函数的可微性假设的李群概念.格利森(A.M.Cleason)、蒙哥马利(D.Montgomery)、席平(L.Zippin)等于1952年对此问题给出了肯定解答.6.物理公理的数学处理.在量子力学、热力学等部门,公理化已取得很大成功.至于概率论公理化已由科尔莫戈罗夫等建立(1933).7.某些数的无理性与超越性.1934年,盖尔丰德(A.O.Gel ’fand)和施奈德(T.Schneider)各自独立地解决了问题的后半部分.即对于任意代数数1,0≠α和任意代数无理数β证明了βα的超越性.8.素数问题.包括黎曼猜想,哥德巴赫猜想和孪生素数猜想,均未解决.9.任意数域中最一般的互反律之证明.已由高木贞治(1921)和阿廷(E .Artin ,1927)解决.10.丢番图方程可解性判别.1970年,马蒂雅舍维奇证明了,不存在判定任一给定丢番图方程有无整数解的一般算法.11.系数为任意代数数的二次型.哈塞(H .Hasse ,1929)和西格尔(C .L.Siegel ,1936,1951)在此问题上获得重要结果.12.阿贝尔域上的克罗内克定理在任意代数有理域上的推广.尚未解决.13.不可能用仅有两个变数的函数解一般的七次方程.连续函数情形1957年已由阿诺(B.H.Arnold)解决.14.证明某类完全函数系的有限性.1958年被永田雅宜否定解决.15.舒伯特计数演算的严格基础.代数几何的严格基础已由范德瓦尔登(B.L.Van der Waerden ,1938—1940)和魏依(A.Weil ,1950)建立,但舒伯特演算的合理性尚待解决.16.代数曲线与曲面的拓扑.有很多重要结果.17.正定形式的平方表示.已由阿廷于1926年解决.18.由全等多面体构造空间.部分解决.19.正则变分问题的解是否一定解析.1904年伯恩斯坦证明了一个变元的解析非线性椭圆型方程其解必定解析.该结果后又被推广到多变元椭圆组.20.一般边值问题.成果丰富.21.具有给定单值群的微分方程的存在性.长期以来人们一直认为普莱梅依(J.Plemelj)1908年已对此问题作出肯定解答.但八十年后发现普莱梅依的证明有漏洞.1989年前苏联数学家A .A .鲍里布鲁克关于此问题举出了反例,使第二十一问题最终被否定解决.22.解析关系的单值化.一个变数情形已由寇贝(P.Koebe)解决.23.变分问题的进一步发展.我们看到,希尔伯特问题中近一半已经解决或基本解决.有些问题虽未最后解决,但也取得了重要进展.希尔伯特问题的解决与研究,大大推动了数理逻辑、几何基础、李群论、数学物理、概率论、数论、函数论、代数几何、常微分方程、偏微分方程、黎曼曲面论、变分法等一系列数学分支的发展,有些问题的研究(如第二问题和第十问题)还促进了现代计算机理论的成长.重要的问题历来是推动科学前进的杠杆,但一位科学家如此自觉、如此集中地提出一整批问题,并如此持久地影响了一门科学的发展,这在科学史上是不多见的.当然任何科学家都会受到当时科学发展的水平及其个人的科学素养、研究兴趣和思想方法等限制.希尔伯特问题未能包括拓扑学、微分几何等在20世纪成为前沿学科的领域中的数学问题,除数学物理外很少涉及应用数学,等等.20世纪数学的发展,远远超出了希尔伯特问题所预示的范围.11.2 更高的抽象更高的抽象化是20世纪纯粹数学的主要趋势或特征之一.这种趋势,最初主要是受到了两大因素的推动,即集合论观点的渗透和公理化方法的运用.(1)集合论观点.19世纪末由G .康托尔所创立的集合论,最初遭到许多数学家(包括克罗内克、克莱因和庞加莱等)的反对,但到20世纪初,这一新的理论在数学中的作用越来越明显,集合概念本身被抽象化了,在弗雷歇(M .Frechet)等人的著作(《关于泛函演算若干问题》,1906)中不是数集或点集,而可以是任意性质的元素集合,如函数的集合,曲线的集合等等.这就使集合论能够作为一种普遍的语言而进入数学的不同领域,同时引起了数学中基本概念(如积分、函数、空间等等)的深刻变革.(2)公理化方法.H .外尔(Weyl)曾说过:“20世纪数学的一个十分突出的方面是公理化方法所起的作用极度增长,公理化方法仅仅用来阐明我们所建立的理论的基础,而现在它却成为具体数学研究的工具.”现代公理化方法的奠基人是D.希尔伯特.我们已经知道,虽然欧几里得已用公理化方法总结了古代的几何知识,但他的公理系统是不完备的.希尔伯特在1899年发表的《几何基础》中则提出第一个完备的公理系统.与以往相比,希尔伯特公理化方法具有两个本质的飞跃.首先是希尔伯特在几何对象上达到了更深刻的抽象。
第十三讲:20世纪数学概观III主要内容:数学中心的迁移、20世纪的中国数学。
1、牛顿以来250年间的英德法数学家1642-1891年间出生于英德法的主要数学家。
2、20世纪的一些数学团体哥廷根学派、波兰数学学派、苏联数学学派、布尔巴基学派、美国数学、中国数学。
2.1 哥廷根学派哥廷根大学创立于1743年,高斯(1777-1855年)1807-1855年任哥廷根大学数学教授,后狄利克雷(1805-1859年)1855-1859年、黎曼(1826-1866年)1846-1866年在哥廷根工作,1886年克莱因(1849-1925年)到哥廷根,开创了40年哥廷根学派的伟大基业。
20世纪初世界数学中心:哥廷根数学研究所。
在哥廷根工作的一些数学家。
闵科夫斯基:一个人哪怕只是在哥廷根作短暂的停留,呼吸一下那里的空气,都会产生强烈的工作欲望。
在哥廷根学习或访问过的数学家。
1934年曾炯之、姜立夫、陈省身在哥廷根。
1923-1924年朱德在哥廷根故居外景,1923-1924年朱德在哥廷根故居外景。
2.2 波兰数学学派1917年波兰数学会在克拉科夫成立,1918年亚尼谢夫斯基(1888-1920年)发表《波兰数学的需求》,形成了华沙学派、利沃夫学派(现乌克兰)。
华沙学派:点集拓扑、集论、数学基础,带头人:谢尔宾斯基(1882-1969年),马祖凯维奇(1888-1945年),刊物《数学基础》(1920年创刊),有影响的数学家:萨克斯(1897-1942年),库拉托夫斯基(1896-1980年),塔尔斯基(1902-1983年),波苏克(1905-1982年)。
利沃夫学派:泛函分析,带头人:巴拿赫(1892-1945年),施坦豪斯(1887-1972年),刊物《数学研究》(1929年创刊),有影响的数学家:马祖尔(1905-1981年),奥利奇(1903-1990年),绍德尔(1899-1943年)。
施坦豪斯:他(巴拿赫)最重要的功绩乃是从此打破了波兰人在精确科学方面的自卑心理,…他把天才的火花和惊人的毅力与热情熔为一体。
第十二讲:20世纪数学概观II介绍20世纪的一些数学研究成果及数学奖1、数学研究成果五例四色问题、动力系统、鲁金猜想、庞加莱猜想、数论。
1.1 四色问题图论:以图为研究对象的数学分支。
图是若干给定点及连接两点的线所构成的图形。
1736年哥尼斯堡七桥问题,1781年36军官问题,1859年哈密顿旅行路线图。
1852年首先由英国青年大学生古德里提出“四色问题”。
19世纪英国一些著名数学家进行研究并引起人们的关注:德•摩根(1806-1871年),哈密顿(1805-1865年),凯莱(1821-1895年)等。
1878年凯莱发表《论地图的着色》,掀起了一场四色问题热。
1879年律师肯泊(英,1849-1922年)宣布证明了“四色问题”并发表于《美国数学杂志》上,1890年希伍德(英,1861-1955年)指出了肯泊的错误,证明了“五色定理”并一生坚持研究四色问题。
四色问题有一个令人迷惑的地方:在更复杂的曲面上,问题的解决反倒容易。
如希伍德曾证明了环面的七色定理。
到1968年,数学家们已解决了除平面和球面以外所有曲面上的地图四色问题,恰恰是平面和球面这种最简单的情形,却呈现出奇特的困难。
1976年哈肯和阿佩尔,利用“不可避免构形集”、“可约集”等关键意义的概念,采用计算机实验方法,成功获得了一组不可避免可约图,最终解决了四色问题。
2、动力系统描述决定性系统的数学模型都可称为动力系统,通常所说的动力系统多指由映射迭代生成的系统或常微分系统,其核心问题是结构的稳定性。
庞加莱关于常微分方程定理理论的一系列课题,成为动力系统理论的出发点。
1912年起伯克霍夫(美,1884-1944年)以三体问题为背景,扩张了动力系统的研究。
1913年伯克霍夫(美,1884-1944年)解决“庞加莱的最后问题”:由两个同心圆构成的圆环保持面积不变,且在两同心圆上方向相反的一对一连续映射,一定在圆环内至少有两个不动点。
1927年伯克霍夫(美,1884-1944年)出版《动力系统》。
二十世纪数学概观——阿蒂亚(二十世纪的数学——AtiyahMichael Atiyah谢谢邀请我来这里参加这个活动.当然,如果有人想谈论一个世纪的终结以及下一个世纪的开始,那么他有两个具有相当难度的选择:一个是回顾过去百年的数学;另一个是对未来百年数学发展的预测,我选择了前面这个比较困难的任务,任何人都可以预测未来而且我们并不能判定是对还是错.然而对过去的任何评述,每个人都可以提出异议.我在这里所讲的是我个人的观点.这个报告不可能包含所有内容,特别是,有一些重要的内容我不准备涉及,一部分是因为我不是那些方面的专家,一部分也是出于它们已经在其他地方被评述过了.例如,我不会去谈论那些发生在逻辑与计算领域内的著名事件,这些事件往往是与像Hilbert,Godel,Turing这些伟大的名字相关的,除了数学在基础物理中的应用之外,我也不会谈论太多数学的其他应用,这是因为数学的应用太广泛了,而且这需要专门的论述.每一个方面都需要一个专门的报告.也许大家在这次会议的其他报告中会听到很多关于这些内容的演讲.另外,试着罗列一些定理,甚至是列出在过去一百年的著名数学家的名字也是毫无意义的,那简直是在做枯燥的练习.所以,代替它们的是,我试着选择一些我认为在很多方面都是很重要的主题来讨论并且强调围绕这些主题所发生的事情.首先我有一个一般性的说明.世纪是一个大约的数字概念.我们不会真地认为在过整整一百年的时候,有些事情会突然停下来,再重新开始,所以当我描述二十世纪的数学时,有些内容实际上可能是跨世纪的,如果某件事件发生在十九世纪九十年代,并持续到二十世纪初,我将不去计较这种时间方面的细节.我所做的就象一个天文学家,工作在一个近似的数字环境中.实际上,许多东西始于十九世纪,只不过在二十世纪才硕果累累.这个报告的难点之一是很难把我们自己放回到1900年时作为一位数学家的位置上,这是因为上个世纪的数学有非常多的内容已经被我们的文化和我们自己吸收掉了.难以想象人们不用我们的术语来思考的那个时代是什么样子的.实际上,如果现在有人在数学上有一个真正重要的发现,其后他也一定会与之一起被忽略掉了!他会完全地被融入到背景之中,于是为了能够回顾过去,我们必须努力去想象在不同时代,人们用不同方式思考问题时的情景.一、从局部到整体作为开始,我准备列一些主题并且围绕它们来讨论.我谈论的第一个主题概括地讲,就是被大家称为从局部到整体的转变.在古典时期,人们大体上已经研究了在小范围内,使用局部坐标等等来研究事物.在这个世纪,重点已经转移到试图了解事物整体和大范围的性质.由于整体性质更加难以研究,所以大多只能有定性的结果,这时拓扑的思想就变得非常重要了.正是Poincaré,他不仅为拓扑学发展作出先驱性的贡献,而且也预言拓扑学将成为二十世纪数学的一个重要的组成部分,顺便让我提一下,给出一系列著名问题的Hilbert并没有意识到这一点.拓扑学很难在他的那些问题中找到具体体现.但是对Poincaré而言,他相当清楚地看出拓扑学将成为一个重要的内容.让我试着列一些领域,然后大家就能知道我在想什么了.例如,考虑一下复分析(也被称为“函数论”),这在十九世纪是数学的中心,也是象Weierstrass这样伟大人物工作的中心.对于他们而言,一个函数就是一个复变量的函数;对于Weierstrass而言,一个函数就是一个幂级数.它们是一些可以用于写下来,并且可以明确描绘的东西或者是一些公式.函数是一些公式:它们是明确可以用显式写下来的.然而接下来Abe1,Riemann和其后许多人的工作使我们远离了这些,以至于函数变得可以不用明确的公式来定义,而更多地是通过它们的整体性质来定义:通过它们的奇异点的分布,通过它们的定义域位置,通过它们取值范围.这些整体性质正是一个特定函数与众不同的特性.局部展开只是看待它们的一种方式.一个类似的事情发生在微分方程中,最初,解一个微分方程,人们需要寻找一个明确的局部解!是一些可以写下来的东西.随着事物的发展,解不必是一个显函数,人们不一定必须用好的公式来描述它们.解的奇异性是真正决定其整体性质的东西.与发生在复分析中的一切相比,这种精神是多么的类似,只不过在细节上有些不同罢了.在微分几何中,Gauss和其他人的经典工作描述了小片的空间,小块的曲率以及用来描述局部几何的局部方程.只要人们想要了解曲面的整体图象以及伴随它们的拓扑时,从这些经典结果到大范围的转变就是很自然的了.当人们从小范围到大范围时,最有意义的性质就是拓扑的性质.数论也有一个类似的发展,尽管它并不是很明显地适用于这一框架.数论学家们是这样来区分他们称之为“局部理论”和“整体理论”的:前者是当他们讨论一个单个的素数,一次一个素数,以及有限个素数时;后者是当他们同时讨论全部素数时.这种素数和点之间,局部和整体之间的类似性在数论发展过程中起了很重要的作用,并且那些在拓扑学发展中产生的思想深深地影响了数论.当然这种情况也发生在物理学中,经典物理涉及局部理论,这时我们写下可以完全描述小范围性质的微分方程,接下来我们就必须研究一个物理系统的大范围性质.物理学涉及的全部内容就是当我们从小范围出发时,我们可以知道在大范围内正在发生什么,可以预计将要发生什么,并且沿着这些结论前进.二、维数的增加我的第二个主题有些不同,我称之为维数的增加.我们再次从经典的复变函数理论开始:经典复变函数论主要是详细讨论一个复变量理论并加以精炼.推广到两个或者更多个变量基本上发生在本世纪,并且是发生在有新现象出现的领域内.不是所有的现象都与一个变量的情形相同,这里有完全新的特性出现,并且n个变量的理论的研究越来越占有统治地位,这也是本世纪主要成就之一.另一方面,过去的微分几何学家主要研究曲线和曲面,我们现在研究n维流形的几何,大家仔细想一想,就能意识到这是一个重要的转变.在早期,曲线和曲面是那些人们能真正在空间里看到的东西.而高维则有一点点虚构的成分,在其中人们可以通过数学思维来想象,但当时人们也许没有认真对待它们.认真对待它们并且用同样重视程度来研究它们的这种思想实际上是二十世纪的产物.同样地,也没有明显的证据表明我们十九世纪的先驱者们思考过函数个数的增加,研究不单单一个而是几个函数,或者是向量值函数(vector-valued function).所以我们看到这里有一个独立和非独立变量个数增加的问题.线性代数总是涉及多个变量,但它的维数的增加更具有戏剧性,它的增加是从有限维到无穷维,从线性空间到有无穷个变量的Hilbert空间.当然这就涉及到了分析,在多个变量的函数之后,我们就有函数的函数,即泛函.它们是函数空间上的函数.它们本质上有无穷多个变量,这就是我们称为变分学的理论.一个类似的事情发生在一般(非线性)函数理论的发展中.这是一个古老的课题,但真正取得卓越的成果是在二十世纪.这就是我谈的第二个主题.三、从交换到非交换第三个主题是从交换到非交换的转变.这可能是二十世纪数学,特别是代数学的最主要的特征之一.代数的非交换方面已经极其重要,当然,它源自于十九世纪.它有几个不同的起源.Hamilton在四元数方面的工作可能是最令人惊叹的,并且有巨大的影响,实际上这是受处理物理问题时所采用的思想所启发.还有Grassmann在外代数方面的工作,这是另一个代数体系,现在已经被融入我们的微分形式理论中.当然,还有Cayley以线性代数为基础的矩阵方面的工作和Galois在群论方面的工作等.所有这些都是以不同的方式形成了把非交换乘法引入代数理论的基石,我形象地把它们说成是二十世纪代数机器赖以生存的“面包和黄油”.我们现在可以不去思考这些,但在十九世纪,以上所有例子都以各自不同的方式取得了重大的突破,当然,这些思想在不同的领域内得到了惊人的发展.矩阵和非交换乘法在物理中的应用产生了量子理论.Heisenberg对易关系是非交换代数在物理中的一个最重要的应用例子,以至后来被von Neumann推广到他的算子代数理论中.群论也是在二十世纪占重要位量的理论,我稍后再回来谈它.四、从线性到非线性我的下一个主题是从线性到非线性的转变.古典数学的大部分或者基本上是线性的,或者即使不是很精确的线性,也是那种可以通过某些扰动展开来研究的近似线性,真正的非线性现象的处理是非常困难的,并且只是在本世纪,才在很大的范围内对其进行了真正的研究.我们从几何开始谈起:Euclid几何,平面的几何,空间的几何,直线的几何,所有这一切都是线性的.而从非欧几何的各个不同阶段到Riemann的更一般的几何,所讨论的基本上是非线性的.在微分方程中,真正关于非线性现象的研究已经处理了众多我们通过经典方法所看不到的新现象.在这里我只举两个例子,孤立子和混沌,这是微分方程理论两个非常不同的方面,在本世纪已经成为极度重要和非常著名的研究课题了.它们代表不同的极端.孤立子代表非线性微分方程的无法预料的有组织的行为,而混沌代表的是无法预料的无组织的行(disorganized behavior).这两者出现在不同领域,都是非常有趣和重要的,但它们基本土都是非线性现象.我们同样可以将关于孤立子的某些工作的早期历史追溯到十九世纪下叶,但那只是很少的一部分.当然,在物理学,Maxwell方程(电磁学的基本方程)是线性偏微分方程.与之对应的是著名的Yang-Mills方程,它们是非线性方程并被假定用来调控与物质结构有关的力.这些方程之所以是非线性的,是因为Yang-Mills方程本质上是Maxwell方程的矩阵体现,并且由矩阵不可交换这一事实导致方程中出现非线性项.于是在这里我们看到了一个非线性性与非交换性之间的有趣的联系.非交换性产生一类特殊的非线性性,这的确是很有意思和很重要的.五、几何与代数至此我谈的是一些一般性的主题,现在我想谈论一下数学中的一个二分叉现象,它来回摇摆却始终伴随着我们,这就给了我一个机会来做一些哲学上的思索和说明.我指的是几何和代数之间的二分法,几何和代数是数学的两个形式支柱,并且都有悠久的历史.几何学可以追溯到古希腊甚至更早的时期;代数学则源于古阿拉伯人和古印度人.所以,它们都已经成为数学的基础,但它们之间有一种令人感到不太自然的关系.让我首先由这个问题的历史开始.Euc1id几何是数学理论中最早的一个例子,直到Descartes 在我们现在称为的笛卡儿平面中引入代数坐标之前,它一直是纯几何的.Descartes的做法是一种将几何思考化为代数运算的尝试.从代数学家们的角度来讲,这当然是对几何学的一个重大突破或者说一次重大的冲击,如果我们来比较Newton和Leibniz在分析方面的工作,我们会发现他们属于不同的传统,Newton基本上是一个几何学家而Leibniz基本土是一个代数学家,这其中有着很深刻的道理.对于Newton而言,几何学,或者是由他发展起来的微积分学,都是用来描述自然规律的数学尝试.他关心的是在很广泛意义下的物理,以及几何世界中的物理.在他看来,如果有人想了解事物,他就得用物理世界的观点来思考它,用几何图象的观点来看待它.当他发展微积分的时候,他想要发展的是微积分的一种能尽可能贴近隐藏在其后的物理内蕴的表现形式.所以他用的是几何论证,因为这样可以与实际意义保持密切关系,另一方面,Leibniz有一个目标,一个雄心勃勃的目标,那就是形式化整个数学,将之变成一个庞大的代数机器.这与Newton的途径截然不同,并且二者有很多不同的记号.正如我们所知道的,在Newton和Leibniz之间的这场大争论中,Leibniz的记号最后得胜.我们现在还沿用他的记号来写偏导数.Newton的精神尚在,但被人们埋葬了很长时间.在十九世纪末期,也就是一百年前,Poincaré和Hilbert是两个主要人物.我在前面已经提到过他们了,并且可以粗略地讲,他们分别是Newton和Leibniz的传人.Poincaré的思想更多的是几何和拓扑的精神,他用这些思想作为他的基本洞察工具.Hilbert更多的是一个形式主义者,他要的是公理化,形式化,并且要给出严格的,形式的描述.虽然任何一个伟大的数学家都不能轻易地被归到哪一类中去,但是,很清楚地,他们属于不同的传统.当准备这个报告的时候,我想我应该写下我们目前这一代中能够继承这些传统的具有代表性的人的名字.谈论还健在的人是十分困难的——谁该放在这张名单上呢?接着我又暗自思忖:有谁会介意被放在这么一张著名的名单的哪一边呢?于是我选择了两个名字Arnold Bourbaki,前者是Poincaré-Newton传统的继承人,而后者,我认为,是Hilbert最著名的接班人.Arnold毫不含糊地认为:他的力学和物理的观点基本上是几何的,是源自于Newton 的;以为存在处于二者之间的东西,除了象Riemann(他确实跟两者都有偏离)等少数人之外,都是一种误解.Bourbaki努力继续Hilbert的形式化的研究,将数学公理化和形式化推向了一个令人瞩目的范围并取得了一些成功.每一种观点都有它的优点,但是它们之间很难调和.让我来解释一下我自己是如何看待几何和代数之间的不同.几何学当然讲的是空间,这是毫无疑问的.如果我面对这间房间里的听众,我可以在一秒中内或者是一微秒内看到很多,接收到大量的信息,当然这不是一件偶然的事件.我们大脑的构造与视觉有着极其重要的关系.我从一些从事神经生理学的朋友那里了解到,视觉占用了大脑皮层的百分之八十或九十.在大脑中大约有十七个中枢,每一个中枢专门用来负责视觉活动的不同部分:有些部分涉及的是垂直方向的,有些部分与水平方向有关,有些部分是关于色彩和透视的,最后有些部分涉及的是所见事物的具体含义和解说.理解并感知我们所看到的这个世界是我们人类发展进化的一个非常重要的部分.因此空间直觉(spatial intuition)或者空间知觉(spatial perception)是一种非常强有力的工具,也是几何学在数学上占有如此重要位置的原因,它不仅仅对那些明显具有几何性质的事物可以使用,甚至对那些没有明显几何性质的事物也可以使用.我们努力将它们归结为几何形式,因为这样可以让我们使用我们的直觉.我们的直觉是我们最有力的武器.特别是在向学生或是同事讲解一种数学时可以看得很清楚.当你讲解一个很长而且很有难度的论证,最后使学生明白了.学生这时会说些什么呢?他会说“我看到了(我懂了)!”在这里看见与理解是同义词,而且我们还可以用“知觉”这个词来同时形容它们,至少这在英语里是对的,把这个现象与其他语言作对比同样有趣.我认为有一点是很基本的:人类通过这种巨大的能力和视觉的瞬间活动获取大量的信息,从而得以发展,而教学参与其中并使之完善.在另一方面(也许有些人不这样认为),代数本质上涉及的是时间.无论现在做的是哪一类代数,都是一连串的运算被一个接着一个罗列出来,这里“一个接着一个”的意思是我们必须有时间的概念.在一个静态的宇宙中,我们无法想象代数,但几何的本质是静态的:我可以坐在这里观察,没有什么变化,但我仍可以继续观察.然而,代数与时间有关,这是因为我们有一连串的运算,这里当我谈到“代数”时,我并不单单指现代代数.任何算法,任何计算过程,都是一个接着一个地给出一连串步骤,现代计算机的发展使这一切看得很清楚.现代计算机用一系列0和1来反映其信息并由此给出问题的答案.代数涉及的是时间的操作,而几何涉及的是空间.它们是世界互相垂直的两个方面,并且它们代表数学中两种不同的观念.因此在过去数学家们之间关于代数和几何相对重要性的争论或者对话代表了某些非常非常基本的事情.当然只是为了论证是哪一边输了,哪一边胜利了,这并不值得.当我考虑这个问题时,有一个形象的类比:“你愿意成为一个代数学家还是一个几何学家?”这个问题就象问:“你愿意是聋子还是瞎子?”一样.如果人的眼睛盲了,就看不见空间;如果人的耳朵聋了,就无法听见,听觉是发生在时间之中的,总的来说,我们还是宁愿二者都要.在物理学,也有一个类似的、大致平行的关于物理概念和物理实验之间的划分.物理学有两个部分:理论——概念,想法,单词,定律——和实验仪器.我认为概念在某种广义的意义下是几何的,这是因为它们涉及的是发生在真实世界的事物.另一方面,实验更象一个代数计算.人们做事情总要花时间,测定一些数,将它们代入到公式中去.但是在实验背后的基本概念却是几何传统的一部分.将上述二分叉现象用更哲学或者更文学的语言来说,那就是对几何学家而言,代数就是所谓的“浮士德的奉献”.正如大家所知道的,在歌德的故事里,浮士德通过魔鬼可以得到他所想要的(就是一个漂亮女人的爱),其代价是出卖他的灵魂,代数就是由魔鬼提供给数学家的供品.魔鬼会说:“我将给你这个有力的机器,它可以回答你的任何问题.你需要做的就是把你的灵魂给我:放弃几何,你就会拥有这个威力无穷的机器”(现在可以把它想象成为一台计算机!).当然我们希望同时拥有它们,我们也许可以欺骗魔鬼,假装我们出卖灵魂,但不真地给它.不过对我们灵魂的威胁依然存在,这是因为当我们转入代数计算时,本质上我们会停止思考,停止用几何的观念来考虑问题,不再思考其含义.在这里我谈论代数学家的话重了一些,但是基本土,代数的目标总是想建立一个公式,把它放到一个机器中去,转动一下把手就可以得到答案.也就是拿来一个有意义的东西,把它化成一个公式,然后得到答案.在这样的一个过程中,人们不再需要思考代数的这些不同阶段对应的几何是什么.就这样,洞察力丢掉了,而这在那些不同的阶段都是非常重要的.我们绝不能放弃这些洞察力!最终我们还是要回到这上面来的,这就是我所谈到的浮士德的奉献.我肯定这种讲法尖锐了一点.几何和代数的这种选择导致能融合二者的一些交叉课题的产生,并且代数和几何之间的区别也不象我讲的那样直截了当和朴实无华.例如,代数学家们经常使用图式(diagram).而除了几何直觉,图式又能是什么呢?六、通用的技术现在我不想再谈论太多就内容来划分的主题,而想谈谈那些依照已经使用的技术和常见方法所确定的主题,也就是我想描述一些已经广泛应用于众多领域的常见方法.第一个就是:同调论历史上同调论是作为拓扑学的一个分支而发展起来的.它涉及到以下情形.现有一个复杂的拓扑空间,我们想从中得到它的一些简单信息如计算它的洞或者类似事物的个数,得到某些与之联系的可加的线性不变量等.这是一种在非线性条件下关干线性不变量的构造.从几何的角度来看,闭链可加可减,这样就得到了所谓的一个空间的同调群.同调论,作为一种从拓扑空间获取某些信息的基本代数工具,是在本世纪上半叶发现的.这是一种从几何中获益匪浅的代数.同调概念也出现在其他一些方面.其另一个源头可以追溯到Hilbert及其关于多项式的研究中,多项式是非线性的函数,它们相乘可以得到更高次数的多项式.正是Hilbert那伟大的洞察力促使他来讨论“理想”,具有公共零点的多项式的线性组合.他要寻找这些理想的生成元.生成元可能有很多.他审视它们之间的关系以及关系之间的关系.于是他得到这些关系的一个分层谱系,这就是所谓的“Hilbert合系”.Hilbert的这个理论是一种非常复杂的方法,他试图将一个非线性的情形(多项式的研究)化为线性情形.本质上来讲,Hilbert构造了一个线性关系的复杂体系.能够把象多项式这样的非线性事物的某些信息纳入其中.这个代数理论实际上是与上述拓扑理论平行的,而且现在它们已融合在一起构成了所谓的“同调代数”.在代数几何学中,本世纪五十年代最伟大的成就之一是层的上同调理论的发展及在解析几何学中的扩展,这是由Leray,Cartan,Serre和Grothendieck等人组成的法国学派取得的.从中我们可以感受到一种既有Riemann-Poincaré的拓扑思想,又有Hilbert的代数思想,再加上某些分析手段的融合,这表明同调论在代数的其它分支也有着广泛的应用.我们可以引入同调群的概念,它通常是与非线性事物相关的线性事物.我们可以将之应用于群论,例如,有限群,以及李代数:它们都有相应的同调群.在数论方面,同调群通过Galois群产生了非常重要的应用.因此在相当广泛的情形下同调论都是强有力的工具之一,它也是二十世纪数学的一个典型的特征.K-理论我要谈的另外一个技术就是所谓的“K-理论”.它在很多方面都与同调论相似,它的历史并不很长(直到二十世纪中叶才出现,尽管其起源的某些方面也许可以追溯到更早一些),但它却有着很广泛的应用,已经渗透进了数学的许多部分.K-理论实际上与表示理论紧密相联,有限群的表示理论,可以讲,起源于十九世纪.但是其现代形式——K-理论却只有一个相对较短的历史.K-理论可以用下面的方式来理解:它可以被想成是应用矩阵论的一种尝试.我们知道矩阵的乘法是不可交换的,于是我们想构造矩阵可换的或是线性的不变量.迹,维数和行列式都是矩阵论中可换的不变量,而K-理论即是试图处理它们的一种系统的方法,它有时也被称为“稳定线性代数”.其思想就是,如果我们有很多矩阵,那么把两个不可换的矩阵A和矩阵放在不同块的正交位置上,它们就可换了,因为在一个大的空间里,我们可以随意移动物体.于是在某些近似情况下,这样做是很有好处的,足以让我们得到一些信息,这就是作为一个技术的K-理论的基石.这完全类似于同调论,二者都是从复杂的非线性情形获取线性的信息.在代数几何中,K-理论是由Grothendieck首先引入的,并且取得了巨大的成功,这些与我们刚刚谈到的层理论密切相关,而且也和他在Riemann-Roch定理方面的工作有紧密联系.。