一题多问之椭圆
- 格式:docx
- 大小:105.51 KB
- 文档页数:2
椭圆一题二十问设经过点)0,1(F 直线l 与椭圆1222=+y x 交于B A 、两点,(1)是否存在直线l ,使点F 恰好为AB 的中点?若存在,求出直线l 的方程。
(2)是否存在直线l ,使324=AB ?若存在,求出直线l 的方程。
(3)求三角形AOB ∆的面积AOB S ∆的最大值(4)求OB OA ⋅的取值范围(5)求直线l ,使以AB 为直径的圆经过原点O(6)设左焦点为1F ,若以AB 为直径的圆恰好过点1F ,求直线AB 的方程 (7)若OB OA OM +=,是否存在直线l 使点M 恰好落在该椭圆上 (8)求以OB OA 、为邻边的平行四边形OAPB 的顶点P 的轨迹方程 (9)求三角形AOB 重心的轨迹方程 (10)若FB AF 2=,求直线l 的方程。
(改编:若FB AF 2=,求直线l 的方程。
)(11)设)31,0(C ,当BC AC =时,求直线l 的方程。
(12)当直线l 的斜率为1时,以AB 的一边作正三角形ABD ,求顶点D 的坐标。
(13)若点P 在直线2=x 上的一点,是否存在直线l ,使得PAB ∆为正三角形?若存在,求直线l 的方程。
(14)若点P 在直线2=x 上的一点,是否存在直线l ,使得PB AP ⊥成立? 若存在,求直线l 的方程。
(15)设B '与B 关于x 轴对称,求证:B A '过定点。
(16)若过椭圆中心O 的弦MN 与AB 平行,求证:AB MN 2为定值 (17)若AOB ∠为锐角,求直线l 的斜率k 的取值范围. (18)若椭圆上点)3132(,P ,过点)0,3(G 的直线l 与椭圆C 交于不同的两点,M N . 证明:PN PM k k +为定值. (19)已知点S 是椭圆C 上位于x 轴上方的动点,直线21A A ,为椭圆的左右顶点, S A S A 21,与直线3:-=x l 分别交于M,N 两点,求线段MN 长度的最小值; (20)若324=AB 时,在椭圆C 上的T 满足:TAB ∆的面积为32, 确定点T 个数。
关于椭圆的最值问题1.概念法例1。
P(-2,3),F 2为椭圆1162522=+y x 的右核心,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最大值和最小值。
分析:欲求︱MP ︱+︱MF 2︱的最大值和最小值 可转化为距离差再求。
由此想到椭圆第一概念 ︱MF 2︱=2a-︱MF 1︱, F 1为椭圆的左核心。
解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1延长PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知–︱PF 1︱≤︱MP ︱-︱MF 1︱≤︱PF 1︱当且仅当M 与M 12a=10, ︱PF 1︱=2因此(︱MP ︱+︱MF 2︱)max =12, (︱MP ︱+︱MF 2︱)min =8 结论1:设椭圆12222=+by a x 的左右核心别离为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意一点,那么︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为2a –︱PF 1︱。
例2:P(-2,6),F 2为椭圆1162522=+y x 的右核心,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最大值和最小值。
分析:点P 在椭圆外,PF 2交椭圆于M ,此点使︱MP ︱+︱MF 2︱值最小,求最大值方式同例1。
解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1并延长交椭圆于点M 1,那么M 在M 1处时︱MP ︱-︱MF 1︱取最大值︱PF 1︱。
∴︱MP ︱+︱MF 2︱最大值是10+37,最小值是41。
结论2:设椭圆12222=+b y a x 的左右核心别离为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点,那么︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为PF 2。
2.二次函数法例3.求定点A(a,0)到椭圆12222=+by a x 上的点之间的最短距离。
椭圆的面积问题
椭圆是一种常见的平面图形,其具有独特的几何性质。
在本文中,我们将探讨椭圆的面积问题。
首先,让我们回顾一下椭圆的定义。
椭圆是平面上到定点F1、F2距离之和等于定长2a的点P的轨迹。
这两个定点称为焦点,2a称为长轴,沿着长轴的中心称为圆心。
为了计算椭圆的面积,我们需要找到一个公式,其中包含椭圆的重要参数。
我们知道,长轴的长度为2a,短轴的长度为2b。
那么,我们可以使用下面的公式来计算椭圆的面积:
S = πab
其中,π是一个常数,约等于3.14159。
因此,我们可以得出结论:一个椭圆的面积等于其长轴和短轴长度的乘积,再乘以π。
让我们通过一个具体的例子来看看如何计算椭圆的面积。
假设一个椭圆的长轴长度为6,短轴长度为4。
我们可以使用上述公式计算出椭圆的面积:
S = π × 6 × 4/2
= 12π
因此,该椭圆的面积约为37.7。
最后,让我们看一下如何应用椭圆的面积问题。
在实际应用中,我们可能需要计算椭圆形状的物体的面积。
例如,一个篮球场的形状可
能类似于一个椭圆,所以我们可以使用上述公式来计算篮球场的面积。
同样地,椭圆也经常在建筑设计和航天工程中使用。
综上所述,椭圆是一个非常重要的几何形状,在许多不同领域发挥
着作用。
通过使用上述公式,我们可以简单地计算椭圆的面积,并应
用它在实际问题中。
从一题多解中感悟椭圆斜率之积问题的多种背景作者:吴铭豪黄立来源:《福建中学数学》2021年第11期1 問题来源4解后反思4.1点参线参,设而不求对于圆锥曲线中动态背景下的定值问题,基本思路为设出参数来表示与待求目标相关的直线方程或点的坐标,再通过运算消去参数,证明结论.其中设线参和设点参是相同的,两种方法各有千秋,当设线的方程或者点的坐标不当时,可能会使计算过程复杂,导致半途而废.反之,设得巧妙时,能简化运算.设参时要善于发现图形中线与点之间的关系,并紧扣住引元消参的基本运算方向,从而达到事半功倍的效果.4.2挖掘背景,高屋建瓴本题具有双割线、相交弦的“蝴蝶型”模型特点,常常考虑到极点极线的背景,可将问题分解成先证过定点、后证定值的问题.在高考解析几何的解答题中,如果能挖掘题目的背景,就能有明确的解题方向.常见的背景有圆锥曲线的第一定义、第二定义、第三定义、垂径定理、中点弦、极点极线、阿基米德三角形、阿波罗尼斯圆、仿射变换等.4.3特定方法,简化计算在一些特定背景下,合理运用特定方法往往能简化计算.例如本题可运用点差法、仿射变换、二次曲线系、参数方程、双斜率齐次化等方法.除此之外,圆锥曲线中常用的特定方法还有:遇到定比分点时可运用定比点差法;求轨迹方程时可运用相关点法;遇到切线可用隐函数求导法等.5结束语总之,对于解析几何解题训练,苏联数学教育家奥加涅说过:“必须重视很多习题潜在着进一步扩展其数学功能、发展功能和教育功能的可行性.”一些典型的背景和方法,往往是某类题目的题根,平时的训练中尝试地寻找这类试题的生长点、命题背景,探究题源,挖掘命题的题根,可以达到由例及类、触类旁通的目的.(本文系2020年度福建省中青年教师教育科研项目(基础教育研究专项)《核心素养导向下的高中数学教学模式研究》(项目编号JSZJ20082),2021年度福建省电化教育馆教育信息技术研究课题《在线课程的建设与应用研究》(项目编号KT21127)阶段性研究成果)。
专题20椭圆【考点命题趋势分析】1专题综述椭圆是圆锥曲线的重要组成部分,是解析几何的核心内容之一,椭圆在解析几何中起着承前启后的作用,同时也是历届高考命题的热点和焦点.笔者统揽近三年高考数学全国卷和各省市卷,高考对椭圆部分的考查大都聚焦在以下三个方面:其一,考查椭圆的定义、标准方程和简单的几何性质;其二,考查直线与椭圆的位置关系;其三,考查椭圆相关的综合问题(定点、定值、最值及范围问题).解析几何是以坐标为桥梁,用代数知识来研究几何问题是其本质特征.将椭圆与平面几何、向量、函数、数列、不等式、导数等知识融合命制考题,既广泛而深入地考查了数形结合、转化与化归、分类整合、函数与方程等数学思想以及灵活运用椭圆知识观察、分析和解决问题的能力,同时又对考生的几何直观、逻辑推理和数学运算等素养提出了较高的要求.下面主要以高考试题为例,对椭圆相关的考点举例阐述,以期对今年高考复习有所帮助.典型例题与解题方法2考点剖析2.1椭圆方程及其几何性质求动点的轨迹或是轨迹方程是圆锥曲线的常见问题,椭圆也不例外,一般设置在第一问.这要求学生能熟练地使用常用的方法:直接法、定义法、相关点法、交轨法和代换法,另外,几何性质的灵活运用也往往起到事半功倍之效.一般求解步骤是:建系一设点一坐标代换一化简一检验.注意求轨迹方程和求轨迹应是两种不同的结果表述,前者是方程,后者是图形.例1设圆x2+y2+2x−15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.证明|EA|+|EB|为定值,并写出点E的轨迹方程.例2已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A.√63B.√33C.√23D.132.2直线与椭圆的位置关系在函数与方程思想的统领下,直线与椭圆的位置关系重点考查以下内容:其一,直线与椭圆的位置关系;其二,直线与椭圆相交,有关中点弦所在直线的方程;其三,直线与椭圆相交,被直线截得的弦长等问题.直线与椭圆的位置关系常用的判断方法有:代数法和坐标变换法.直线与椭圆相交,有关中点弦所在直线方程常用求法有:韦达定理法、点差法、直线参数方程法和对称设点法;直线与椭圆相交,求直线被截得的弦长常用求解方法有:韦达定理法、过焦点弦长公式(利用椭圆第二定义)以及利用过椭圆上一点的切线方程等方法.例3过椭圆x 216+y 24=1内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程.例4设椭圆x 2a 2+y 2=1(a >1),求直线y =kx +1被椭圆截得的线段长(用a ,k 表示). 2.3与椭圆相关的综合问题在数形结合思想统领下椭圆的综合问题主要考查以下内容:斜率和离心率范围、定点问题、定值问题和最值问题等.定点、定值一般涉及曲线过定点、与曲线上的动点有关的问题以及与椭圆有关的弦长、面积、横(纵)坐标等的定值问题.椭圆中最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或椭圆中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.椭圆的探索性问题主要体现在以下方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立,涉及这类命题的求解主要是研究直线与椭圆的位置关系问题.例5已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1 (I )求椭圆C 的方程;(Ⅱ)设P 在椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |⋅|BM |为定值. 3复习对策与建议(1)立足基础,把控规律,回归教材.从宏观上把握椭圆问题的解题要点,注重通性通法、一题多解和多题化归,优化解题过程,淡化特殊技巧,掌握常用的一些解题策略.(2)发掘几何性质,简化代数运算.高度重视对椭圆的定义与几何性质、解析法的理解与运用,既可提高解题效率,又可以提升学生的信心.重视运算能力与运算速度的提高,特别是字母式的变形运算,在平时的训练中要注重算理、算法,细化运算过程,转化相关条件,注重整体代换等运算技能的培养.重视椭圆与函数、导数、方程、不等式等知识的交汇训练.(3)注重数学思想和能力的训练,不断积累解匙经验.重视数形结合、转化化归、分类整合以及函数与方程思想的训练;培养学生善于透过问题背景扣住问题本质的能力;培养学生善于合理简化和量化,建数学模型的能力,培养学生能用精确和简洁的数学语言表达数学问题的能力.积累多方位、多角度探寻解决问题的经验.最新模拟题强化训练1.已知椭圆()2222:10x y C a b a b+=>>的左顶点为A ,上顶点为B ,右焦点为F ,若90ABF ∠=︒,则椭圆C 的离心率为()A B .12C .14+ D .142.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .143.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A.12-B.2C.12D14.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .135.已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为F 1,F 2过F 2的直线l 交C 与A,B 两点,若△AF 1B的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=6.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为( )AB .3C .6D7.设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,2PF ⊥1F 2F ,∠12PF F =30,则C 的离心率为( )A B .13C .12D .38.设P 是椭圆22116925x y +=上一点,M ,N 分别是两圆:()22121x y ++=和()22121x y -+=上的点,则PM PN +的最小值、最大值分别为( )A .18,24B .16,22C .24,28D .20,269.已知点(,4)P n 为椭圆C :22221(0)x y a b a b+=>>上一点,12,F F 是椭圆C 的两个焦点,如12PF F ∆的内切圆的直径为3,则此椭圆的离心率为( )A .57B .23C .35D .4510. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 ( ) A .13B .12C .23D .3411.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,1F ,2F 分别为椭圆的左、右焦点,已知12120F PF ∠=,且122PF PF =,则椭圆的离心率为______.12.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.13.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为___.14.已知椭圆2221x y a+=的左、右焦点为1F 、2F ,点1F 关于直线y x =-的对称点P 仍在椭圆上,则12PF F ∆的周长为__________.15.已知椭圆22:143x y C +=的左右两焦点为12,F F ,ABC ∆为椭圆的内接三角形,已知2(3A ,且满足2220F A F B F C ++=,则直线BC 的方程为__________.16.已知直线230x y +-=与椭圆()222210x ya b a b+=>>相交于A ,B 两点,且线段AB 的中点在直线3410x y -+=上,则此椭圆的离心率为______.17.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,且123F PF π∠=,若1F 关于12F PF ∠平分线的对称点在椭圆C 上,则该椭圆的离心率为______.18.如图,在ABC 中,已知120BAC ∠=︒其内切圆与AC 边相切于点D ,延长BA 到E ,使BE BC =,连接CE ,设以,E C 为焦点且经过点A 的椭圆的离心率为1e ,以,E C 为焦点且经过点A 的双曲线的离心率为2e ,则当1221e e +取最大值时,AD DC的值为__.19.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为__________.20.已知点是抛物线:214y x =与椭圆:()222210x y b a a b+=>>的公共焦点,2F 是椭圆2C 的另一焦点,P 是抛物线1C 上的动点,当12PF PF 取得最小值时,点P 恰好在椭圆2C 上,则椭圆2C 的离心率为_______.21.在平面直角坐标系中,()2,0A -,()2,0B ,设直线AC 、BC 的斜率分别为1k 、2k 且1212k k ⋅=- , (1)求点C 的轨迹E 的方程;(2)过()F 作直线MN 交轨迹E 于M 、N 两点,若MAB △的面积是NAB △面积的2倍,求直线MN 的方程.22.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.23.已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF 的斜O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.24.设椭圆()2222:10x y C a b a b+=>>,右顶点是()2,0A ,离心率为12.(1)求椭圆C 的方程;(2)若直线l 与椭圆交于两点,M N (,M N 不同于点A ),若0AM AN ⋅=,求证:直线l 过定点,并求出定点坐标.25.设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3AB =(1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ 面积的2倍,求k 的值.26.如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB ,求直线l 的方程. 27.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.28.已知椭圆2222:1(0)x y E a b a b +=>>1,2⎛ ⎝⎭在E 上. (1)求E 的方程;(2)设直线:2l y kx =+与E 交于A ,B 两点,若2OA OB ⋅=,求k 的值.29.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I)求椭圆的方程和抛物线的方程;(II)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为2AP 的方程.30.已知离心率为√22的椭圆E:x 2a2+y 2b 2=1 (a >b >0)经过点A(1,√22). (1)求椭圆E 的方程; (2)若不过点A 的直线l:y =√22x +m 交椭圆E 于B,C 两点,求ΔABC 面积的最大值.。
椭圆角度问题介绍椭圆是一种几何形状,其定义为平面上到两个固定点的距离之和为常数的点的集合。
椭圆通常由两个焦点和两个主轴定义,其中主轴是通过两个焦点的直线段。
在椭圆中有一个关键的参数是角度,它是与主轴的夹角。
在本文档中,我们将讨论椭圆角度问题,即如何计算椭圆的角度。
椭圆方程椭圆的方程可以表示为:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1其中(h, k)是椭圆的中心点坐标,a是横轴的半长轴长度,b是纵轴的半短轴长度。
在这个方程中,我们可以看到(x, y)与(h, k)的差值与a和b的比例关系。
椭圆角度计算椭圆的角度可以通过两个焦点之间的连线与椭圆的主轴之间的夹角来计算。
可以使用以下公式来计算椭圆的角度:angle = atan2((b * (x - h)), (a * (y - k)))其中atan2()是一个数学函数,它可以返回以弧度表示的给定坐标点的反正切值。
在这个公式中,我们使用(x, y)的坐标与椭圆中心点(h, k)的坐标、横轴的半长轴a和纵轴的半短轴b的长度来计算角度。
示例让我们来看一个示例来说明如何计算椭圆的角度。
假设我们有一个椭圆,其中心点坐标为(2, 2),横轴的半长轴长度为4,纵轴的半短轴长度为2。
现在,我们想要计算位于椭圆上的点(4, 2)的角度。
我们可以使用公式angle = atan2((b * (x - h)), (a * (y - k)))来计算这个角度。
代入相应的值,我们可以得到:angle = atan2((2 * (4 - 2)), (4 * (2 - 2)))= atan2(4, 0)根据atan2()函数的定义,当分母为0时,结果为π/2。
因此,在这个示例中,点(4, 2)的角度为π/2。
结论在本文档中,我们介绍了椭圆角度问题,并提供了计算椭圆角度的公式。
我们还通过一个示例演示了如何使用这个公式来计算椭圆上的点的角度。
椭圆角度的计算对于许多几何和物理应用都是很有用的,例如遥感图像处理、机械工程和天体物理学等。
椭圆大题题型及方法总结
椭圆在大题中的题型一般有以下几种:
1. 求椭圆方程:这是基础中的基础,可以直接设方程,也可以根据已知条件设方程。
2. 探究椭圆的性质:例如探究椭圆的焦点位置、焦距大小、离心率等性质。
3. 求椭圆上的点的坐标:通常会涉及到椭圆上的点与其他图形的关系,例如与直线、圆、柱形等的关系。
4. 用韦达定理求解椭圆的问题:韦达定理是椭圆考试中的一个重要知识点,通常会在第 2 问或第 3 问中使用。
5. 与三角形相关的问题:椭圆通常会与三角形联系起来,涉及到三角形的面积、周长、角度等问题。
6. 探究椭圆与其他图形的关系:例如椭圆与圆的关系、椭圆与直线的关系等。
针对以上题型,有一些常用的方法和技巧,例如:
1. 画图是一个必不可少的步骤,有助于更好地理解题意和解决问题。
2. 熟悉椭圆的定义和性质,有助于更好地解答题目。
3. 韦达定理是椭圆考试中的一个重要知识点,需要熟练掌握。
4. 注意椭圆与其他图形的关系,例如椭圆与直线的关系、椭圆与圆的关系等,可能需要使用勾股定理、余弦定理等知识。
5. 考试中需要仔细阅读题目,理解题意,抓住关键信息,有针
对性地解决问题。
椭圆问题(其实也包括其它圆锥曲线问题)分为⼩题和⼩题两部分,其中⼩题⼩般都注重定义、性质的应⼩,特点是灵活⼩轻巧,计算量不会很⼩,在解题中要结合条件的特殊性灵活运⼩圆锥曲线的常⼩性质和结论.已知是椭圆上⼩动点,为其左、右焦点,⼩轴端点为,短轴端点为,椭圆的离⼩率为下⼩是解⼩题时的⼩些辅助性质和结论:特征三⻆形;;焦半径;焦点弦⼩,通径端点坐标;若AB为过右焦点的弦,则的周⼩为定值;焦点三⻆形:①的周⼩为定值;②最⼩时,为椭圆的短轴端点;③的⼩积为;④内切圆与切于M,则|PM|为定值,且内切圆半径;⑤设的内⼩为,与轴交于M,则;7.点处的切线:①的⼩程为:;②的内⻆平分线与点P处的切线垂直,且切线平分的外⻆;(这是椭圆的光学性质:光线从椭圆的⼩个焦点射⼩,被椭圆反射后从另⼩焦点射出)8.当点P不是椭圆的左、右端点时,;当点P不是椭圆的上、下端点时,.⼩与⼩题的轻巧不同的是,⼩题的出现往往是带有⼩定计算量的,特点是“易想难算”,所以解答⼩题⼩定要有“坚定的信念”、“顽强的意志”以及“百折不挠的精神”⼩般来说,⼩题常以轨迹、定点、定值、最值等形式出现,我们现在以同⼩个椭圆为例,来看看各种不同的问法.已知椭圆的左、右焦点分别为,左、右顶点分别为,上、下顶点分别为.轨迹问题(定义法、相关点法、参数法)已知P为椭圆E上的任意⼩点,为的内切圆圆⼩,求动点的轨迹⼩程.【分析】在正常情况下会怎样思考呢?为内⻆平分线的交点,如果能⼩到性质:的平分线垂直于切线,这很好,可是其它两个内⻆的平分线怎么办?总不能⼩⼩倍⻆公式解⼩次⼩程吧?别忘了刚才给出的性质中有⼩条:的内切圆半径!【解析】设在y轴上⼩,并设点,则点P处的切线为:①⼩的内切圆半径,故②联⼩①②可得,代⼩⼩程可得:.当点P在y轴下⼩时,点的轨迹⼩程为综上,动点的轨迹⼩程为.【归纳总结】(1)刚才的解答中,真正起到简化作⼩的是⼩程②,从的⻆度⼩⼩简化了计算量,起到“化繁为简”的作⼩,所以熟知常⼩性质和结论不仅对解⼩题有益,对解⼩题也⼩样能体现其优势;(2)⼩般结论:设P为椭圆上的动点,则内切圆圆⼩的轨迹⼩程为:.【证明】:设点,因为过P的切线为,从⼩①当点P在y轴上⼩时,的内切圆半径,所以②联⼩①②可得,代⼩⼩程可得:,即此时点轨迹⼩程为.当点P在y轴下⼩时,点轨迹⼩程为.综上,点轨迹⼩程为.例2.已知是椭圆的两条切线,且,垂⼩为P,求动点P的轨迹.【解析】解⼩:(1)当点在轴上时,由对称性知为等腰直⻆三⻆形,切线斜率分别为-1,1.设(t,0),则⼩程为,联⼩⼩程得,由判别式=0,解得。
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
(完整版)椭圆解的个数问题专题介绍椭圆解的个数问题是数学中一个重要的研究领域,它涉及到关于椭圆函数的性质和解的个数的相关问题。
在数学分析和应用领域中,椭圆解是一类特殊的解形式,经常出现在微分方程、椭圆曲线等问题中。
本文将介绍椭圆解的基本概念、性质以及解的个数的计算方法。
椭圆解的基本概念椭圆解是指满足某个特定的微分方程或方程组的解,它们通常与椭圆函数相关联。
椭圆函数是一类特殊的数学函数,具有周期性和对称性的特点。
椭圆函数的表达式一般以椭圆积分的形式给出,其中包含椭圆的长轴、短轴和离心率等参数。
椭圆解的性质椭圆解具有许多独特的性质,包括周期性、对称性和变换性等。
由于椭圆的特殊性质,椭圆解的个数问题成为一个非常有意义的研究方向。
在某些情况下,椭圆解的个数可以用封闭解表达出来,但在一般情况下,我们需要通过数值计算或近似方法来求解。
解的个数的计算方法解的个数问题是椭圆解研究的核心问题之一。
对于给定的微分方程或方程组,我们希望确定解的个数。
在一些特殊的情况下,解的个数可以通过解析方法来计算,但在一般情况下,我们需要借助数值计算或迭代方法来求解。
应用领域椭圆解的个数问题在数学分析、物理学、工程学等领域都有广泛的应用。
在微分方程和椭圆曲线的研究中,椭圆解的个数问题扮演着重要的角色。
此外,椭圆解的个数也在密码学、通信等领域中被广泛应用。
结论椭圆解的个数问题是椭圆函数研究中的一个重要方向。
通过研究椭圆解的基本概念、性质和解的个数的计算方法,我们能够更好地理解和应用椭圆函数。
椭圆解的个数问题在数学和应用领域具有重要意义,对于推动相关领域的研究和发展具有积极的促进作用。
椭圆问题中最值得关注的基本题型[题型分析•高考展望]椭圆问题在高考中占有比较重要的地位,井且占的分值也较多•分析历年的高考试题,在填空题、解答题中都涉及到椭圆的题,所以我们对椭圆知识必须系统的学握•对各种题型,基本的解题方法也要有一定的了解.常考题型精析题型一利用椭圆的几何性质解题例1如图,焦点在x轴上的椭圆乎+豊=1的离心率吗,F、力分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,求諾•斎的最大值和最小值.点评熟练学握椭圆的几何性质是解决此类问题的根本,利用离心率和椭圆的范围可以求解范围问题、最值问题,利用&、b. c之间的关系和椭圆的对称性可构造方程.x2 v2变式训练1 (2014 •课标全国I )已知点力(0, -2),椭圆£:臣(日">0)的离心率为半,F是椭圆F的右焦点,直线SF的斜率为罟,0为坐标原点.(1)求F的方程; (2)设过点力的动直线/与F相交于只0两点,当△0%的面积最大时,求/的方程.题型二直线与椭圆相交问题例2 (2015 -山东)在平面直角坐标系"如中,已知椭圆。
臣+口=1(曰>6>°)的离心率左、右焦点分别是斤,怠以斤为圆心、以3为半径的圆与以尺为圆心、以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;x 2 2⑵设椭圆F:爲+話=1, P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆F于儿8两点,射线〃交椭圆F于点0.(i )求器的值;(ii)求面积的最大值.点评解决直线与椭圆相交问题的一般思路:将直线方程与椭圆方程联立,转化为一元二次方程,由判别式范围或根与系数的关系解决•求范围或最值问题,也可考虑求“交点",由'‘交点”在椭圆内(外),得出不等式,解不等式.变式训练2 (2014 •四川)已知椭圆C:誇+普=1(&>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.⑴求椭圆G的标准方程;⑵设F为椭圆Q的左焦点,;■为直线x=~3上任意一点,过F作庐的垂线交椭圆G于点P,0.①证明刀平分线段〃(其中0为坐标原点);②当背最小时,求点厂的坐标.题型三利用“点差法,设而不求思想”解题x2例3已知椭圆y+y2=1,求斜率为2的平行弦的中点轨迹方程.点评当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程时,用“点差法”来求解.x2 v2变式训练3 (2015 •扬州模拟)已知椭圆乏+寺=1(日>少0)的一个顶点为0(0, 4),离心率e直线/交椭圆于必"两点.⑴若直线/的方程为y=x-4,求弦例的长.(2)如果△胸/的重心恰好为椭圆的右焦点F,求直线/方程的一般式.高考题型精练1.(2015 •课标全国I改编)已知椭圆F的中心在坐标原点,离心率为刍F的右焦点与抛物线G y=8x的焦点重合,儿8是C的准线与F的两个交点,贝IJS4 ___________ .x2 v92.(2014 •大纲全国改编)已知椭圆。
专题13 解析几何中与椭圆相关的综合问题专题概述纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.典型例题【例1】(2020•全国二模)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F 、2F ,点P 为椭圆E 上任意一点,12PF PF 的最大值为1,点1A 为椭圆E 的左顶点,△12A PF . (Ⅰ)求椭圆E 的方程;(Ⅰ)动直线l 与椭圆E 交于不同两点1(A x ,1)y 、2(B x ,2)y ,O 为坐标原点,M 为AB 的中点______.是否存在实数λ,使得||||OM AB λ恒成立?若存在,求λ的最小值;若不存在,说明理由. 从①AOB ∆的面积为1,②||||m n m n +=-(其中向量1122(,),(,)x y x ym n a b a b==这两个条件中选一个,补充在上面的问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分【分析】(Ⅰ)先由12PF PF 的最大值为211b ⇒=,再由△12A PF 24a ⇒=,从而求出椭圆E 的方程;(Ⅰ)先设出直线l 的方程,再与椭圆E 的方程联立,求出||AB 、点O 到直线l 的距离d ,接着求出AOB ∆的面积的关系式,进而得到变量之间的关系,最后解决λ的存在性与最值问题. 【解答】解:(Ⅰ)设0(P x ,0)y ,1(,0)F c -,2(,0)F c ,则2200221x y a b +=,0[x a ∈-,]a10(PF c x =--,0)y -,20(PF c x =-,0)y -,222222212002c PF PF x y c x b c a=+-=+-,0[x a ∈-,]a ,∴当0x a =± 时,212()1max PF PF b ==.又1201()()||22A PF a c b Sa c y +=⨯+=,又222a b c =+,可解得:2a =,1b =,c =所以椭圆E 的方程为2214x y +=.(Ⅰ)当选择①时,假设存在实数λ,使得||||OM AB λ恒成立.设动直线:l x ky t =+,由2214x ky t x y =+⎧⎪⎨+=⎪⎩联立可得:222(4)240k y kty t +++-=. 222222122212244(4)(4)16(4)02444k t k t k t kt y y k t y y k ⎧⎪=-+-=+->⎪-⎪+=⎨+⎪⎪-=⎪+⎩, 24(4t M k +,2)4kt k -+.||1AB == 点O 到直线:l x ky t=+的距离d =,1||12ABOS AB d ∆∴=⨯⨯==, 222224(1)(4)(4)2(1||||k k t t k OM AB ++-+==,令244k m +==4m .令33m y m -=,4m ,则492my m -'=,令902y m '=⇒=,y 在[4,9]4单调递增,在9[4,)+∞单调递减, 故当92m =也即212k =时,max y ,(||||)maxOM AB =. 又||||OM AB λ恒成立, 所以43λ. 故存在λ,使得||||OM AB λ恒成立,且λ 【例2】(2020春•全国月考)在平面直角坐标系xOy 中,已知圆22:4O x y +=,(2,0)A ,线段BC 的中点是坐标原点O ,设直线AB ,AC 的斜率分别为1k ,2k ,且1214k k =-.(1)求B 点的轨迹方程;(2)设直线AB ,AC 分别交圆O 于点E 、F ,直线EF 、BC 的斜率分别为EF k 、BC k ,已知直线EF 与x 轴交于点6(5D -,0)问:是否存在常数λ,使得BC EF k k λ=?若存在,求出λ的值;若不存在,说明理由.【分析】(1)设(,)B x y ,则(,)C x y --,根据1214k k =-.即可求出B 点的轨迹方程;(2)由题意可知,直线AB 的方程为:1(2)y k x =-,与椭圆方程联立,求出点B 的坐标,进而求出BC k ,再联立直线AB 与圆O 方程,求出点E 的坐标,进而求出EF k ,从而得到25BC EF k k =,故存在常数25,使得25BC EF k k =. 【解答】解:(1)设(,)B x y ,则(,)C x y --,又(2,0)A ,∴212212244y y y k k x x x ===--+-,∴2214x y +=, ∴点B 的轨迹方程为2214x y += (0)y ≠;(2)由题意可知,直线AB 的方程为:1(2)y k x =-,联立方程122(2)14y k x x y =-⎧⎪⎨+=⎪⎩,消去y 得:2222111(41)164(41)0k x k x k +-+-=, ∴21214(41)241B k x k -=+,21212(41)41B k x k -∴=+,121441Bk y k -=+, ∴直线BC 的斜率12102041B BC B y kk x k --==--, 联立方程122(2)4y k x x y =-⎧⎨+=⎩,消去y 得:2222111(1)4440k x k x k +-+-=,∴21214421E k x k -=+,∴21212(1)1E k x k -=+,2141E ky k -=+, ∴直线EF 的斜率121056415E EF E y k k k x --==-+, ∴21121124124155BC EF k k k k k k --==--, 25BC EF k k ∴=,∴存在常数25,使得25BC EF k k =. 【变式训练】(2020•3月份模拟)已知椭2222:1(0)x y C a b a b+=>>过点E 其左、右顶点分别为A ,B ,且离心率e =. (1)求椭圆C 的方程;(2)设0(M x ,0)y 为椭圆C 上异于A ,B 两点的任意一点,MN AB ⊥于点N ,直线00:240l x x y y +-=. ①证明:直线l 与椭圆C 有且只有一个公共点;②设过点A 且与x 轴垂直的直线与直线l 交于点P ,证明:直线BP 经过线段MN 的中点.【分析】(1)根据题意,列出关于a ,b ,c 的方程组,解出a ,b ,c 的值,即可求出椭圆C 的方程; (2)①联立直线l 与椭圆方程,结合0(M x ,0)y 在椭圆上,220024x y +=,可求出唯一交点坐标0(x ,0)y ,即直线l 与椭圆C 有且只有一个公共点,即点M ;②先求出点P 的坐标,进而得到直线PB 的方程,再求出线段MN 的中点坐标,即可验证线段MN 的中点坐标满足直线PB 的方程,即线PB 经过线段MN 的中点. 【解答】解:(1)由题意可知,22222211a b ca ab c⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a b c =⎧⎪=⎨⎪=⎩∴椭圆C 的方程为:22142x y +=;(2)①由题意知00y ≠,联立方程220142240x y x x y y ⎧+=⎪⎨⎪+-=⎩,消去y 得:22220000(2)81680x y x x x y +-+-=, 0(M x ,0)y 在椭圆上,∴220024x y +=,∴220020x x x x -+=,即20()0x x -=,0x x ∴=,0y y =,∴直线l 与椭圆C 有且只有一个公共点,即点M ;②由(1)知(2,0)A -,(2,0)B ,过点A 且与x 轴垂直的直线的方程为:2x =-, 结合方程00240x x y y +-=,得点002(2,)x P y +-,∴直线PB 的斜率000202224x y x k y +-+==---, ∴直线PB 的方程为:002(2)4x y x y +=--, MN AB ⊥于点N ,0(N x ∴,0),线段MN 的中点坐标为0(x ,)2y , 令0x x =.得20000024(2)44x x y x y y +-=--=, 220024x y +=, 02y y ∴=, ∴直线PB 经过线段MN 的中点0(x ,)2y . 专题强化1.(2020春•全国月考)已知椭圆22:162x y C +=,过(4,0)Q -的直线l 与椭圆C 相交于A ,B 两点,且与y 轴相交于P 点. (1)若32PA AQ =,求直线l 的方程; (2)设A 关于x 轴的对称点为C ,证明:直线BC 过x 轴上的定点.【分析】(1)设直线l 的方程为(4)y k x =+,联立椭圆方程,可得x 的二次方程,设出A 的横坐标,求得P 的坐标,运用向量共线的坐标表示,解得A 的横坐标,代入二次方程解得斜率,进而得到所求直线方程; (2)运用韦达定理,由对称性可得C 的坐标,由点斜式方程可得直线l 的方程,可令0y =,解得x 的表达式,化简整理,即可得到定点.【解答】解:(1)由题意可设直线l 的方程为(4)y k x =+,联立椭圆方程22360x y +-=, 可得2222(13)244860k x k x k +++-=,(*) 设1(A x ,1)y ,2(B x ,2)y , 由(4,0)Q -,(0,4)P k ,32PA AQ =,可得1130(4)2x x -=--, 解得1125x =-,代入方程(*)可得222144288(13)4860255k k k +-+-=,解得k =,则直线l的方程为4)y x =+; (2)证明:由题设可得1(C x ,1)y -,由(1)可得21222413k x x k+=-+,212248613k x x k -=+, 再由(1)可得直线BC 的方程为211121()y y y y x x x x ++=--,令0y =,可得122112121212121212(4)(4)24()(8)8x y x y kx x k x x x x x x x y y k x x x x ++++++===+++++ 22229612963248242k k k k --==--++, 故直线BC 过x 轴上的定点3(2-,0).2.(2020•3月份模拟)已知椭圆222:1(1)x C y a a+=>的左顶点为A ,右焦点为F ,斜率为1的直线与椭圆C交于A 、B 两点,且OB AB ⊥,其中O 为坐标原点. (1)求椭圆C 的标准方程;(2)设过点F 且与直线AB 平行的直线与椭圆C 交于M 、N 两点,若点P 满足3OP PM =,且NP 与椭圆C 的另一个交点为Q ,求||||NP PQ 的值. 【分析】(1)设出直线AB 的方程,与椭圆方程联立,求出点B 的坐标,再根据OB AB ⊥,建立关于a 的方程,解出即可;(2)设1(M x ,1)y ,2(N x ,2)y ,3(Q x ,3)y ,||||NP m PQ =,由已知,将点Q 的坐标用点M ,N 表示,再由点Q 在椭圆上,得到关于m 的方程,解出即可.【解答】解:(1)由题意得,设直线AB 的方程:x y a =-,与椭圆联立整理得:22(1)20a y ay +-=, 221B ay a ∴=+, 322211B a a a x a a a-∴=-=++, 因为OB AB ⊥,∴321B B y a x a a==--,1a >,解得:23a =, 所以椭圆C 的标准方程:2213x y +=;(2)由(1)得,F 0)所以由题意得直线MN的方程为:y x =-, 设1(M x ,1)y ,2(N x ,2)y ,3(Q x ,3)y ,将y x =2213x y +=,得2430x -+=,∴1212324x x x x +==,∴12121(4y y x x ==-, 3OP PM =,∴34OP OM =,则1133(,)44P x y , 设||||NP m PQ =,则NP mPQ =,即121231313333(,)(,)4444x x y y m x x y y --=--, ∴3123123(1)143(1)14m x x x m mm y y y m m +⎧=-⎪⎪⎨+⎪=-⎪⎩, 点3(Q x ,3)y 在椭圆C 上,∴22121213(1)13(1)1[][]1344m m x x y y m m m m++-+-=,整理得22222112212122229(1)1113(1)1()()()1163323m m x y x y x x y y m m m +++++-+=, 由上知,1212103x x y y +=,且2212121,133x x y y +=+=,∴229(1)1116m m ++=,即2718250m m --=,解得257m =或1m =-(舍),故||25||7NP PQ =. 3.(2019秋•怀化期末)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,上顶点为M ,直线FM的斜率为,且原点到直线FM.(1)求椭圆C 的标准方程;(2)若不经过点F 的直线:(0,0)l y kx m k m =+<>与椭圆C 交于A ,B 两点,且与圆221x y +=相切.试探究ABF ∆的周长是否为定值,若是,求出定值;若不是,请说明理由.【分析】(1)可设(,0)F c ,(0,)M b ,由直线的斜率公式和点到直线的距离公式,解方程可得b ,c ,进而得到a ,可得椭圆方程;(2)设1(A x ,1)y ,2(B x ,2)y .1(0x >,20)x >,运用勾股定理和点满足椭圆方程,求得1||AQ =,同理可得2||BQ x =,再由焦半径公式,即可得到周长为定值. 【解答】解:(1)可设(,0)F c ,(0,)M b,可得b c -=,直线FM 的方程为bx cy bc +=,=,解得1b =,c =a = 则椭圆方程为2213x y +=;(2)设1(A x ,1)y ,2(B x ,2)y . 1(0x >,20)x >,连接OA ,OQ ,在OAQ ∆中,222222111112||11133x AQ x y x x =+-=+--=,即1||AQ =,同理可得2||BQ x =,12||||||)AB AQ BQ x x ∴=+=+,1212||||||)AB AF BF x x ∴+++-+=,ABF ∴∆的周长是定值4.(2019秋•山东月考)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =,椭圆的左焦点为1F ,短轴的两个端点分别为1B ,2B ,且11122F B F B =. (1)求C 的标准方程;(2)若过左顶点A 作椭圆的两条弦AM ,AN ,月0AM AN =,求证:直线MN 与x 轴的交点为定点. 【分析】(1)根据椭圆的离心率公式根据向量的坐标运算,即可求得a 和b 的值,求得椭圆方程; (2)设直线AM 的方程,与椭圆方程联立,求得M 点坐标,同理求得N 点坐标,求得直线MN 的方程,即可判断直线MN 与x 轴的交点为定点.【解答】解:(1)设1(,0)F c -,1(0,)B b ,2(0,)B b -,由题意c e a ==,① 由112(F B F B c =,)(b c ,22)2b c b -=-=,② 又222c a b =-,③ 解得24a =,21b =,所以椭圆的标准方程2214x y +=;(2)证明:由题可知,(0,2)A -,则直线AM ,AN 斜率存在且不为0,设直线AM 斜率为k ,则直线AN 斜率为1k-,设直线AM 方程为(2)y k x =+,设(M M x ,)M y与椭圆方程联立得22(2)440y k x x y =+⎧⎨+-=⎩,得2222(14)161640k x k x k +++-=,Z 则22164214M k x k --=+,则222814M k x k -=+, 所以(2)M M y k x =+,得2414M ky k =+得2228(14k M k -+,24)14k k +,同理可得(将k 换成1)k -得2228(4k N k -+,24)4k k -+, 则32222242222244202020(1)51442828(1616)16(1)(1)44144MNk kk k k k k k k k k k k k k k k k +++-++====-----+---++,所以直线MN 的方程为22224528()4444k k k y x k k k --+=-+-+,令0y =,则22222216(1)2862465(4)45(4)5k k k x k k k ----=+==-+++, 所以,直线MN 与x 轴的交点为定点6(5-,0).5.(2019•陕西模拟)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为2F ,过2F 作x 轴的垂线交椭圆E 于点A (点A 在x 轴上方),斜率为(0)k k <的直线交椭圆E 于A ,B 两点,过点A 作直线AC 交椭圆E 于点C ,且AB AC ⊥,直线AC 交y 轴于点D .(1)设椭圆E 的离心率为e ,当点B 为椭圆E 的右顶点时,D 的坐标为21(0,)3b a a -,求e 的值.(2)若椭圆E 的方程为2212x y +=,且2k <,是否存k|||AB AC =成立?如果存在,求出k的值;如果不存在,请说明理由. 【分析】(1)求出2()ABb k ac a =-,3AD ak c=,通过AB AD ⊥,转化求解椭圆的离心率即可. (2)设出直线y kx k =-,联立2212x y y kx k ⎧+=⎪⎪⎨⎪=-⎪⎩,消去y ,由韦达定理得求出B 的坐标,利用弦长公式,转化求解即可. 【解答】解:(1)因为2()AB b k a c a =-,3AD ak c=,AB AD ⊥,所以2213b a ac a c =--, 整理得22320a ac c -+=,解得2a c =或a c =(舍去), 所以12c e a ==. (2)由(1)知A,:(1)AB y k x =-,即y kx k =-,联立2212x y y kx k ⎧+=⎪⎪⎨⎪=-⎪⎩,消去y,得222(12)2(2210k x k k x k +-+--=.设点B 的横坐标为B x,由韦达定理得2221112B k x k --=+,即222112Bk x k --=+,所以1B x -=.因为k <,所以2222||1|B k AB x +=-=, 同理,221|22()2|2||21112()k k AC k k -+-=++-.|||AB AC =,则22222221k k k+-=+, 20k +=,而△0<,所以此方程无解,故不存在符合条件的.6.(2019•新课标Ⅰ)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且△12F PF 的面积等于16,求b 的值和a 的取值范围.【分析】(1)根据2POF ∆为等边三角形,可得在△12F PF 中,1290F PF ∠=︒,在根据直角形和椭圆定义可得;(2)根据三个条件列三个方程,解方程组可得4b =,根据22222()a x c b c=-,所以22c b ,从而2222232a b c b =+=,故42a ,【解答】解:(1)连接1PF,由2POF ∆为等边三角形可知在△12F PF 中, 1290F PF ∠=︒,2||PF c =,1||PF =,于是122||||1)a PF PF c =+=,故曲线C 的离心率1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在当且仅当:1||2162y c =,1y y x c x c=-+-,22221x y a b +=, 即||16c y =,①222x y c +=,②22221x y a b +=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c =,故4b =, 由②③得22222()a x c b c =-,所以22c b ,从而2222232a b c b =+=,故42a , 当4b =,42a 时,存在满足条件的点P .所以4b =,a 的取值范围为)+∞.7.(2019•辽宁三模)已知椭圆2222:1(0)x y C a b a b+=>>,焦距为. (1)求C 的方程;(2)若斜率为12-的直线与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点,证明:直线OP ,PQ ,OQ 的斜率依次成等比数列.【分析】(1)由已知得关于a ,c 的方程组,求解可得a ,c 的值,再由隐含条件求得b ,则椭圆方程可求;(2)设直线l 的方程为12y x m =-+,1(P x ,1)y ,2(Q x ,2)y ,联立直线方程与椭圆方程,利用根与系数的关系及斜率乘积证得2OP OQ PQ k k k =即可.【解答】(1)解:由题意,2c a c ⎧=⎪⎨⎪=⎩,解得2a c =⎧⎪⎨=⎪⎩ 又2221b a c =-=,∴椭圆方程为2214x y +=; (2)证明:设直线l 的方程为12y x m =-+,1(P x ,1)y ,2(Q x ,2)y , 由221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y ,得22244(1)0x mx m -+-=. 则△2221632(1)16(2)0m m m =--=->,且122x x m +=,2122(1)x x m =-.故2121212121111()()()2242y y x m x m x x m x x m =-+-+=-++. ∴21212212121211()1424OP OQ PQ x x m x x m y y k k k x x x x -++====. 即直线OP,PQ ,OQ 的斜率依次成等比数列.8.(2019•全国I 卷模拟)已知椭圆2222:1(0)x y C a b a b+=>>,左右顶点分别为A ,B ,Q 为椭圆C 上一点,QAB ∆面积的最大值为(1)求椭圆C 的方程;(2)当点Q 不为椭圆C 的顶点时,设直线AQ 与y 轴交于点P ,过原点O 作直线AQ 的平行线OM 且与椭圆C 交于点M ,问是否存在常数λ使得2||||||AP AQ OM λ=成立?若存在,求出常数λ;若不存在,说明理由.【分析】(1)运用椭圆的离心率公式和a ,b ,c 的关系,以及椭圆上点到x 轴距离的最大值,计算即可得到a ,b 的值,进而得到椭圆方程;(2)设直线:(2)AQ yk x =+,直线:OM y kx =,联立椭圆方程,利用韦达定理、弦长公式,由此求出存在常数λ使得2||||||AP AQ OM λ=成立.【解答】解:(1)由题意得,c e a ==,222a b c-=, 当Q 为椭圆的上顶点时,AQB ∆的面积取得最大值 且为12222b a = 解得,2a =,b =,c =所以椭圆方程为:22142x y +=⋯ (2)依题意可得直线AQ 的斜率存在,设直线:(2)AQ y k x =+,则(0,2)P k联立22(2)24y k x x y =+⎧⎨+=⎩,并整理得:2222(12)8840k x k x k +++-=. △222644(21)(84)160k k k =-⨯+⨯-=>,则2284221Q k x k --=+,222421Q k x k -∴=+,||(2)|Q AQ x =--=||AP =228(1)||||12k AQ AP k +=⋯+直线AQ 的平行线OM ,直线:OM y kx =; 联立2224y kxx y =⎧⎨+=⎩消去y 得:22(12)40k x +-=; 222222244(1)||(1)(1)1212M k OM K x k k k +=+=+=⋯++∴22228(1)4(1)1212k k k k λ++=++,2λ∴=. 故存在常数2λ=,使得2||||||AP AQ OM λ=成立。
椭圆问题的类型与解法椭圆问题是近几年高考的热点内容之一。
可以这样毫不夸张地说,高考试卷中,每卷必有椭圆问题。
从题型上看,可能是选择题或填空题,也可能是大题,难度为中档或高档。
纵观近几年高考试卷,归结起来椭圆问题主要包括:①求椭圆的标准方程;②椭圆定义与几何性质的运用;③求椭圆离心率的值或取值范围;④与椭圆相关的最值问题;⑤直线与椭圆位置关系问题等几种类型。
各种类型问题结构上具有一定的特征,解答方法也有一定的规律可寻。
那么在实际解答椭圆问题时到底应该如何抓住问题的结构特征,快捷,准确的解答问题呢?下面通过典型例题的详细解析来回答这个问题。
【典例1】解答下列问题: D 1、如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 相交于点P ,则点P的轨迹是( )A 椭圆B 双曲线C 抛物线D 圆【解析】【知识点】①椭圆的定义与性质;②圆的定义与性质;③求点的轨迹方程的基本方法。
【解题思路】设点P (x ,y ),运用椭圆的定义与性质,结合问题条件可知点P 的轨迹是一个椭圆,从而得出选项。
【详细解答】设点P (x ,y ),纸片折叠后M 与F 重合,折痕为CD ,CD 与OM 相交于点P ,∴|PM|=|PF|,⇒|PF|+|PO|=|PM|+|PO|=|OM|是圆O 的半径为一个定值,∴点P 的轨迹是以2c=|OF|,2a=|OM|的椭圆,⇒A 正确,∴选A 。
2、根据下列条件求椭圆的标准方程:(1)焦点在x 轴上,且过点(2,0)和点(0,1); (2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近一个焦点的距离等于2; (3)已知P 点在以坐标轴为对称轴的椭圆上,点P 过P 作长轴的垂线恰好过椭圆的一个焦点;(4)已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程。
椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围.【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++Λ=【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21 D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为(A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53B .23C .22D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A B .12 C D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 23O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列.(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”.一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+b y a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。
椭圆 大题习题及答案解析1已知椭圆()2222:10x y C a b a b +=>>过点()2,0A,且离心率为2.(I)求椭圆C 的方程;(Ⅱ)设直线y kx =+与椭圆C 交于,M N 两点.若直线3x =上存在点P ,使得四边形PAMN 是平行四边形,求k 的值. (((由题意得 2a =(2c e a ==( 所以c = 因为 222a b c =+( 所以 1b =所以 椭圆C 的方程为 2214x y +=((((若四边形PAMN 是平行四边形,则 //PA MN ,且 PA MN =. 所以 直线PA 的方程为()2y k x =-,所以 ()3,P k,PA =(设()11,M x y ,()22,N x y (由2244,y kx x y ⎧=+⎪⎨+=⎪⎩ 得()224180k x +++=, 由0∆>,得 212k >(且12241x x k +=-+,122841x x k =+( 所以MN ==因为 PA MN =, 所以=整理得 421656330k k -+=, 解得k =±,或 k =±经检验均符合0∆>,但2k =-时不满足PAMN 是平行四边形,舍去(所以 k =k =± 2已知椭圆()2222:10x y C a b a b =>>+的左、右焦点分别为12,F F ,124F F =,过2F的直线l 与椭圆C 交于,P Q 两点,1PQF ∆的周长为(1)求椭圆C 的方程;(2)如图,点A ,1F 分别是椭圆C 的左顶点、左焦点,直线m 与椭圆C 交于不同的两点M 、N (M 、N 都在x 轴上方).且11AF M OF N ∠=∠.证明:直线m 过定点,并求出该定点的坐标.】(1)设椭圆C 的焦距为2c ,由题意,知1224F F c ==,可知2c =,由椭圆的定义知,1PQF ∆的周长为4a =,∴a =24b =∴椭圆C 的方程为22184x y += (2)由题意知,直线的斜率存在且不为0.设直线:l y kx m =+ 设()()1122,,,M x y N x y ,把直线l 代入椭圆方程,整理可得()222124280k x kmx m +++-=,()228840k m ∆=-+>,即22840k m -+>∴122412km x x k +=-+,21222812m x x k -=+,∵111212,22F M F N y y k k x x ==++, ∵M 、N 都x 轴上方.且11AF M OF N ∠=∠,∴11F M F N k k =-,∴121222y y x x =-++,即()()122122y x y x +=-+,代入1122,y kx m y kx m =+=+ 整理可得()()12122240kx x k m x x m ++++=,2121222284,1212m kmx x x x k k -=+=-++ 即222241684840km k k m km k m m ---++=,整理可得4m k =, ∴直线l ()44y kx m kx k k x =+=+=+,∴直线l 过定点()4,0-3已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点P 、Q 、R分别是椭圆C 的上、右、左顶点,且3PQ PR ⋅=-,点S 是2PF 的中点,且1OS =. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点()1,0T -的直线与椭圆C 相交于点M 、N ,若QMN △的面积是125,求直线MN 的方程.解:(Ⅰ)由题意知(),PQ a b =-,(),PR a b =--,∴223PQ PR a b ⋅=-+=-, ∵点S 是2PF 的中点,且1OS =,∴211122OS PF a ===,∴2a =,1b =, 故所求椭圆方程为2214x y +=.(Ⅱ)设()11,M x y ,()22,N x y ,直线MN :1x ty =-,联立方程组22114x ty x y =-⎧⎪⎨+=⎪⎩,得()224230t y ty +--=, ∴12224t y y t +=+,12234y y t=-+,12y y -==24t =+,∴1211123225QMNS TQ y y =⋅⋅-=⨯=△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.(解法2:求出弦长12N M y =-=点Q 到直线MN 的距离d =11225QMNS MN d ===△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.4如图,椭圆E :22221(0)x y a b a b+=>>内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为12-,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为12-,其中O 为坐标原点.若M 为线段PQ 的中点,则22MO MQ +是否为定值?如果是,求出该定值;如果不是,说明理由. 【小问1详解】由题意,1c =,则()()()(),,,,,,,A a b B a b C a b D a b ----,所以22AC b bk a a==,22BDb b k a a ==--,所以B AC D k k ⋅=2212b a -=-,解得:a =1=,(椭圆的标准方程为2212x y +=.【小问2详解】(方法一)设()11,P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭. 设直线PQ :y kx t =+,由2212y kx tx y =+⎧⎪⎨+=⎪⎩,得:()222124220k x ktx t +++-=, 12221224122212kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 由12OP OQ k k ⋅=-,得()()2212121212212220x x y y k x x kt x x t +=++++=,代入化简得:22212t k =+.(22221212121211222222x x y y x x y y x MO M y Q ++++⎛⎫⎛⎫⎛⎫⎛⎫=++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+2222121222x x y y ++=+, 又点P ,Q 在椭圆上,(221112x y +=,222212x y +=,即22221212142x x y y +++=,(()222221212122242222222kt t x x x x x x t t --⎛⎫+=+-=-⋅= ⎪⎝⎭, (2212142x x +=.(2222222212121234242x x y y x x MO MQ ⎛⎫++++=++= ⎪⎝⎭.即2232MO MQ +=为定值. (方法二)由P ,Q 是椭圆C 上的点,可得221122222222x y x y ⎧+=⎨+=⎩, 把12122x x y y =-代入上式,化简22122x y =,得22121y y +=,22122x x +=, ()22221222121322x x y y MO MQ ++==++. 5已知椭圆()2222:10x y C a b a b+=>>的中心是坐标原点O ,左右焦点分别为12,F F ,设P 是椭圆C 上一点,满足2PF x ⊥轴,212PF =,椭圆C的离心率为2(1)求椭圆C 的标准方程;(2)过椭圆C 左焦点1F 且不与x 轴重合的直线l 与椭圆相交于,A B 两点,求2ABF 内切圆半径的最大值.【小问1详解】以2214x y +=.【小问2详解】解:由(1)可知()1F ,222112248ABF CAB AF BF AF BF AF BF a =++=+++==,设直线l为x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩,消去x 得()22410m y +--=,设()11,A x y ,()22,B x y,则1224y y m +=+,12214y y m -=+ 所以1224y y m -===+所以2121212ABF SF F y y =⋅-=,令内切圆的半径为R ,则2182ABF SR =⨯⨯,即24R m =+,令t =,则12t R t==≤=+,当且仅当3t t=,t =,即m =时等号成立,所以当m =R 取得最大值12; 6已知直线220x y 经过椭圆2222:1(0)x y C a b a b+=>>的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线,AS BS 与直线10:3l x =分别交于,M N 两点.(1)求椭圆C 的方程;(2)求线段MN 的长度的最小值;(3)当线段MN 的长度最小时,在椭圆C 上是否存在这样的点T ,使得TSB △的面积为15,若存在,确定点T 的个数,若不存在,说明理由.【小问1详解】220x y ,令0x =得:1y =,令0y =得:2x =-,所以椭圆C 的左顶点为()2,0A -,上顶点为()0,1D ,所以2,1a b ==,故椭圆方程为2214x y +=.【小问2详解】直线AS 的斜率k 显然存在,且k >0,故可设直线AS 的方程为()2y k x =+,从而1016,33k M ⎛⎫ ⎪⎝⎭,由()22214y k x x y ⎧=+⎪⎨+=⎪⎩,联立得:()222214161640k x k x k +++-=,设()11,S x y ,则212164214k x k --=+,解得:2122814k x k -=+,从而12414k y k =+,即222284,1414k k S k k ⎛⎫- ⎪++⎝⎭,又()2,0B ,由()124103y x k x ⎧=--⎪⎪⎨⎪=⎪⎩,解得:13103y kx ⎧=-⎪⎪⎨⎪=⎪⎩,所以101,33N k ⎛⎫- ⎪⎝⎭,故16133k MN k =+,又0k >,所以1618333k MN k =+≥=,当且仅当16133k k =即14k =时等号成立,故线段MN 的长度的最小值为83.【小问3详解】由第二问得:14k =,此时64,55S ⎛⎫ ⎪⎝⎭,故5SB ==, 要使椭圆C 上存在点T ,使得TSB △的面积等于15,只须T 到直线BS的距离等于24S SB =.其中直线SB :4056225y x -=--,即20x y +-=,设平行于AB 的直线为0x y t ++=4=解得:32t =-或52t =-,当32t =-时,302x y +-=,联立椭圆方程2214x y +=得:275304y y --=,由9350∆=+>得:302x y +-=与椭圆方程有两个交点;当52t =-时,502x y +-=,联立椭圆方程2214x y +=得:295504y y -+=,由25450∆=-<,此时直线与椭圆方程无交点,综上:点T 的个数为2.满足题意. 所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭7己知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为,A B ,点31,2⎛⎫ ⎪⎝⎭该椭圆上,且该椭圆的右焦点F 与抛物线24y x =的焦点重合. (1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于,M N 两点,记直线AM 的斜率为k ,直线BN 的斜率为2k ,直线AN 的斜率3k ,求证:_____________.在以下三个结论中选择一个填在横线处进行证明. (直线AM 与BN 的交点在定直线4x =上;(1213k k =; (1314k k =-..解(因为抛物线24y x =的焦点为(1,0).所以椭圆的右焦点用(1,0)又点31,2⎛⎫ ⎪⎝⎭在该椭圆上,所以221914a b += 又22221a b c b =+=+,所以224,3a b ==椭圆C 的标准方程为22143x y +=(2)选(设()()1122,,,M x y N x y 22(1)143y k x x y =-⎧⎪⎨+=⎪⎩ 联立得:()22223484120k x k x k +-+-=法一:直线11(2),(2)y k x y k x =+=+的交点的横坐标为()12212k k x k k +=-()2121212122212112162442233422481234234k x k k x x x x k x k k k x x x k --+-++==⋅=⋅=--+--+所以直线AM 与BN 的交点在定直线4x =上法二:要证直线AM 与BN 的交点在定直线4x =上,即()122124k k k k +=-,即证1213k k =即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭,即证1212221292x x x x -+=+- 即证()12122580x x x x -++=因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭所以直线AM 与BN 的交点在定直线4x =上.选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++ 法一:()()()()()()1212112122121212122122222122y x x x k x x x x k x y x x x x x x -----+===++--+- 222112212222221122412846223434134121834128322343434k k k x x x k k k k k k x x x k k k ⎛⎫-----+ ⎪-++⎝⎭+===-⎛⎫---+-- ⎪+++⎝⎭法二:()()12121222y x k k x y -=+ 所以()()()()()()()()222121212121222121212122222422242y x x x x x x x k k x x x x x x x y ----++⎛⎫=== ⎪++++++⎝⎭22222222224121644134344121636943434k k k k k k k k k k--+++===-++++因为12,k k 也同号,所以1213k k =法三:要证1213k k =,即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭即证1212221292x x x x -+=+-,即证()12122580x x x x -++= 因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭ 所以1213k k =法四:由122(2)143y k x x y =+⎧⎪⎨+=⎪⎩得()2222111341616120k x k x k +++-=得21122116812,3434k k M k k ⎛⎫- ⎪++⎝⎭ 同理22222228612,3434k k N k k ⎛⎫-- ⎪++⎝⎭ 因为,,M N F 为三点共线,所以12221222122212121234346886113434k k k k k k k k -++=----++即()()12214330k k k k +-= 因为12,k k 同号,所以1213k k = 选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++.()()21212121312121212224k x x x x y y k k x x x x x x ⎡⎤-++⎣⎦=⋅=+++++ ()2222222222222222412814128343434141241216121641634434k k k k k k k k k k k k k k k k ⎛⎫--+ ⎪--++++⎝⎭===---+++++++.所以1314k k =-8设椭圆()222210x y a b a b +=>>的离心率为A ,B ,AB 4=.过点(0,1)E ,且斜率为k 的直线l 与x 轴相交于点F ,与椭圆相交于C ,D 两点.(1)求椭圆的方程; (2)若FC DE =,求k 的值;(3)是否存在实数k ,使直线AC 平行于直线BD ?证明你的结论. 【小问1详解】由题意22224b c e a a b c =⎧⎪⎪==⎨⎪-=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩22164x y +=; 【小问2详解】由题意知,0k ≠,直线l 的方程为1y kx =+,则1(,0)F k -,联立221641x y y kx ⎧+=⎪⎨⎪=+⎩,可得()2223690k x kx ++-=,()223636230k k ∆=++>,设1122(,),(,)C x y D x y ,有12122269,2323k x x x x k k --+==++,则CD 中点横坐标为1223223x x kk+-=+, 又,(0,1),1(0)F k E -,则EF 中点横坐标为12k-,又因为FC DE =,且,,,C E F D 四点共线,取EF 中点H ,则FH HE =,所以H F HE C DE F =--,即HC DH =,所以H 是CD 的中点,即,CD EF 的中点重合,即231232k k k -=-+,解得k = 【小问3详解】不存在实数k ,使直线AC 平行于直线BD ,证明如下:由题意,(0,2),(0,2)A B -,则()()1122,2,,2AC x y BD x y =-=+,若AC BD ,则AC BD ∥,所以()()122122x y x y +=-,即()12211220x y x y x x -++=,即()()()1221121120x kx x kx x x +-+++=, 化简得()121220x x x x -++=,213x x =-,由(2)得,12112266,32323k k x x x x k k --+=-=++,解得12323kx k=+, ()12112299,32323x x x x k k --=⋅-=++解得212323x k =+,所以222332323k k k ⎛⎫= ⎪++⎝⎭,整理得22233k k +=,无解,所以不存实数k ,使直线AC 平行于直线BD .9已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过2F 且不与x 轴垂直的动直线l 与椭圆交于,M N 两点,点P 是椭圆C 右准线上一点,连结,PM PN ,当点P 为右准线与x 轴交点时,有2122PF F F =.(1)求椭圆C 的离心率;(2)当点P 的坐标为(2,1)时,求直线PM 与直线PN 的斜率之和. 【详解】解(1)由已知当P 为右准线与x 轴交点时,有2122PF F F =∴222a c c c ⎛⎫-= ⎪⎝⎭∴222c a =∴212e =又(0,1)e ∈,∴2e =. (2)∵(2,1)P ,∴22a c =又222a c =,∴2221a c ⎧=⎨=⎩,∴21b =∴椭圆22:12x C y +=.设直线l :(1)y k x =-,()()1122,,,M x y N x y联立22(1)22y k x x y =-⎧⎨+=⎩,得()2222124220k x k x k +-+-= 则22121222422,1212k k x x x x k k-+==++, ∴()()121212121111112222PM PN k x k x y y k k x x x x ------++=+----=()()1212212122k x k k x k x x --+--+=+--121211112(1)2222k k k k k k x x x x ⎛⎫--=+++=+-+ ⎪----⎝⎭()()121242(1)22x x k k x x ⎛⎫+-=+- ⎪ ⎪--⎝⎭()12121242(1)24x x k k x x x x ⎛⎫+-=+- ⎪ ⎪-++⎝⎭将22121222422,1212k k x x x x k k-+==++代入得 ()12121242(1)2(1)(2)224PM PN x x k k k k k k x x x x ⎛⎫+-+=+-=+-⨯-= ⎪ ⎪-++⎝⎭.∴直线PM 与直线PN 的斜率之和为2.10已知椭圆22143x y +=,动直线l 与椭圆交于B ,C 两点(B 在第一象限). (1)若点B 的坐标为31,2⎛⎫ ⎪⎝⎭,求△OBC 面积的最大值;(2)设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 面积最大时,直线l 的方程. 【小问1详解】 直线OB 的方程为32y x =,即3x -2y =0,设过点C 且平行于OB 的直线l '的方程为32y x b =+, 则当l '与椭圆只有一个公共点时,△OBC 的面积最大.联立221,433,2x y y x b ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并整理,得3x 2+3bx +b 2-3=0,此时Δ=9b 2-12(b 2-3),令Δ=0,解得b =±当b =C ⎛ ⎝⎭;当b =-时,C ⎭,∴ △OBC=. 【小问2详解】显然可知直线l 与y 轴不垂直,设直线l 的方程为x =my +n ,联立221,43,x y x my n ⎧+=⎪⎨⎪=+⎩消去x 并整理,得(3m 2+4)y 2+6mnx +3n 2-12=0, ∴12221226,34312,34nm y y m n y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩∵ 3y 1+y 2=0,∴ 1222123,344,34nm y m n y m ⎧=⎪⎪+⎨-⎪=⎪+⎩ 从而()222222943434n m n m m -=++,即2223431m n m +=+, ∴21212216||6||||2||23431OBCm n m Sn y y n y m m =⋅-=⋅==++. ∵ B 在第一象限,∴ 21123034m nx my n n m =+=+>+,∴ n >0.∵ y 1>0,∴ m >0,∴2661313OBCm Sm m m==≤=++当且仅当31m m =,即m =时取等号),此时2n =,∴ 直线l的方程为x y =+,即20y -=.11椭圆2222:1(0)x y C a b a b+=>>的左右焦点为1F ,2F ,过椭圆右焦点2F 的直线l和椭圆C 相交于E 、F 两点,1EFF △的周长为8,若P 是椭圆上一个动点,且12PF PF ⋅的最大值为3. (1)求椭圆C 的方程;(2)四边形MNAB 的四个顶点均在椭圆C 上,且//MB NA ,MB x ⊥轴,若直线MN 和直线AB 交于点()4,0S ,问:四边形MNAB 的对角线交点D 是否是定点?若是,求出定点坐标;若不是,请说明理由. 【详解】(1)解:1EFF △的周长为48a =∴2a =,令222c a b =-设()00,p x y ,1(,0)F c -,2(,0)F c()()20000,,PF PF c x y c x y ⋅=---⋅--2220x c y =-+2222021b x b c a ⎛⎫=-+- ⎪⎝⎭当220x a =时,()22212max3PF PF a c b ⋅=-==∴21c =,∴23b =∴方程为22143x y += (2)解:设 :AM y kx b =+(k 一定存在) 与椭圆联知:()2223484120kxkbx b +++-=设()11,A x y ,()22,M x y ,()11,N x y -,()22,B x y -,122834kb x x k +=-+,212241234b x x k -=+ ,∵M 、N 、S 共线∴2121044y y x x +=-- 得()12122(4)80kx x b k x x b +-+-=,即()222412824803434b kb k b k b k k--⋅+-⋅-=++, 整理可得0k b +=∴:(1)AM y k x =-过点()1,0Q 下证:BN 也过()1,0Q 212111BQ NQ y y k k x x -=---()()()()()()2112211111011k x x k x x x x ----=--=-∴BN 和AM 相交于()1,0()1,0即为定点D .。
已知椭圆22:143x y E +=,左右焦点分别为()11,0F -,()21,0F ,左、右顶点分别为()2,0A '-,()2,0A,上、下定点为(B,(0,B '.(1)已知动点P 在椭圆E 上,另一动点Q ,满足220QF PF ⋅=,12120PF PF QP PF PF ⎛⎫ ⎪⋅+= ⎪⎝⎭,求动点Q 的轨迹方程.(2)已知动点P 在椭圆E 上,点Q 为12F PF ∆的内心,求动点Q 的轨迹方程. (3)已知动点P 在椭圆E 上,且0PM FM +=,求证:2OM PF +是否为定值. (4)已知动点P 为椭圆E 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:AN BM ⋅为定值.()已知动点()(),0P m n m ≠都在椭圆E 上,和直线BP 交x 轴于点M ,点P '与点P 关于x 轴对称,直线BP '交x 轴于点N 问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.(5)已知动点P 在椭圆E 上,两定点31,2M ⎛⎫- ⎪⎝⎭,31,2N ⎛⎫- ⎪⎝⎭,求MPN ∆的面积的最大值.(6)已知动点P 在椭圆E 上,两定点31,2M ⎛⎫- ⎪⎝⎭,31,2N ⎛⎫- ⎪⎝⎭,直线MP 和NP 分别与直线3x =交于点C ,D ,问:是否存在点P 使得PMN ∆与PCD ∆的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.(7)已知动点P 在椭圆E 上,点Q 在直线y=OP OQ ⊥,求线段PQ 长度的最小值.(8)已知动点P 在椭圆E 上,点Q 在直线y =OP OQ ⊥,试判断直线PQ 与圆223x y +=的位置关系,并证明你的结论.(9)已知动点P 在椭圆E 上,直线:4l x =与x 轴交于点N ,PM l ⊥于点M (点M ,N 不重合),试问:在x 轴上是否存在定点T ,使得PTN ∠的角平分线过PM 中点?如果存在,求定点T 的坐标;如果不存在,说明理由.(10)已知动点M ,N 是椭圆E 上位于x 轴上方的两点,且直线1MF 与直线2NF 平行,2MF 与1NF 交于点P .求证:12PF PF +是定值.(11)已知动点P 在椭圆E 上(异于A ',A ),证明:PA PA k k '⋅为定值.(12)已知动点P 在椭圆E 上,过原点的直线l 交椭圆E 于M ,N 两点,证明:PM PN k k ⋅为定值.(13)已知动点P 在椭圆E 上,在点P 的切线l 斜率为k ,证明:OP k k ⋅为定值. (14)已知动点P 在椭圆E 上,在点P 的切线l 斜率为k ,证明:1211PF PF k k k k +⋅⋅为定值. (15)已知动点P 在椭圆E 上,在点P 的切线为l ,证明:两焦点()11,0F -,()21,0F 到切线l 的距离积为定值.(16)过点1F 的光线l 在椭圆E 上一点P 处反射,求证:反射光线必过右焦点2F . (17)已知,N M 是椭圆E 上的两个动点,若12//NF MF ,求直线2MF 与1NF 交点的轨迹方程. (18)已知,N M是过点(P 的直线l 与椭圆E 的交点,求MN 中点的轨迹方程. (19)已知,N M 是椭圆E 上的两个动点,且,M N 的中点为P ,证明:MN OP k k ⋅为定值.(??)点M为直线y x =与该椭圆在第一象限内的交点,平行于OM 的直线l 交椭圆于,Q P 两点.求证:直线MP ,MQ 与x 轴始终围成一个等腰三角形.(20)已知,N M 是椭圆E 上的两个动点,且MN 的垂直平分线交x 轴于点(),0P t ,求t 得取值范围.(21)已知,N M 是椭圆E 上的两个动点,定点31,2P ⎛⎫⎪⎝⎭满足直线PM 与PN 垂直,证明:直线MN 过定点.(22)已知,N M 是椭圆E 上的两个动点,定点31,2P ⎛⎫⎪⎝⎭满足直线PM 与PN 的倾斜角互补,证明:直线MN 的斜率为定值.(23)已知,N M 是斜率为12的直线l 与椭圆E 的两个交点,点31,2P ⎛⎫⎪⎝⎭在直线l 左上方,证明:PMN △的内切圆的圆心在一条定直线上.(24)过原点O 的两条互相垂直的射线与椭圆E 分别交于M ,N 两点,证明:点O 到直线MN 的距离为定值,并求出这个定值.(25)过原点O 的两条互相垂直的射线与椭圆E 分别交于M ,N 两点,证明:点O 在直线MN 的射影P 的轨迹是圆.(26)过动点()00,P x y 与圆22:1O x y +=相切的直线l 交椭圆E 于M ,N 两点,证明:MON ∠为定值.(27)过点1F 的直线l 交椭圆E 于M ,N 两点,是否存在点P 使得PM PN ⋅为定值.(28)过定点(),0Q t 的直线l 交椭圆E 于M ,N 两点,在x 轴上是否存在点P ,使得PM PN ⋅为定值.(29)过点1F 的直线l 交椭圆E 于M ,N 两点,是否存在实常数λ,使11MN F M F N λ=⋅恒成立?并由此求MN 的最小值.(30)过点1F 的直线l 交椭圆E 于M ,N 两点,MN 的中垂线交x 轴于点D ,是否存在实常数λ,使1MN F D λ=恒成立?()设直线l 与椭圆E 交于,M N 两点,且以MN 为直径的圆过椭圆的右顶点A ,求A M N ∆面积的最大值.(31)过点1F 的直线1l 交椭圆E 于M ,N 两点,直线2:4l x =-交x 轴于点G ,点M ,N 在直线2l 上的投影分别是P ,Q ,设直线MP ,NQ 的交点为D ,是否存在实常数λ,使1GD DF λ=恒成立?并由此求得最小值.(32)过点1F 的直线l 交椭圆E 于M ,N 两点,动点P 满足PM MA λ=,PA A N μ''=,试探究点P 的轨迹.(33)过点1F 的直线1l ,2l 分别交椭圆E 于M ,N 两点和C ,D 两点,直线l 分别过MN 和CD 的中点,证明:直线l 过定点.(34)过点1F 的直线1l ,2l 分别交椭圆E 于M ,N 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使MN CD MN CD λ+=⋅恒成立?并由此求四边形MCND 面积的最小值和最大值.(35)过点1F 的直线1l ,2l 分别交椭圆E 于M ,N 两点和C ,D 两点,直线3:4l x =-,直线MD 交直线3l 于点P ,证明:P ,C ,N 三点共线.(36)过点1F 的直线1l ,2l 分别交椭圆E 于M ,N 两点和C ,D 两点,直线3:4l x =-,直线MD 交直线3l 于点P ,证明11PF M PF D ∠=∠.(37)过点1F 的直线1l ,2l 分别交椭圆E 于M ,N 两点和C ,D 两点,直线MD 交直线CN 于点P ,证明:点P 的轨迹为直线4x =-.(38)过点1F 的直线1l ,2l 分别交椭圆E 于M ,N 两点和C ,D 两点,设直线3l 过点1F 且3l x ⊥轴,交1l ,2l 于点P ,Q ,证明:11F P FQ =.(39)过点1F 的直线l 交椭圆E 于M ,N 两点,直线l 与轴交于点P ,1PM MF λ=,1PN NF μ=,证明:λμ+为定值.(40)过点1F 的直线1l ,2l 分别交椭圆E 于()11,M x y ,()22,N x y 两点和()33,C x y ,()44,D x y 两点,设直线3l 过点1F 且3l x ⊥轴,交1l ,2l 于点P ,Q ,试证明:1324y y y y -=-. (41)过点1F ,2F 的弦分别与椭圆E 为PS ,PT ,设11PF F S λ=,22PF F T μ=,证明:λμ+为定值.(42)过点1F 的动直线交椭圆E 于M ,N 两点,P 为椭圆E 任意一点,且OP OM ON λμ=+,证明:22λμ+为定值.(43)过点1F 的动直线交椭圆E 于M ,N 两点,点P 满足OP OM ON λμ=+,且221λμ+=,证明:P 在椭圆E 上.(44)过原点(0,0)O ,点(P 的直线l 交椭圆E 于点N ,过点P 做椭圆E 的两条切线,分别切于点C 和D ,直线OP 与交CD 于点Q ,求证:2OT OP ON ⋅=.(45)过原点(0,0)O ,点(1,Q 的直线l 交椭圆E 于点N ,过点Q 的中点弦为CD ,过C ,D 分别作切线1l ,2l 且交于点P ,求证:2OT OP ON ⋅=.(46)过点(P 的任意直线l 交椭圆E 于点M ,N ,过点P 做椭圆E 的两条切线,分别切于点C 和D ,直线l 与交CD 于点Q ,求证:112PM PN PQ+=.(47)过点(P 的直线l 交椭圆E 于点M ,N ,过点P 做椭圆E 的两条切线,分别切于点C 和D ,点Q 在直线l ,且满足PN QM PM NQ ⋅=⋅,求点Q 的轨迹方程.(48)过点(1,Q 的直线l 交椭圆E 于点M ,N ,点P 在直线l ,且PN QM PM NQ ⋅=⋅,求点P 的轨迹方程.(49)过原点(0,0)O ,点(P 的直线l 交椭圆E 于点M ,N ,过点P 做椭圆E 的两条切线,分别切于点C 和D .求证:M ,N 处的切线与CD 平行.(50)过点1F 的直线1l 分别交椭圆E 于M ,N 两点,问是否在x 轴上存在一点P ,使得斜率0PM PN k k +=.(51)过定点(),0Q t 的直线1l 交椭圆E 于M ,N 两点,问是否在x 轴上存在一点P ,使得斜率0PM PN k k +=.(52)过点1F 的直线1l 交椭圆E 于M ,N 两点,点M 关于x 轴的对称点M ',证明:点M ',N ,()4,0P -三点共线.(53)过定点(),0Q t 的直线1l 分别交椭圆E 于M ,N 两点,点M 关于x 轴的对称点M ',证明:点M ',N ,4,0P t ⎛⎫⎪⎝⎭三点共线.(54)过点1F 的直线1l 交椭圆E 于()11,M x y ,()22,N x y 两点,点M 关于x 轴的对称点M ',直线NM '与x 轴交于点P ,证明:1OF OP ⋅为定值.(55)过点(),0Q t 的直线1l 分别交椭圆E 于M ,N 两点,点M 关于x 轴的对称点M ',直线NM '与x 轴交于点P ,证明:OQ OP ⋅为定值.(56)过点P 作椭圆E 的两条切线1l ,2l ,且12l l ⊥,求P 的轨迹方程.(57)动点P 在直线240x y ++=上,由P 引椭圆E 的两条切线,分别切于点C 和D .证明:直线CD 过定点.(58)过点(P 作椭圆E 的两条切线,分别切于点C 和D .求证:12CPF DPF ∠=∠.(59)过点(P 作椭圆E 的两条切线,分别切于点C 和D .求证:22CF P DF P ∠=∠ (60)过动点()0,0P x 作x 轴的垂线交椭圆E 于M ,N 两点,求直线A N '与AM 交点的轨迹方程.(61)过动点()0,0P x 作x 轴的垂线交椭圆E 于M ,N 两点,直线:4l x =与x 轴交于点P ,直线MF 与直线NP 交于点Q ,求证:点Q 恒在椭圆上.(62)过点()4,0P 直线交椭圆E 于M ,N 两点,设()1PM PN λλ=>,过点M 作x 轴垂线与椭圆E 交于另一点Q ,证明:22F Q F N λ=-.(63)过点2F 的直线1l 交椭圆E 异于点31,2P ⎛⎫⎪⎝⎭的M ,N 两点,且与直线2:4l x =交于点Q ,求证:2PM PN PQ k k k +=.(64)过点1F 的直线1l 交椭圆E 于()11,M x y ,()22,N x y 两点,()04,y P -为直线:4l x =-上任意一点,证明:12PM PN PF k k k +=.(65)过点(),0Q t 的直线1l 交椭圆E 于()11,M x y ,()22,N x y 两点,04,y P t ⎛⎫⎪⎝⎭为直线4:l x t =上任意一点,证明:12PM PN PF k k k +=.(66)过点()2,1P 的直线l 交椭圆E 于()11,M x y ,()22,N x y 两点,过点N 作斜率为12-的直线交椭圆E 与另一点Q ,求证:直线MQ 过定点.(67)椭圆E 内两条相交弦MN ,PQ ,若MN ,PQ 倾斜角互补,证明:M ,P ,N ,Q 四个端点共圆.(68)过点()0,2A -的直线l 与椭圆E 相交于M ,N 两点,当OMN △的面积最大时,求l 的方程.(69)不过原点O 的直线l 与椭圆E 相交于M ,N 两点,过原点O 和点()2,1P 的直线1l 垂直平分线段MN ,当PMN △的面积最大时,求l 的方程.(70)直线l 与椭圆E 相交于()11,M x y ,()22,N x y 两点,已知()112m x = ,()222,3n x = ,若m n ⊥ ,证明:MON ∆的面积为定值.(71)点P 为直线4x =上不同于点()4,0的任意一点,若直线PA ',PA 分别与椭圆E 交于M ,N 两点.证明:点A 在以MN 为直径的圆内.(72)直线:l y kx m =+交椭圆E 于M ,N 两点(M ,N 不是左、右顶点),且以MN 为直径的圆过椭圆的右顶点.求证:直线l 过定点.(73)过椭圆外一点()00,P x y 的直线PA ',PA 分别与椭圆E 交于M ,N 两点,直线MN 与x 轴交于点Q ,证明:OP OQ ⋅为定值.(74)过椭圆E 上异于顶点的任意一点()00,P x y 的直线PA ',PA 分别与y 轴交于M ,N 两点,证明:OM ON ⋅为定值.(75)过点(B 的直线l 与椭圆E 交于另一点D ,并与x 轴交于点P ,直线BA 与直线B D ' 交于点Q .当点P 异于点B '时,求证:OP OQ ⋅为定值.(76)过点()(),002Q t t <<的直线1l 交椭圆E 于M ,N 两点,过M ,N 向直线4:l x t=作垂线,垂足分别为1M ,1N ,记1QMM ∆,11QM N ∆,1QNN ∆的面积分别为1S ,2S ,3S ,是否存在λ,使得对任意的02t <<,都有2213S S S λ=成立.若存在,求出λ的值;若不存在,说明理由.(77)过点()(),002Q t t <<的直线1l 交椭圆E 于M ,N 两点,交定直线4x t=于P 点,设1PM MQ λ=,2PN NQ λ=,证明:12λλ+为定值.(78)过椭圆的右焦点F 作两条互相垂直的直线,分别交椭圆于,A C 和,B D ,设线段,AC BD 的中点分别为,P Q ,求证:直线PQ 恒过一个定点由已知可得:()1,0F当直线AC 斜率不存在时,:1AC x =,:0BD y =, 所以()1,0P ,()0,0Q ,PQ ∴为x 轴;当AC 斜率存在时,设():1,0AC y k x k =-≠,则()1:1BD y x k=--, 设()()1122,,,A x y C x y ,联立方程可得:()()222222143841203412y k x k x k x k x y ⎧=-⎪⇒+-+-=⎨+=⎪⎩, 2122843k x x k ∴+=+ ()()()1212122611243ky y k x k x k x x k k ∴+=-+-=+-=-+ 212122243,,224343x x y y kk P k k ⎛⎫++-⎛⎫∴= ⎪ ⎪++⎝⎭⎝⎭同理,联立()22113412y x kx y ⎧=--⎪⎨⎪+=⎩,可得: 22222114343,,3443114343k k k Q k k k k ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎛⎫⎝⎭⎝⎭ ⎪∴= ⎪ ⎪++⎝⎭⎛⎫⎛⎫-+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()222222337434344414334PQk kk k k k k k k k --++∴==--++, PQ ∴的方程为:()222374434341k k y x k k k ⎛⎫-=-- ⎪++-⎝⎭,整理可得: ()()()224744044740yk x k y y k k x +--=⇒-+-=,470x y ⎧=⎪∴⎨⎪=⎩时,直线方程对k R ∀∈均成立,∴直线PQ 恒过定点4,07⎛⎫ ⎪⎝⎭,而AC 斜率不存在时,直线PQ 也过4,07⎛⎫ ⎪⎝⎭,∴直线PQ 过定点4,07⎛⎫⎪⎝⎭。
一题多问系列——椭圆
例:如图,长为12
的矩形ABCD , 以A 、B 为焦点的椭圆M :22
221x y a b
+=恰好过CD 两点 (1)求椭圆M 的标准方程
(2)若直线1l :2y kx =+与椭圆M 有两个不同的交点,
求k 的取值范围
(3)若点00(,)P x y 为椭圆M 上异于顶点的动点,求证:直线2l :
00141x x y y +=与椭圆只有一个公共点
(4)求ACB ∠的角平分线所在的直线方程
(5)若直线1l :2y kx =+被椭圆M 截得的弦长为
5,求k 的值 (6)若直线3l 被椭圆M 截得的弦恰以点(1,12
)为中点,求直线3l 的直线方程 (7)若直线1l :2y kx =+与椭圆M 相交于P 、Q 两点,则是否存在k,使得以PQ 为直径的圆恰好经过原点,若存在请求出k 的值,若不存在请说明理由
(8)若直线1l :2y kx =+与椭圆M 相交于P 、Q 两点,若原点在以PQ 为直径的圆的内部,求k 的取值范围
(9)若点00(,)P x y 为椭圆M 上的动点,求PA PB ∙的最值
(10)若点00(,)P x y 为椭圆M 上的动点,求点P 到直线40x y --=距离的最小值,并求此时的P 点的坐标
(11)若直线1l :2y kx =+与椭圆M 相交于P 、Q 两点,求POQ S ∆的最值
(12)记12,B B 分别是椭圆M 与y 轴相交的下上顶点,若直线4l 交椭圆M 于PQ 两点,问是否存在直线4l 使得B 为2PQB ∆的垂心。
若存在请求出直线4l 的方程,若不存在请说明理由
(13)记12,A A 分别是曲线M 与x 轴相交的左、右顶点,若P 是曲线M 上的动点,判断12k k A P A P ∙是否为定值,并说明理由。
(14)若一条直线5l 与椭圆M 交于PQ 两点,若以PQ 为直径的圆过点2A (2,0),求证:
直线5l 恒过定点,并求出该定点的坐标。
(15)直线5l 与椭圆M 交于PQ 两点,若PQ 的中点为M,求证:PQ OM k k ∙为定值
(16)已知M 是直线1x =-上的动点且直线5l 与椭圆相交于PQ 两点恰以M 为中点,过M 点作直线5l 垂线6l ,求证直线6l 恒过定点
(17)若点00(,)P x y 为椭圆M 上的动点,R 为定点(0,4),过P 点作垂线垂直于直线x =
垂足为H ,求PR 的最小值 【意图】主要考查椭圆的方程,性质及与直线的关系,问题包括定点,定值,最值等,主要渗透方程思想,化归思想及函数思想。