江苏省靖江市新港城初级中学九年级数学双休日作业(11.2811.29)(无答案) 苏科版
- 格式:doc
- 大小:273.52 KB
- 文档页数:5
九年级数学家庭作业(11.23)班级 姓名1.△ABC 中,a 、b 、c 分别是∠A、∠B、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( ) A .bcosB=cB .csinA=aC .a tanA=bD .2.在Rt△ABC 中,∠C=90°,sinA=,则cosB 等于( ) A . B .C .D .3.如果∠A 为锐角,且sinA=0.6,那么( )A .0°<A≤30°B .30°<A <45°C .45°<A <60°D .60°<A≤90°4. 已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m5.在Rt △ABC 中,∠C=90°,AC=5,BC=12,则sinA=_______,tanB=_______.6.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = .7.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m ,它的影子BC=1.6m ,木竿PQ 的影子有一部分落在了墙上,PM=1.2m ,MN=0.8m ,则木竿PQ 的长度为________m .(6) (7) (8) 8.如图,在△ABC 中,AB=AC=5,BC=8.若∠BPC=∠BAC ,则tan ∠BPC= . 9.如图,已知△ABC 是面积为的等边三角形,△ABC∽△ADE,AB=2AD ,∠BAD=45°,AC 与DE 相交于点F ,则△AEF 的面积等于________(结果保留根号).10.(1)22160cos 2)12015(-⎪⎭⎫ ⎝⎛-+-(2)已知23)10sin(=︒-α,求α。
九年级数学双休日作业(2015.10.17-10.18)一、选择题:1、方程322-=x x 的根的情况是 ( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根2、若⊙O 的直径为6cm ,OA=5 cm ,那么点A 与⊙O 的位置关系是 ( ) A .点A 在圆外 B. 点A 在圆上 C.点A 在圆内 D.不能确定3、下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。
其中正确的有 ( ) A .4个 B .3个 C .2个 D .1个4、如图,⊙O 是△ABC 的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若∠ABO=50°, 则∠ACB 的度数为 ( ) A .50° B .45° C .30° D .40°5、已知Rt △ABC 中,∠C=90°,AC=3,BC=4,以C 为圆心,r 为半径的圆与边AB 有两个交点,则r 的取值范围是 ( ) A .512=r B .512>r C .3<r <4 D .3512≤<r 6、如图,∠BAC=∠DAF=90°,AB=AC ,AD=AF ,点D 、E 为BC 边上的两点,且∠DAE=45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ;②△ABE ∽△AC D ;③BE+DC >DE ;④BE2+DC2=DE2,其中正确的有( )个.A. 1B.2C.3D.4第4题 第6题 二、填空题7、已知一元二次方程0342=--xx的两根分别为1x,2x,则12x x+=.8、一元二次方程x2=2x的解是9、方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为10、如图,四边形ABCD是⊙O的内接四边形,若∠BOD=80°,则∠BCD的度数是__ ___11、如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式为12、如图,在△ABC中,60BAC∠=︒,90ABC∠=︒,直线1l//2l//3l,1l与2l之间距离是1,2l与3l 之间距离是2.且1l,2l,3l分别经过点A, B,C,则边AC的长为.第10题第11题第12题13、点M,N是线段AB的黄金分割点,若AB=10cm,则MN等于cm.14、如图,一条排水管的截面如图所示,已知排水管的半径1OA m=,水面宽 1.2AB m=,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.15、如图,AB是⊙O的直径,AB=16,点M在⊙O上,∠MAB=30°,N是弧MB的中点,P是直径AB上的一动点,若MN=2,则△PMN周长的最小值为 _____16、如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四个结论:①∠A=45°;②AC=AB;③AE=BE;④CE•AB=2BD2.其中正确结论的序号是__________.第14题 第15题 第16题 三、解答题 17.解方程:(1)4x 2-2x -1=0 (2)22)25(96x x x -=+-18、先化简,再求值:11)213(2+÷-+-x x x ,其中x 满足x 2-2x -4=019、如图,BD 为平行四边形ABCD 的对角线,O 为BD 的中点,EF⊥BD 于点O ,与AD 、BC 分别交于点E 、F .求证:DE=DF .20、商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x 元据此规律,请回答:(1)商场日销售量增加__________件,每件商品盈利__________元(用含x 的代数式表示) (2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2100元?N M ABOC 21、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2﹣(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形? (2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长.22、四边形ABCD 内接于⊙O ,并且AD 是⊙O 的直径,C 是弧BD 的中点,AB 和DC 的延长线交于⊙O 外一点E .求证:BC =EC .23、如图,在半径为5的⊙O 中,∠AOB =900,点C 是弧AB 上的一个动点(不与点A 、B 重合),OM ⊥BC ,ON ⊥AC ,垂足分别为M 、N . (1)当BC =6时,求线段OM 的长;(2)当点C 在弧AB 上运动时,△MON 中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.24、如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于__________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、0为顶点的三角形相似?请写出解答过程.25、如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?。
D九年级数学周末作业一、选择题1.下列方程:①x 2=0,②21x-2=0,③2x 2+3x=(1+2x)(2+x),④32x =0,⑤8x 2-2y+ 1=0中,一元二次方程的个数是 ( ) A .1个 B .2个 C .3个 D .4个2.如果两条弦相等,那么 ( ) A .这两条弦所对的弧相等 B .这两条弦所对的圆心角相等 C .这两条弦所对的圆周角相等 D .以上答案都不对3.下列说法中,正确的是 ( ) A .两个半圆是等弧 B .同圆中优弧与半圆的差必是劣弧 C .长度相等的弧是等弧 D .同圆中优弧与劣弧的差必是优弧4.利用配方法将x 2+2x +3=0化为a(x -h)2+k=0 (a ≠0)的形式为 ( )A .(x -1)2-2=0 B .(x -1)2+2=0 C .(x +1)2+2=0 D .(x +1)2-2=05.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦有( )A .2条B .3条C .4条D .5条6.⊙O 的半径为R ,圆心到点A 的距离为d ,且R 、d 分别是方程x 2-6x +8=0的两根,则点A 与⊙O 的位置关系是 ( ) A .点A 在⊙O 内部 B .点A 在⊙O 上 C .点A 在⊙O 外部 D .不能确定 二、填空题7.一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m . 8.与是同类二次根式,则x = .9.已知方程2x 2﹣mx ﹣10=0的一根是﹣5,求方程的另一根为 ,m 的值为 10.如图,在平行四边形ABCD 中,E 在DC 上,若DE :EC=1:2,EF=2,则BF= .11.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有 队参加比赛.12.关于x 的方程0122=+-x kx 有实数根,则k 的取值范围是13.若x 1,x 2是方程x 2﹣2x ﹣4=0的两个不相等的实数根,则代数式2x 12﹣2x 1+x 22+2015的值是 14.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是15.如图,△ABC 中,AB=18,AC=16,D 在AB 上,AD=9,在AC 上取一点P ,问AP = 时,以A 、P 、D 为顶点的三角形与△ABC 相似.16.如图为△ABC 与△DEC 重迭的情形,其中E 在BC 上,AC 交DE 于F 点,且AB∥DE.若△ABC 与△DEC 的面积相等,且EF=9,AB=12,则DF=(15) (16) 三、解答题17. 解方程:(1) 2(3)4(3)0x x x -+-= (2) (20+x )(300-x )=817618.先化简,再求值:,其中a 满足方程a 2+4a +1=0。
江苏省靖江市新港城初级中学2016届九年级数学双休日作业(11.28-11.29)(无答案)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省靖江市新港城初级中学2016届九年级数学双休日作业(11.28-11.29)(无答案)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省靖江市新港城初级中学2016届九年级数学双休日作业(11.28-11.29)(无答案)苏科版的全部内容。
(第5题)(第3题) (第4题)九年级数学双休日作业(11。
28—11。
29)一、选择题1.一元二次方程x 2-x -2=0的解是( ).A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=2 2.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A . 1 B . ﹣1 C .0 D . 无法确定3.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔60海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( ).A .302海里 B.303海里 C .60海里 D .306海里 4.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是 ( ).A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM ∶MA =1∶2 5. 如图,已知∠POx=120°,OP=4,则点P 的坐标是( )A . (2,4)B . (﹣2,4)C . (﹣2,2)D . (﹣2,2)6.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( ).A .2B . 错误!C . 错误!D . 错误!二、填空题7.已知:5:2x y =,那么():x y y +=8.如图,已知⊙O 的半径为5,⊙O 的一条弦AB 长为8,那么以4为半径的同心圆与弦AB 位置关系是(第6题)(第14题)(第15题)C9.如图,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E . 如果3AD =,4BD =,2AE =,那么AC = .10.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .11.如图,添加一个条件: ,使△ADE ∽△ACB .12.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 .13.如图,一块直角三角板ABC 的斜边AB 与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD 的度数为(第13题)14。
九年级数学双休日作业(11.21-11.22)一、选择题1.下列关于x 的方程是一元二次方程的是( )A .01=+xB .0332=-+x xC .01333=++x xD .0132=-+xx x 2. 如图,⊙O 中,弦AB 、CD 相交于P ,∠A =40°,则∠D =( )A .15°B .40°C .35° D.75°3. Rt △ABC ,∠C =900,AB =6,cosB =23,则BC 的长为( )A.4B.2 5C.18 1313D.121313(第4题)4.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D . 5.为实数,其中设a a N a a M ,73,145222-=-=则M 与N 的大小关系是( )A .M <N B.M >N C.M≥N D.不能确定6. 已知:两点A (5,6)、B (7,2),先将线段AB 向左平移一个单位,再以原点O 为位似中心,在第一象限内将其缩小为原来的21得到线段CD ,则点A 的对应点C 的坐标为( ) A .(2,3) B .(3,1) C .(2,1) D .(3,3) 二、填空题7. 已知y x 32=,则x :y 等于 .8.已知△ABC ∽△DEF ,如果∠A =75°,∠B =25°,则∠F = .9. 已知点A 在半径为R 的⊙O 内,点A 与点O 的距离为6,则R 的取值范围是 . 10. 已知α、β均为锐角,且满足()01tan |21sin |2=-+-βα,则________=+βα.11.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=25°,则∠BAD 的度数为 .(第2题)12.如图,某水库堤坝横断面迎水坡AB 的坡比是3:1,堤坝高BC =60m ,则应水坡面AB 的长度是=m .13. 如图,在△ABC 中,D 是AB 上一点,F 是BC 上一点,DE ∥BC ,交AC 于点E ,若 △ADE 与△ABC 的面积的比为1:9,则△ADE 与△DEF 的面积的比为 . 14.已知实数m 是关于x 的方程01322=--x x 的一根,则代数式2232--m m 值为 . 15.若等腰△ABC 中,AB=AC=10 cm, ∠A=120°, ⊙O 恰好将等腰△ABC 完全覆盖,则 ⊙O 的半径为 cm .16.如图,AB 为⊙O 的直径,点C 是⊙O 上的一点,AB=8 cm ,∠A=30°,点D 是弦AC 上的一点,动点P 从点C 沿CA 以2cm/s 的速度向点D 运动,再沿DO 以1cm /s 的速度向 点O 运动,设点P 在整个运动过程中的时间为t ,则t 的最小值是 s . 三、解答题17.计算 sin 245°+cos 230°-tan 45°18.解下列方程:⑴04542=--x x ⑵()623+=+x x x19.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0. (1)求证:方程有两个不相等的实数根;(2)若周长为16的等腰△ABC 的两边AB ,AC 的长是方程的两个实数根,求k 的值BAEDCBA 第11题图第12题图第13题图20.在国家的宏观调控下,某市的商品房成交价由今年3月份的14000 2/m 元下降到5月份的126002/m 元,⑴问4、50.95 )⑵如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破100002/m 元?请说明理由。
1九年级数学家庭作业(11.23)班级 姓名1.△ABC 中,a 、b 、c 分别是∠A、∠B、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( ) A .bcosB=cB .csinA=aC .a tanA=bD .2.在Rt△ABC 中,∠C=90°,sinA=,则cosB 等于( ) A . B .C .D .3.如果∠A 为锐角,且sinA=0.6,那么( )A .0°<A≤30°B .30°<A <45°C .45°<A <60°D .60°<A≤90°4. 已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m5.在Rt △ABC 中,∠C=90°,AC=5,BC=12,则sinA=_______,tanB=_______.6.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = .7.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m ,它的影子BC=1.6m ,木竿PQ 的影子有一部分落在了墙上,PM=1.2m ,MN=0.8m ,则木竿PQ 的长度为________m .(6) (7) (8) 8.如图,在△ABC 中,AB=AC=5,BC=8.若∠BPC=∠BAC ,则tan ∠BPC= . 9.如图,已知△ABC 是面积为的等边三角形,△ABC∽△ADE,AB=2AD ,∠BAD=45°,AC 与DE 相交于点F ,则△AEF 的面积等于________(结果保留根号).10.(1)22160cos 2)12015(-⎪⎭⎫ ⎝⎛-+-(2)已知23)10sin(=︒-α,求α。
DA新港城中学九年级数学双休日作业(11.7-11.8)一、选择题1.已知:4.0=a ,3=b ,9=c ,2.1=d ,下列各式中,正确的是( )A.a b =c d B. a c =d b C.a b =d c D.d c =b a2.若关于x 的方程0142=--x ax 是一元二次方程,则a 满足的条件是( ) A .a >0 B .0≠a C .0<a D .4≠a3.如图D 、E 分别是ABC ∆的AB 、 AC 边上点,,DE BC //S △ADE ∶S 四边形DECB =1∶8那么AE∶AC 等于( ) A .1∶9 B.1∶3 C .1∶8 D .1∶24.如图,在△ABC 中,点D 是AC 边上的一点,且AB 是AD 与AC 的比例中项,则下列结论中,错误的是 ( )A .∠C=∠ABDB .∠ABC=∠ADBC .AC AD BC BD = D .ABADBC BD =5.如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为( ) A. 133 B. 923(3) (4) (5) 6.根据关于x 的一元二次方程12=++q px x ,可列表如下:则方程2+px x 的正数解满足 ( )A .0.5<x <1B .1<x <1.1C .1.1<x <1.2D .1.2<x <1.3 二、填空题7.圆心角为60°,半径为4cm 的扇形的弧长为 cm8.如图,321////l l l ,AM =2,MB =3,CN =1.8,则CD =_________.9.在比例尺为1:5000的地图上,测得一个多边形地块的面积为362cm ,则这个多边形地 块的实际面积是____________2m (结果用科学记数法表示).10.若关于x 的方程kx 2+2x -1=0有两个不等的实数根,则k 的取值范围是______________. 11.若正三角形的半径为2,则此正三角形的边长为____________.12.若圆锥圆锥的母线长为4cm ,底面半径为2cm ,则圆锥的侧面积为 . 13.如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E 、F ,不断调整站 立的位置,使在点D 处恰好能看到铁塔的顶部B 和底部A ,设小明的手臂长l=45cm,,小 尺长a=15cm,,点D 到铁塔底部的距离AD=42m ,则铁塔的高度是__________m . 14.如图,在△ABC 中,点G 是△ABC 的重心,BG 和CG 延长线分别交AC 和AB 于 点D 和E ,则CEGC的值为_____________.第9题 第12题 第13题 第15题 15.某工厂两年内产值翻了两番,则该工厂产值年平均增长率是_____________. 16.如图,在正方形ABCD 中,E 是AD 的中点,DF⊥EC 于点F ,连结AF ,则下列四个结论:①△EDF∽△ECD;②AF 平分∠EAC;③AF:AB=2:5; ④AEF AFC S S ∆∆=4; 其中,正确的是 (请将正确结论的序号填在横线上).17.如图,一个半径为r 的圆形纸片在边长为a (a ≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是 三、解答题17.解下列方程:(1)5232+=+x x )( (2)x x 6132=-(用配方法)18.先化简,再求值:)1(111222+-÷-+m m m m )(,其中m 是方程03222=--x x 的根.19.如图,某小区有一块长为24米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为72米2,两块绿地之间及周边留有宽度相等的人行通道.求人行道的宽度20.若关于x 的一元二次方程1)(2=-+m x x )(. (1)求证:无论m 取何实数,原方程总有两个不相等的实数根; (2)若原方程有一个根为1-,求m 的值和此方程的另一个根.21.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).MDCBE (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形 △A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1. (3)请写出(2)中放大后的△A 2B 2C 2中A 2B 2边的中点P 的坐标.22.己知:如图,在菱形ABCD 中,点M 、N 分别在边AD 、AB ,∠DCM =∠BCN ,CN 与BD 交于点E . (1)求证:DM=BN ;(2)当四边形MNBE 是平行四边形时,求证:DMDCMA DM .23.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交⊙O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,(1)求证:CD 是⊙O 的切线;(2)若BC=3,AB=5,求平行四边形OABC 的面积.NMG E DCB A 备用图图2图1ABCDQP ABCDPQ D CBA24.某兴趣小组开展课外活动.如图,小明从点M 出发以1.5米/秒的速度,沿射线MN 方向匀速前进,2秒后到达点B ,此时他(AB)在某一灯光下的影长为MB ,继续按原速行走2秒到达点D ,此时他(CD)在同一灯光下的影子GD 仍落在其身后,并测得这个影长GD 为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F ,此时点A ,C ,E 三点共线.(1)请在图中画出光源O 点的位置,并画出小明位于点F 时在这个灯光下的影长FH(不写画法); (2)求小明到达点F 时的影长FH 的长.25.如图,矩形ABCD 中,AB=6,BC=10,点P 在边BC 上,点Q 在边CD 上, (1)如图1,将△ADQ 沿AQ 折叠,点D 恰好与点P 重合,求CQ 的长; (2)如图2,若CQ=2,且△ABP 与△PCQ 相似,求BP 的长;(3)若点Q 是CD 边上的一点,且BC 上不存在...满足AP⊥PQ 的点P ,请探究:此时CQ 的长必须满足什么条件?。
九年级数学双休日作业(9.19-9.20)一、选择题:1.下列方程是关于x 的一元二次方程的是( )A .02=++c bx ax B.2112=+x xC.1222-=+x x x D.)1(2)1(32+=+x x 2.用配方法解方程01822=+-x x 时,应先把它变形为( )A.15)4(22=-xB.15)4(2=-x C.7)2(2=-x D.27)2(2=-x 3.若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A. 没有实数根 B. 有两个相等的实数根 C. 有两个不相等的实数根 D. 无法判断4.如图,在ABC ∆中,BC DE //,若cm AD cm AC cm AB 3,5,7===,则=DE ( )A.cm 415 B.cm 320C.cm 715 D.cm 7205.已知0)2m 2()x 1(m x 2=----两根之和等于两根之积,则m 的值为( ) A.1 B.—1 C.2 D.—26.下列论断:①顺次连接三角形各边的中点,所得的三角形与原三角形相似;②两边长分是 3、4的Rt △ABC 与两边长分别是6、8的Rt △DEF 相似;③若两个三角形的边长分别是4、 6、8和6、8、10,则这两个三角形相似;④一个三角形的三边长分别为6 cm 、9 cm 、7.5 cm , 另一个三角形的三边长分别为8 cm 、12 cm 、10 cm ,则这两个三角形相似,其中正确的有 ( )A .1个B .2个C .3个D .4个 二、填空题7.若关于y 的方程5)2(2=+-m y 有实数根,则m 的取值范围是 .8.若1x =是关于x 的一元二次方程230x mx n ++=的解,则62m n += .9.如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE = 。
EABCD第4题10.关于x 的方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________. 如图,在△ABC 中,CD ⊥AB ,垂足为D .下列条件:①∠A +∠B =90°;②AB 2=AC 2+BC 2;③AC CD AB BD=;④CD 2=AD ·BD ,其中能证明△ABC 是直角三角形的有_______. 11.若关于x 的一元二次方程22(1)10kx k x k +++-=有两个实数根,则k 的取值范围是 .12.已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为 。
九年级数学双休日作业(12.19-12.20)一、选择题1.在函数y =x -3中,自变量x 的取值范围是 ( )A .x >3B .x ≥3C .x ≥-3D .x ≤32.关于x 的一元二次方程2210x a ++-=(a-1)x 一个根是0,a 的值为( )A . 1B .-1C .1或-1D .03.菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补4.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ( )A .220cmB .220cm πC .210cm πD .25cm π5.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是( )A .0a >B .02=+b aC .240b ac -<D .0a b c -+>6.如图,平面直角坐标系中,⊙A 的圆心在x 轴上,半径为1,直线l 为22y x =-, 若⊙A 沿x 轴向右运动,当⊙A 与l 有公共点时,点A 移动的最大距离是( )B.3C.二、填空题7.方程x 2-5x =0的根是 .8.a 的值为 .9.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x = .10.如图,量角器放在∠BAC 的上面,则∠BAC = °.(第5题)第10题 第15题A B C DE F 第12题图11.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .12.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .13.如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 _________ .14.抛物线y=x 2﹣2x+1与坐标轴交点个数为 .15.如图,△ABC 内接于⊙0,∠B=∠OAC, OA = 4cm ,则AC= cm.1645︒的扇形AOB 内部作一个矩形CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB 弧上,并且2EF DE =,则EF = .三、解答题17.计算或化简:(1)0(π2009)|2|-+ (2))622554(83--⨯BC D18.解方程2560x x--=⑴x2-4x+1=0 ⑵19. 如图,每个小方格都是边长为1个单位的小正方形,B,C,D三点都是格点(每个小方格的顶点叫格点).(1)找出格点A,连接AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求点C旋转到点C1所经过的路线长.20.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.21.如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm(其中x>0).求这两段铁丝的总长.22.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每件盈利40元。
九年级数学双休日作业(12.5-12.6)一.选择题1.关于x 的方程ax 2﹣3x+1=0是一元二次方程,则( )A .a >0 B.a ≥0 C .a ≠0 D.a=12.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值是( )A . B. C. D .3.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:P=100﹣2x .若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( )A .(x ﹣30)(100﹣2x )=200B .x (100﹣2x )=200C .(30﹣x )(100﹣2x )=200D .(x ﹣30)(2x ﹣100)=2004.如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论:①AD ⊥BC ;②∠EDA=∠B ;③OA=AC ;④DE 是⊙O 的切线,正确的个数是( )A .1 个B .2个C .3 个D .4个5.若点M (﹣2,y 1),N (﹣1,y 2),P (8,y 3)在抛物线2132y x =-+上,则下列结论正确的是( ) A . y 1<y 2<y 3 B . y 2<y 1<y 3 C . y 3<y 1<y 2 D . y 1<y 3<y 26.如图,在平面直角坐标系xOy 中,直线AB 过点A (﹣3,0),B (0,3),⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A .B . 2C . 3D .二、填空题7.已知x=﹣1是方程x 2+mx ﹣5=0的一个根,则方程的另一根为 .8.在Rt △ABC 中,∠C=90°,AB=6,cosB=,则AC 的长为 .9.已知圆锥的底面半径为3,侧面积为π15,则这个圆锥的侧面展开图的圆心角的度数是 .10.若锐角α满足2sin(α-15°)-1=0,则tan α= .11.若实数a 、b 、c 满足9a ﹣3b+c=0,则方程ax 2+bx+c=0必有一个根是 .12.如图,A 、B 、C 是⊙上的三个点,∠ABC=130°,则∠AOC 的度数是 .13.如图,在▱ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE=4:3,且BF=2,则DF= ..14.已知等边三角形ABC 的高为4,在这个三角形内有一点P ,若点P 到AB 的距离是1,点P 到A C 的距离是2,则点P 到BC 的距离是 .15.把二次函数y =错误!未找到引用源。
江苏省靖江市新港城初级中学2016届九年级数学双休日作业(9.12-13)(无答案)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省靖江市新港城初级中学2016届九年级数学双休日作业(9.12-13)(无答案)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省靖江市新港城初级中学2016届九年级数学双休日作业(9.12-13)(无答案)苏科版的全部内容。
九年级数学双休日作业班级: 姓名: 一、选择题:1、在下列各式中:①x 2+3=y ②2 x 2- 3x=2x(x — 1) – 1 ③3 x 2- 4x = 5④x 2=—x1+2是一元二次方程的共有( )A 。
0个B 。
1个C 。
2个D 。
3个 2、一元二次方程x 2﹣2x ﹣1=0的解是( ) A. x 1=x 2=1 B 。
x 1=1+,x 2=﹣1﹣C 。
x 1=1+, x 2=1﹣ D. x 1=﹣1+, x 2=﹣1﹣为3、若x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根,则a 的值( ) A 。
1或4B.﹣1或﹣4C .﹣1或4D .1或﹣44、如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE =3:5,AE =8,BD =4,则DC 的长等于( ) A .B .C .D .根,5、若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数则k 的取值范围是( ) 1 A.12k >B 。
12k ≥ C.12k >且k ≠1 D 。
12k ≥且k ≠6、如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是( )A .(,3)、(﹣,4)B 。
九年级数学家庭作业(11.11)1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°(1) (2) (3)2.如图,在ABC ∆中,如果BC DE //,AC DF //,则下列比例式中不正确的是( )A.FB CF EC AE =B.AC DF BC BF =C.AC AB AE AC =D.BCAB FC AD = 3.如图,用一张半径为24cm 的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm ,那么这张扇形纸板的面积是( )A. 240πcm 2 B .480πcm 2 C. 1200πcm 2 D .2400πc m 24.如图,AD 是正五边形ABCDE 的一条对角线,则∠BAD= 度.(4) (9) (11)5.若关于x 的方程052=++k x x 有实数根,则k 的取值范围是 .6.一元二次方程03x x 2=--两根的倒数和等于__________.7.圆心角为120,弧长为12π的扇形半径为 .8.如果-1是关于x 的方程0422=-+bx x 的一个根,则b 是 .9.如图,在⊙O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是______________.10.若矩形的长和宽是方程2x 2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为 .11.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于 .12.解下列方程:(1)01432=--x x (配方法) (2)(x ﹣1)2+2x (x ﹣1)=013.先化简再求值: 232(1)121x x x x x ---÷--+,其中x 是方程22x x =的根.14.如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.15.在图的方格纸中,△OAB 的顶点坐标分别为O (0,0)、A (-2,-1)、B (-1,-3),△O 1A 1B 1与△OAB 是关于点P为位似中心的位似图形.(1)在图中标出位似中心P 的位置,并写出点P 及点B的对应点B 1的坐标;(2)以原点O 为位似中心,在位似中心的同侧画出△OAB的一个位似△OA 2B 2,使它与△OAB 的相似比为2:1.并写出点B 的对应点B 2的坐标;(3)△OAB 内部一点M 的坐标为(a ,b ),写出M 在△OA 2B 2中的对应点M 2的坐标;16.如图,在Rt△ABC中,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.。
九年级数学双休日作业(12.12-12.13)一、选择题:1.下列说法中,正确的是()A.垂直于半径的直线一定是这个圆的切线 B.任何三角形有且只有一个内切圆C.三点确定一个圆 D.三角形的内心到三角形的三个顶点的距离相等2.已知二次函数)2(2-++=mmxmxy的图象经过原点,则m的值为()A. 0或2 B. 0 C. 2 D.无法确定3.二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x的取值范围为()A.-1<x<3 B.x<-1 C. x>3 D.x<-1或x>3(3)(4)(5)(6)4.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是() A.m≥﹣2 B.m≥5 C.m≥0D.m>45. 如图,以半圆的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D ,若32=DBAD,且AB=10,则CB的长为()A.54 B.34 C.24 D.46.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.94D.92二.填空题7.已知α、β均为锐角,且满足21sin (tan 1)02αβ-+-=,则α+β= 8. 在△ABC 中,∠C =90°,∠A =45°,则BC :AC :AB =__ _. 9. 已知圆锥的底面的半径为3cm ,高为4cm ,则它的侧面积为 。
10.若抛物线y =x 2-bx +9的顶点在y 轴上,则b 的值为______。
11.(1)将抛物线y=x 2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 。
物线21(2)43y x =++关于x 轴对称的抛物线的解析式为______ (2)抛_。
12.(1)已知抛物线y=ax 2+bx+c 与x 轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线 _________ .(2)关于x 的函数y=(m 2﹣1)x 2﹣(2m+2)x+2的图象与x 轴只有一个公共点,则m 的值是 .13.r R ,分别为等边三角形的外接圆和内切圆半径,则=r R : .14.在Rt△ABC 中,∠C = 90°,AC = 6,BC = 8,⊙O 为△ABC 的内切圆,则⊙O 的半径等于 15.如图,矩形ABCD 的长AB=6cm ,宽AD=3cm .O 是AB 的中点,OP⊥AB,两半圆的直径分别为AO 与OB .抛物线y=ax 2经过C 、D 两点,则图中阴影部分的面积是 _____ cm 2.(15) (16)16.如图,矩形纸片ABDC 中,AB=5,AC=3,将纸片折叠,使点B 落在边CD 上的B′处,折 痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为 __________. 三、解答题: 17.计算和解方程:(1) ()013311260sin 2π--⎪⎭⎫ ⎝⎛-+︒- (2)05222=--x x (3)32121---=-x x x18.先化简,再求值1212312+-+-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中x 满足022=-+x x19.(1)已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5) ①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;(2)抛物线过(-1,0),(3,0),(1,-5)三点,求二次函数的解析式;20.已知二次函数y =(m 2-2)x 2-4mx +n 的图象的对称轴是x =2,且最高点在直线y =21x +1上,求这个二次函数的解析式。
九年级数学双休日作业(10.31-11.1)一、选择题:1.下列说法中,正确的是( )A.同一条弦所对的两条弧一定是等弧 B.长度相等的两条弧是等弧C.两条直线被一组平行线所截,所得的对应线段成比例D.三角形的外心到三角形各边的距离相等2.用配方法解方程x2﹣2x﹣5=0时,变形正确的是( )A.(x﹣2)2=9 B.(x﹣1)2=6 C.(x+2)2=9 D.(x+1)2=63.⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(﹣2,4),则点P与⊙A的位置关系是( ) A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.点P在⊙A上或外4.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.已知一元二次方程x2﹣3x+1=0的两个根分别是x1、x2,则x12x2+x1x22的值为( )A.﹣3 B.3 C.﹣6 D.66.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD二、填空题:7.方程(x﹣1)2=4的解为__________.8.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是__________.9.顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则D E=__________.(9)(13)(14)10.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是__________.11.直径为10cm的⊙O中,弦AB=5cm,则弦A B所对的圆周角是__________.12.一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是__________cm.13.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__________.14.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为__________.15.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°,若动点E以2cm/s的速度从点A出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连接EF,则当t为_____ __s时,△BEF是直角三角形.三、解答题:16.解下列方程:(1)3x2+5x+1=0.(2)(3x+1)2=4(x﹣2)2.17.先化简,再求值:(﹣)÷,其中,a 是方程x 2+3x+1=0的根.18.如图,AD 为⊙O 的直径,BA 、BC 、CD 分别切⊙O 的于点A 、E 、D 。
九年级数学家庭作业(11.9)1.下列说法中,结论错误的是( )A .直径相等的两个圆是等圆 B. 三角形的外心是这个三角形三条角平分线的交点C. 圆中最长的弦是直径D. 一条弦把圆分成两条弧,这两条弧可能是等弧2.已知线段a =4,b =9,线段x 是a ,b 的比例中项,则x 等于( )A .6 B. 6或-6 C. -6 D. 363.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A.3个B.2个C.1个D.0个4.已知△ABC ,AB=5,AC=4,BC=6,AB 上有一动点D (不与A 、B 点重合),过点D 作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线可作有 条.( )A .2条B .3条C .4条D .3条或4条5. 在Rt△ABC 中,∠C=90°,AC=12,BC=5,将△AB C 绕边AC 所在直线旋转一周得到圆锥, 则该圆锥的侧面积是 .6.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是7.若一元二次方程ax 2=b (ab >0)的两个根分别是m+1与2m ﹣4,则m=8.圆锥的底面圆的周长是4π cm ,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数 是9.在Rt △ABC 中,∠C = 90°,AC = 3,BC = 4,点O 、点G 分别是Rt △ABC 的外心和重心,连结OG ,则OG =10.如图,已知梯形ABCD 中,AB∥CD,△COD 与△AOB 的周长比为1:2,则CD :AB= ,S △COB :S △COD = .11.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为 .12.解方程: (1)36)12(4=-+x x x (2)22310x x --= (用配方法)13.先化简,再求值:)225(4232---÷--x x x x x ,其中x 是一元二次方程04622=-+x x 的根。
九年级数学双休日作业(2015.10.24-10.25)一、选择题1.下列方程中是关于x 的一元二次方程的是( ) A.2210x x+= B. ax 2+bx+c=0 C.(x ﹣1)(x+2)=1 D. 3x 2﹣2xy ﹣5y 2=0 2.已知⊙O 的半径为5,圆心O 到直线l 的距离为3,则反映直线l 与⊙O 的位置关系的图形是( )3.下列命题中,假命题的个数是 ( )①垂直于半径的直线一定是这个圆的切线; ②圆有且只有一个外切三角形;③三角形有且只有一个内切圆; ④三角形的内心到三角形的三个顶点的距离相等.A .1B .2C .3D .44.一元二次方程x 2﹣8x ﹣1=0配方后可变形为( ) 175.如图,⊙O 的半径为5,若OP=3,则经过点P 的弦长可能是 ( )A .3B .6C .9D .126.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为( )A .2B .8C .2D .2 二、填空题7.方程x 2+x=0的解是8.两条直角边是6和8的直角三角形,其内切圆的半径是 . 9.222)2(4___p x p x -=+- 10.已知0654≠==a b c ,则a c b +的值为 . 11.半径为2的圆中,弦AB 、AC 的长分别2和2,则∠BAC 的度数是 。
12.如图,点I 为△ABC 的内心,点O 为△ABC 的外心,若∠BOC=140°,则∠BIC= ° 13.如图,直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,过直线1l 上的点A 作两条射线,分别与直线3l ,6l 相交于点B ,E ,C ,F . 若BC =2,则EF 的长是 。
14.已知m ,n 是方程0522=-+x x 的两个实数根,则=+22n mn m — .15. 如图,Rt△ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D ,E ,过劣弧DE (不包括端点D ,E )上任一点P 作⊙O 的切线MN 与AB ,BC 分别交于点M ,N ,若⊙O 的半径为r ,则Rt△MBN 的周长为 。
(第5题)
(第3题)
(第4题)
九年级数学双休日作业(11.28-11.29)
一、选择题
1.一元二次方程x 2
-x -2=0的解是( ). A .x 1=1,x 2=2
B .x 1=1,x 2=-2
C .x 1=-1,x 2=-2
D .x 1=-1,x 2=2
2.已知1是关于x 的一元二次方程(m ﹣1)x 2
+x+1=0的一个根,则m 的值是( ) A . 1 B . ﹣1 C .0
D . 无法确定
3.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔60海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( ).
A .302海里
B .303海里
C .60
海里 D .306海里 4.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是 ( ).
A .A
B =12m B .MN ∥AB
C .△CMN ∽△CAB
D .CM ∶MA =1∶2 5. 如图,已知∠POx=120°,OP=4,则点P 的坐标是( )
A . (2,4)
B . (﹣2,4)
C . (﹣2,2
)
D . (﹣2
,2)
6.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( ).
A .2
B . 3
C . 32
D . 3
2
二、填空题
7.已知:5:2x y =,那么():x y y +=
8.如图,已知⊙O 的半径为5,⊙O 的一条弦AB 长为8,那么以4为半径的同心圆与弦AB 位置关系是
9.如图,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,
与边AC 相交于点E . 如果3AD =,(第6题)
(第14题)
(第15题)
C
4BD =,2AE =,那么AC = .
10.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .
11.如图,添加一个条件: ,使△ADE ∽△ACB .
12.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 . 13.如图,一块直角三角板ABC 的斜边AB 与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD 的度数为
(第13题)
14.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 等于 .
15.如图,在Rt △ABC 中,∠B =90°, sin ∠BAC =1
3
,点D 是AC 上一点,且BC =BD =2,将Rt △
ABC 绕点C 旋转到Rt △FEC 的位置,并使点E 在射线BD 上,连接AF 交射线BD 于点G ,则AG 的长
为 . 三、解答题
16.(1)解方程:(4x -1)2-9=0 (2)计算:011
tan 601(2014)()cos303
π-︒-+++-︒
O
A
B
(第8题)
(第9题)
B
C
D
E
A
B
C
D
E
O
17.如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E .(1)求证:△BPD ∽△CEP .
(2)是否存在这样的位置,使PD ⊥DE ?若存在,求出BD 的长;若不存在,说明理由.
18.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD =CB ,延长CD 交BA 的延长线于点E .
(1)求证:CD 为⊙O 的切线.
(2)若圆心O 到弦DB 的距离为1,∠ABD =30°,求图中阴影部分的面积.(结果保留π)
19.2014年12月31日晚23时35分许,上海外滩陈毅广场发生拥挤踩踏事故.为了排除安全隐患,因此无锡市政府决定改造蠡湖公园的一处观景平台.如图,一平台的坡角∠ABC =62°,坡面长度
AB =25米(图为横截面),为了使平台更加牢固,欲改变平台的坡面,使得坡面的坡角∠ADB =50°,
则此时应将平台底部向外拓宽多少米?(结果保留到0.01米)(参考数据:sin 62°≈0.88,cos 62°≈0.47,tan 50°≈1.20)
20.某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉.小明为测量湖的半径,在湖边选择A 、
B 两个点,
在A 处测得45OAB ∠=o ,在AB 延长线上的C 处测得30OCA ∠=o
,已知50BC =米,求人工湖的半径.(结果保留根号)
21.如图,在△ABC 中,∠A =90°,AB =2cm ,AC =4cm .动点P 、Q 分别从点A 、点B 同时出发,相向而行,速度都为1cm/s .以AP 为一边向上作正方形APDE ,过点Q 作QF ∥BC ,交AC 于点F .设运动时间为t (0≤t ≤2,单位:s),正方形APDE 和梯形BCFQ 重合部分的面积为S (cm 2
) . (1)当t = s 时,点P 与点Q 重合. (2)当t = s 时,点D 在QF 上.
(3)当点P 在Q ,B 两点之间(不包括Q ,B 两点)时,求S 与t 之间的函数表达式.
B
O
C
A
22.某宾馆有若干间住房,住宿记录提供了如下信息:(1)3月17日全部住满,一天住宿费收入为12000元;(2)3月18日有20间房空着,一天住宿费收入为9600元;(3)该宾馆每间房每天收费标准相同.
(1)求该宾馆共有多少间住房,每间住房每天收费多少元?
(2)通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;己知该宾馆空闲房间每天每间支出费用10元,有游客居住的房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入-支出费用)
23.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).
(1)求C点的坐标;
(2)求直线AC的函数关系式;
(3)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?。