利息理论第一章课后答案
- 格式:doc
- 大小:196.50 KB
- 文档页数:5
第一章利息的基本概念1.)()0()(t a A t A =2.,11)0(=∴=b a 180)5(100=a 508)8()5(300=a a 3~5.用公式(1-4b)7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+−+12.1000)1)(1)(1(321=+++i i i k 14.nn nni i i i −−+⋅+>+++)1()1(2)1()1(16.用p.6公式17.用P.7最后两个公式19.用公式(1-26)20.(1)用公式(1-20);(2)用公式(1-23)22.用公式(1-29)23.(1)用公式(1-32);(2)用公式(1-34)及题6(2)结论24.用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎞+=++⎜⎟−⎝⎠⎛⎞−⎜⎟⎝⎠26.对于c)及d),,,c)中,,δn e n a =)(1111)1(−=−=+==∴v di e a δ∴v ln −=δd)中,δ−−=ed 128.∫=tdxx e t a 0)()(δ29.;4411⎟⎠⎞⎜⎝⎛+=+j i h e j =+131.(1)902天39.,两边同时求导,,类似t e tA dr +=∫10δ)1ln(0t dr tA +=∫∴δtt A +=11)(δ)(t B δ46.,10009200.081000d −==9202108.01(288)08.01(=×−+−x 第二章年金4.解:12010.087110.0870.08712160001000110.087121212A −−⎛⎞−+⎜⎟⎛⎞⎛⎞⎝⎠=+⋅++⎜⎟⎜⎟⎝⎠⎝⎠5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y i i −−−−+==⇒+=−−+−−===将代入(*)1d i d=−7.解:100010001000011718…()51218100010.0839169.84s −+=&&8.解:100.1100.15000s Ra =&&&&9.解:100.1100.155000s Ra =&&&&14.解:永续年金每年支付R112n n Ra R a i ⎛⎞=−⎜⎟⎝⎠17.解:解得即正常还款次数为95次0.0081500100000m a =95.6m ≈解得95950.0081500(10.008)100000a f −++=965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎞−+=⎜⎟⎜⎟⎝⎠∴+++−++=令105()1715f t t t t =+−+0(1.03)(1.035)(1.03)1.03 1.035 1.03f f f i −−=−−(1.032)0.003186f =−23.解:,()4660.0411 1.04i a i −−−++40.04114i ⎛⎞+=+⎜⎟⎝⎠24.解:R 1.1025R 1.205R 01423得4321.05 1.1025 1.05 1.1025 1.05 1.205 1.0511000R R R R ×+++=2212.147R =25.解:()()()1211111nn nn n a i n i i i a iii −−−−∂−++−++=∴=∂其中通过公式(2-76)得到0.1020.116.8670.10.002n n n n i a a a i==∂−∴==∂L n29.解:7777111v a v i a iKi−=∴=−=−类似地,111811181111v ia iL v ia iM=−=−=−=−,从而71118(1)(1)1v v v iK iL iM =∴−−=−Q L K M i KL+−=31.解:(2)(12)(2)(12)(12)1112nn nnnv v i i aaa id i−−⎛⎞===+⎜⎟⎝⎠&&,32.解:()500lim 110000tn i n a i −→∞+=&&半半,()()122111111i i i d d−+==+⇒+=−−半半()1211i d −=−−半()1120ti i −+∴=半半36.解:()()()2020201195.36n n anv a i n i Ia ii−−+−+=∴=&&37.解:110123……1该永续年金现值为1i11123……6541该永续年金现值为:()()24111(2)i i i i−−++++=+L ∴所求年金现值为:113(2)(2)i i i i i i++=++39.解:()01ntkt v dt f g h−=−−∫11lim lim n n n n v f a δδ→∞→∞−===1(1)ng kn v δ=−⋅40.解:011()1tdrr a t e t+∫==+1001()ln(1)1nnn a a t dt dt n t−===++∫∫42.解:后五年等比()()()551051111000105011k i s s i i i k+⎛⎞−⎜⎟+⎝⎠−+×++−&&&&43.解:120567……10983…414684468111v v v v a a a i i i i i i i vd−+−+−+=+++=−L L 45.解:2300.015251.0215KsKa−=+&&&&46.解:1010120180180300300 1.03 1.03i i i iia a a a a −−++=月月新月新月月11x110000047.解:011()1tdrr a t e t+∫==+231414212111(0)(1)()(1)84.51v t a t dt t dt t−=−=−=+∫∫48.解:11tn t n v v a a δδ−−==,()001111144010%t n nnt n v v a dt dt n n a δδδδ⎛⎞−−==−=−=×=⎜⎟⎝⎠∫∫49.解:1)()11t n nt tt t atv Ia i==−=∑∑&&第三章收益率2.解:234000 1.120000.93382×−×=3.解:237000100040005500(0)v v v v v −−++=110.090.11.09 1.1i v i v ====时,;时,令(0)0v v i=⇒及7.解:81.516.510(1)11.995%x x i i ⋅⋅=+⇒=8.解:11100.250.751(1)1(1)1(1)100000150002000011000kkkdtdtdtt k t k t k e ee+−+−+−∫∫∫+−=解得:0.14117k =10.解:1234567810911111i 2i 3i 4i 5i5i5i5i5i5i本金利息560.0450.0461000 1.04550.04s i is −⎛⎞++⎜⎟⎝⎠13.解:50000068000060000500055000A B I ===−=,,29.78%Ii A B I=≈+−14.解:()11144320000112%5000180001112%196104B i −⎛⎞⎡⎤⎛⎞=×++×+−×+−×=⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠15.解:书后答案是,不知我对它对。
利息理论智慧树知到课后章节答案2023年下云南财经大学云南财经大学绪论单元测试1.利息和利率存在于跨时期的资金借贷活动当中,是借贷双方发生了跨时期资金借贷的行为结果。
A:对 B:错答案:对2.利息和利率是最重要的经济变量。
它们在生产生活实践当中发挥着重要的杠杆作用,可以通过影响人们的投资和消费行为,进而强有效的影响资金的流动和国民经济的整体发展。
A:对 B:错答案:对3.《利息理论》是保险学、精算学、金融数学、金融工程等专业的核心课程,是参加精算师资格考试的必考内容,其提供的思维方式可以广泛的运用于保险产品定价,尤其是寿险产品定价、财务管理、投资决策、公司金融、金融工程等领域。
A:错 B:对答案:对1.以下关于利息的说法,错误的是()。
A:利息是从属于信用的一个经济范畴B:利息是借款人支付给贷款人的代价 C:信用关系是利息产生的基础 D:利息是借款人由于借出货币使用权而从贷款人那里获得的报酬答案:利息是借款人由于借出货币使用权而从贷款人那里获得的报酬2.利息是资金的()。
A:价格 B:价值 C:水平 D:指标答案:价格3.利率是衡量利息高低的()。
A:指标 B:水平 C:价格 D:价值答案:指标4.利息是借款人为了获得一笔资金的使用权而向贷款人支付的款项。
()A:错 B:对答案:对5.利息的存在是不合理的。
()A:对 B:错答案:错1.以下说法正确的是()。
A:实际贴现率等于实际利率的终值 B:实际贴现率等于实际利率的现值 C:当t>1时,复利的累计值小于单利的累积值 D:累积函数是贴现函数的倒数答案:实际贴现率等于实际利率的现值2.名义利率适应通货膨胀的变化而变化应()。
A:不同向,但同步 B:同向,同步 C:同向,不同步 D:不同向,不同步答案:同向,同步3.投资者从银行借款20000元,4年后需要偿还本息25249.54元,请计算该笔贷款的年复利利率是多少()。
A:7% B:6% C:5% D:4%答案:6%4.单利的计算不用把利息计入本金;而复利恰恰相反,它的利息要并入本金中重复计息。
第一章利息的基本概念1. A(t) = A(O)a(t)2. a(0) =1二 b =1 100a(5)=180,3~5.用公式(1-4b ) 7~9.用公式(1-5)、( 1-6)12. k(1 +"(1 +i 2)(1 5) =1000 14.(1 +i)n+(1 +i)』〉2j (1 +i)n'(1 +i)』16. 用p.6公式17. 用P.7最后两个公式 19. 用公式(1-26)20. (1)用公式(1-20);⑵用公式(1-23) 22. 用公式(1-29)23. (1)用公式(1-32);(2)用公式(1-34)及题6( 2)结论 24. 用公式(1-32)41 < 6% V25. ----------------------------------- (1+i)4=(1+10%) [1+— 2丿 1-8% I 4 丿 < 5%YI 2丿26.对于 c)及 d),a(n) =e n&,二 a(1)=e 5 = 1+i =11 - dd)中,d =1 -e 』j&x) dx 28.a(t) =e 029.1 +i; 1 + j =e31. (1) 902 天46.d =1000~920=0.08,x(1 -0.08) +288(1 —0.08xJ) =92011.第三个月单利利息1%,复利利息(1+1%)3 -(1 +1%)2■300a(8^508a(5)-1=V C)中,6 = - In V ,39.e =1+t 二 0仇4「=1 n (1+t ),两边同时求导,S (t)= 1丙3B (t )类似1000 2第二章年金an - X - i 二 (1+i ) =1-Xi _2n 2 1—(1 +i ) 1 一(1 -xi )a 2n - y - i ipl将i = 代入(*)_n 5.解:(*)1-d _n1-(1 +i \ 4.解: 」+0.087 l16000 =A +1000 ” 0.087 12 +0087舊+占 12人 12丿 1000 1000 1000 1718_51000鵝(1+0.08)P =39169.848.解:5000齬0.1 =9.解:5000s^.^0.1514.解:永续年金每年支付 R17.解:15OOa m0.008 =100000 解得m 止95.6 即正常还款次数为 95次1500a 埶.008 + f (1 +0.008)』5=100000 解得 f =965.7419.解:+2000S i (2)=170005^—21000LS 肚-s5e< 2 2丿 105/. (1 +i j +(1+i ) -17(1令 f(t) =t10+t 5—17t +150 — f(1.03) = f (1.035) — f (1.03) i —1.03 1.035—1.03 f (1.032) = —0.003186iV 18=1 -ia 诃=1 -iM5001也轴半(1 + i 半)」=100001=(1 +i 半 2= 1+i 半=(1 —d P ,1 -L3_ = 2037.解: 1 20 123该永续年金现值为12441—(1+i ) 6 ( 0.04]23.解:a 6004 + ---- --- 1.04 ,1+i =|1+ -----24.解: R 1.1025R 1.205R 012 34R>c1.054+1.1025R1.053+1.1025R1.052+1.205R1.05 =11000 得 R = 2212.1471 -(1 +i f 25.解:a n =' '€a n n (1+i f i-1 + (1 + i『c ic i _ Hi _ 弔0.102 — an0.1甞6宀"=0.002其中n 通过公式(2-76)得到29.解:a 7 =1-v 7/. v 7 =1 -i a 7 =1 -iK类似地,V11:v7v 11= v 18/. (1-iK)(1-iL) =1-iM从而 i = L + K-MKL31.解:= 1-v nC _ 1- V12丿an32.解: 1 +i =1 -36.解 : g 卄屮-20.••95.36mm1 1 1该永续年金现值为: 4 +(1+i ) •••所求年金现值为: 1 + --- (2 + i)i (2+i)int 39.解: —g —h f =lim a-i =limn ^C ni n _^ § , n .1 -v 1 (2+i)ig =(1-kn)- v n 0 40.解:a(t)=e 0^dr=1 +t J0a 」(t )dt = J 。
第一章 利息的基本概念1.)()0()(t a A t A =2.11)0(=∴=b a 180)5(100=a ,508)8()5(300=a a 3~5.用公式(1-4b) 7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+-+ 12.1000)1)(1)(1(321=+++i i i k14.n n n n i i i i --+⋅+>+++)1()1(2)1()1(16.用p.6公式17.用P.7最后两个公式 19.用公式(1-26)20.(1)用公式(1-20); (2)用公式(1-23) 22. 用公式(1-29)23.(1) 用公式(1-32);(2) 用公式(1-34)及题6(2)结论 24. 用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎫+=++ ⎪-⎝⎭⎛⎫- ⎪⎝⎭ 26.对于c)及d),δn e n a =)(,1111)1(-=-=+==∴v di e a δ,∴c)中,v ln -=δ, d)中,δ--=ed 128.⎰=tdxx e t a 0)()(δ29.4411⎪⎭⎫ ⎝⎛+=+j i ;he j =+131.(1)902天39.t etA dr +=⎰10δ )1ln(0t dr tA +=⎰∴δ,两边同时求导,tt A +=11)(δ,)(t B δ类似 46.10009200.081000d -==,920)2108.01(288)08.01(=⨯-+-x第二章 年金4.解:12010.087110.0870.08712160001000110.087121212A --⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭=+⋅++ ⎪⎪⎝⎭⎝⎭5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y ii----+==⇒+=--+--===将1di d=-代入(*)7.解:()51218100010.0839169.84s -+=8.解:100.1100.15000s Ra = 9.解:100.1100.155000s Ra = 14.解:永续年金每年支付R112n n Ra R a i ⎛⎫=- ⎪⎝⎭17.解:0.0081500100000m a = 解得95.6m ≈ 即正常还款次数为95次 95950.0081500(10.008)100000a f -++= 解得965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎫-+= ⎪ ⎪⎝⎭∴+++-++= 令105()1715f t t t t =+-+0(1.03)(1.035)(1.03)1.03 1.035 1.03f f f i --=-- (1.032)0.003186f =-1000 1000 1000 011718…23.解:()4660.0411 1.04i a i---++,40.04114i ⎛⎫+=+ ⎪⎝⎭24.解:修改于2009/11/4分解成两个数列:第一个数列:时刻0,2,4,…,20共付款11次,各期付款额成等比数列。
第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。
试计算累积函数a(t) 和第n 个时段的利息In 。
解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t2 + 2t + 3)/3 In = A(n) − A(n − 1)= (n2 + 2n + 3) − ((n − 1)2 + 2(n − 1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n). 解:()n n-1t 11I A (n )A (t)I I I n (n 1)/2t(t 1)/2+=-=+++=+-+・・・(2)1t 11I A (n )A (t) 22nn k k t I ++=+=-==-∑3. 已知累积函数的形式为:2a (t) at b=+。
若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。
解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= 1.72⇒ a = 0.08, b = 1∴ A(5) = 100 A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300. 4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2)tA (t) 100(1 0.1)=+.解:(1)i5 =(A(5) − A(4))/A(4)=5120≈ 4.17% i10 =(A(10) − A(9))/A(9)=5145≈ 3.45% (2)i5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1)10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.设()n A 4 1000, i 0.01n==. 试计算A(7) 。
《利息理论》习题详解第一章 利息的基本概念1、解:(1))()0()(t a A t A =又()25A t t =(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-===(3)4(4)(3)0.178(3)A A i A -=== 2、解:202()(0)(1)1(1-6)180=100(a 5+1)4a=125a t at ba b i =+∴==+=∴∴用公式(8)300(83)386.4A a ∴=-=12、解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得(0)794.1A =15、解:3400300(1)i =+ 0.1006i ∴= 又11110.9085911 1.1006i v d i i =-=-===++ 246500()1034.7v v v ∴++=19、解:(1)430.06(3)10000(1)119564A ⨯=+= (2)1()1441(1)4d i -+=-1()14334(3)10000(1)10000(1)122854d A i -⨯∴=+=-=20、解:(1)()1(1)m m i i m +=+, 1()(1)1m m i i m ∴+=+11(6)(5)651(1),1(1)65i i i i ∴+=++=+ (5)11()530(6)161(1)5(1)11(1)6m i i i i i m i ++∴==+=+++所以m=30 (2)1()()1(1),1(1)m m m m d d d d m m-=-∴-=-,所以和(1)有类似的解答m=30。
24、解:0()t t dt a t e δ⎰=,1212000.01(12)100001000020544.332t dt tdt A e e δ⎰⎰∴===25、解:设常数实际利率为i 有41420.060.05(1)(10.1)(10.08)(1)(1)42i --+=+-+-解得 0.0749i = 33、解:27.722e δ= ln 227.72δ∴==0.025 又2(12)7.04n δ+=21.057.0449.5616n ∴== 49.56161.05log 80n ∴== 36、解:设第十年末未付金额为x ,有40.12(1)10.125514i =+-= 11(1) 1.12551v i --∴=+= 又51015101000400800400 1.12551800 1.12551 1.12551v v xv x ---=++=⨯+⨯+⨯解得x=657.8375 42、解:338104001100(3)0.8166865t dt ae e -⎰=== 44、解:0.510.3(10.25)v -=-,解得v=0.87111110.14796i v ∴=-= 51、解:46400(1)6404j ⨯+=,解得j=0.079106第二章 年金 4解:实际月利率为0.087/120.00725i ==,16000010001200.0072580037.04A a =-=7解:X 取得的存款为:11251000180.08(10.08)39169.84s -⨯⨯+= 8解:50001010s Ra =,500015.93742 6.14457R ∴⨯=⨯,解得R=12968.719解:5000100.1100.15s Ra =,解得R=15187.4814解:10.5an an i =-,111.5 1.5n v an i i -∴==,解得13n v = 17解:月利率为0.096/12=0.008,15000.008100000an ∴=,0.00866.66667an ∴=,解得n=95.6取整数n=95,又951500950.008(10.008)100000a f -++=,解得f=965.7528解:设3年的实际利率为j ,有31(1)j i +=+,又112991j =,3912301(1)129129i ∴+=+=,解得i=0.195。
1.已知A (t )+5,求(1)对应的a (t );A (0)=5 a (t )=()(0)A t A =25t+5+1(2)I 3;I(3)i 4; i4=4(4)(3)(3)(3)I A A A A -===2.证明:(1)()()(m 1)(2).....A n A m I I m In -=+++++ (2)()(1)(1).A n in A n =+- (1);()()()(1)(1)(2)....(1)()1...Im 1A n A m A n A n A n A n A m A m In In -=--+---++-=+-+++(m<n ) (2)()()()()111---=-=n A n A n A n A In i n(1)()(1)inA n A n A n -=--()(1)(1)A n in A n =+-3.(a)若k i是时期k 的单利利率(k=1,2...,n )证明a(n)-a(0)=12...n i i i +++(b)若k i是时期k 的复利利率(k=1,2....,n )证明12()(0)....n A n A I I I -=+++(a )a(n)-a(0)=a(n)-a(n-1)+a(n-1)-a(n-2)+...+a(1)-a(0)=11.....n n i i i -+++(b )11()(0)()(1)(1)(2)...(1)(0)...n n A n A A n A n A n A n A A I I I --=--+---++-=+++"4.已知投资500元,3年后得到120元的利息。
试分别确定以相同的单利利息,复利利息投资800元在5年后的积累值。
①单利 ()1a t it =+3(3)(0)500(13*1)120I A A i =-=+-=1200.08150*3i == (5)800(15*0.08)1120A =+=②复利()(1)ta t i =+33(3)(0)500(1)1120I A A i ⎡⎤=-=+-=⎣⎦1i 55/3(5)800(1)800*1.241144.97A i =+==元5.已知某笔投资在三年后的积累值为1000元,第一年的利率为1i=10%,第二年的利率为2i =8%,第三年的利率为3i =6%,求该笔投资的原始金额 123(3)(0)(1)(1)(1)A A i i i =+++123(3)1000(0)794.10(1)(1)(1) 1.1*1.08*1.06A A i i i ===+++6.^7.证明:设当前所处时刻为0,则过去n 期的一元钱的现值与未来n 期后的一元钱的现值之和大于等于2过去n 期1元钱的现值为(1)n i +,未来n 期后一元钱的现值为1(1)ni + 1(1)2(1)n ni i ++≥+ (当n=0时,等号成立)8.(1)对于8%的复利,确定4d ; (2)对于8%的单利,确定4d ;(1)()(18%)t a t =+ 43444(18%)(18%)110.074(4) 1.08(18%)I d a +-+===-=+(2)4418%*418%*38%0.061(4)18%*4 1.32I d a +--====+8.已知(5)()(6)151()16m i i m i++=+,确定m 、(5)()(6)151()16m i i m i ++=+ (5)5*5()5630(6)6*6(1)51(1)(1)(1)(1)6mm m m m m m i i i i i m i -++=+==+=++30m ∴=9.如果2()tt ct A t ka b d =,其中k,a,b,c,d 为常数,求&t 的表达式2()tt ct A t ka b d =2222ln 2ln ln ln '()&ln 2ln ln ln ()t t ttt c t c t c t t t t tt t c t ka b d a kta b d b kc a b d d c A t a t b c d c A t ka b d++===++10.确定下列导数:(a )t d d d ; (b ) d d id ; (c )v d d σ (d )d d d σ。
解:(a )2211()1(1)(1)i i d d i i i d d d i i i +-===+++ (b )2211()1(1)(1)d d d d d d d i d d d d d -+===---—(c )1()v v d d Inv d d vσ=-=-(d )(1)d d d e e d d σσσσ--=-=11.用级数展开形式确定下列各项:(a )i 作为d 的函数; (b )d 作为i 的函数; (c )()m i作为i 的函数;(d )v 作为σ的函数; (e )σ作为d 的函数。
—解:(a )21n di d d d d ==++⋯⋯++⋯⋯-(b )23()1n id i i i i i ==-+-+⋯⋯+-+⋯⋯+(c )1(1)m m i i m +=+ 1()232311111(1)(1)(2)11(1)(2)(1)(1)2!3!2!3!m mm m m m m m m m i m i m m i i i m i i i m m m------=+-=++++-=-++(d )2323()()1()12!3!2!3!v eσσσσσσσ---==+-+++=-+-+(e )[]2342341()(11()()1234234d d d d d d In In d d d d σ⎡⎤-==-++-=---+-+=++++⎢⎥-⎣⎦12.若1t st sp re σ=++,证明:1211111t tt v v a r r=+++,其中:()1P S v e -+=2Pv e -=º}证明:()()t t t d In a d σ=t a =e 0()1t t st s p d re ++⎰ ⇒()()1()1p s t t st r a e re ++=+ ()()121111;11111st p s t p s t pt t t t re r r e e e v v a r r r r r -+-+-+==+=++++++()1P S v e -+=2Pv e -=13.假设某人在1984年7月1日投资1000元于某基金,该基金在t 时的利息力为t σ=(3+2t )/50,其中t 为距1984年1月1日的年数,求该笔投资在1985年1月1日的积累值。
解:t σ=1000e 11/2t dt σ⎰=1000e 11/23250tdt +⎰=14.基金A 以每月计息一次的名义利率12%积累,基金B 以利息强度t σ=t/6积累,在时刻t=0时,两笔基金存入的款项相同,试确定两基金金额相等的下一刻。
解:设在时刻t=0两基金存入的款项相同都为1,两基金金额相等的下一刻为t 。
A s =1212%(1)12t +B S = e 06t tt d ⎰ A S =B S 121.01t =e 212tt= 15.\16.基金X 中的投资以利息力t σ=+ (020t ≤≤)积累;基金Y 中的钱以实际利率i 积累,现分别投资1元与基金X 、Y 中,在第20年末,它们的积累值相同,求在第3年末基金Y的积累值。
解:(20)x S =e 200(0.010.1)t t d +⎰=4eY S (20)= 20(1)i +(20)(20)X Y S S =420(1)e i =+3(3)(1) 1.8221Y S i =+=17.一投资者投资100元与基金X 中,同时投资100元于基金Y 中,基金Y 以复利计息,年利率j>0,基金X 以单利计息,年利率为,在第二年末,两基金中的金额相等。
求第五年末基金Y 中的金额。
、解:(2)X S =e 200(0.010.1)t dt +⎰=4e 2(2)100(1)y S j =+(2)(2)x y S S =0.1j =55(15)100(1)100(10.1)161.051y S i =+=+=元18.两项基金X 和Y 以相同金额开始,且有:(1)基金X 以利息强度5%计息;(2)基金Y 以每半年计息一次的年名义利率j 计息; (3)在第8 年末,基金X 中的金额是Y 中的倍。
求j 。
解:(8)xS =e 80.45%t d e =⎰16(8)(1/2)y S j =+(8) 1.05(8)x y S S =0.04439j =。