高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附答案解析
- 格式:doc
- 大小:1.02 MB
- 文档页数:19
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案
一、法拉第电磁感应定律
1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求:
(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;
(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】
(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动,
a =
sin mg m
θ
=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:
一、法拉第电磁感应定律
1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:
(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .
【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】
(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:
10.02N F BIL ==
可得:
10.02A 0.2A 1.00.1
F I BL =
==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:
Q W =安310.020.1J 2.010J F L -==⨯=⨯
(2) 金属框拉出的过程中产生的热量:
2Q I Rt
=
线框的电阻:
3
22
2.010Ω 1.0Ω0.20.05
Q R I t -⨯===⨯
2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。线圈的半径为r 1。在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。导线的电阻不计,求0至t1时间内
(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)
2
02
0 3
n B r
Rt
π
电流由b向a通过R1(2)
高考物理法拉第电磁感应定律-经典压轴题含答案解析
一、法拉第电磁感应定律
1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.
(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;
(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .
(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.
【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】
(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;
(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义
高考物理法拉第电磁感应定律-经典压轴题附详细答案
一、法拉第电磁感应定律
1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求:
(1)线圈中的感应电流的大小和方向;
(2)电阻R两端电压及消耗的功率;
(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】
【详解】
(1)0﹣4s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:
由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:
消耗的功率为:
4﹣6s内,R两端的电压为:
消耗的功率为:
故R消耗的总功率为:
(3)前4s内通过R的电荷量为:
2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:
一、法拉第电磁感应定律
1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求:
(1)匀强电场的电场强度 (2)流过电阻R 的电流
(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd
qR
(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:
qE =mg
解得
mg q
E =
(2)由电场强度与电势差的关系得:
U
E d
=
由欧姆定律得:
U I R
=
解得
mgd
I qR
=
(3)根据法拉第电磁感应定律得到:
E N
t
∆Φ
=∆ B
S t t
∆Φ∆=∆∆
根据闭合回路的欧姆定律得到:()E I R r =+ 解得:
()
B mgd R r t NqRS
∆+=∆
2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
高中物理法拉第电磁感应定律压轴题知识点及练习题及答案
一、高中物理解题方法:法拉第电磁感应定律
1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.
()1求0t =时棒所受到的安培力0F ;
()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;
()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .
【答案】(1)0
0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】
【详解】
解:()1由图b 知:0.20.1T /s 2
B t == 0t =时棒的速度为零,故回路中只有感生感应势为:
法拉第电磁感应定律习题知识点及练习题含答案解析
一、高中物理解题方法:法拉第电磁感应定律
1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.
(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?
(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
10.44V=1.6 V
E BLv
==⨯⨯
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
U eb=3
4
E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
高考物理备考之法拉第电磁感应定律压轴突破训练∶培优 易错 难题篇及答案
一、法拉第电磁感应定律
1.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
(1)求金属棒达到稳定时的速度是多大;
(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?
(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46
【解析】 【详解】
(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有
sin A mg F θ=
其中
,A E
F BIL I R r
==
+ 根据法拉第电磁感应定律,有E BLv = 联立解得:
m 1.6s
v =
(2) 根据能量关系有
2
1·sin 2
mgs mv Q θ=
+ 电阻R 上产生的热量
R R
Q Q R r
=
+ 解得:
0.0183J R Q =
高中物理电磁感应现象压轴题提高题专题含答案
一、高中物理解题方法:电磁感应现象的两类情况
1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:
(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】
(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件
sin mg BId θ=①
导体棒切割磁感线产生的电动势为
E =Bdv ②
由闭合电路欧姆定律得
E
I R r
=
+③ 联立①②③得
v =20m/s ④
由欧姆定律得
U =IR ⑤
联立①⑤得
U =7V ⑥
(2)由电流定义式得
Q It =⑦
由法拉第电磁感应定律得
E t
∆Φ
=
∆⑧
B ld ∆Φ=⋅⑨
由欧姆定律得
E
I R r
=
+⑩ 由⑦⑧⑨⑩得
Q =0.02C ⑪
2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:
一、法拉第电磁感应定律
1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.
(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?
(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
10.44V=1.6 V
E BLv
==⨯⨯
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
U eb=3
4
E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
一、法拉第电磁感应定律
l. 如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为£=0.1
m, 磁场间距为21, —正方形金属线框质量为m = 0.1kg,边长也为[,总电阻为R=0.Q2 Q. 现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时be边始终与磁场边界平行.当h = 2L时,be边进入磁场时金属线框刚好能做匀速运动.不计空气
阻力,重力加速度g取10 m/s2.
txxxxxxx
X..X..X..X n
(1)求磁感应强度B的人小;
(2)若h>2L,磁场不变,金属线框be边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度力;
(3)求在(2)情形中,金属线框经过前门个磁场区域过程中线框中产生的总焦耳热.
【答案】(1)1T (2) 0.3 m (3) 0.3nJ
【解析】
【详解】
(1) 当h=2L时,be进入磁场时线框的速度
v =(2gh = = 2m/ s
此时金属框刚好做匀速运动,则有:
mg=BIL
又
r E BLv
I =—= -----
R R
联立解得
叫浮
代入数据得:
3 = 1T
(2)当h>2L时,be边第一次进入磁场时金属线框的速度
即有
mg < BI Q L
又已知金属框be边每次出磁场时都刚好做匀速运动,经过的位移为L,设此时线框的速度为则有
V2 = v2 + 2gL
解得:
v z = 5/6111 / S
根据题意可知,为保证金属框be边每次出磁场时都刚好做匀速运动,则应有
v' = v =』2gh
即有
力=0.3m
(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Qo,则根据能量守恒有:
高考物理法拉第电磁感应定律-经典压轴题含详细答案
一、法拉第电磁感应定律
1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;
(2)金属杆速度为2.0m/s 时的加速度大小;
(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.
【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】
(1)由题图知,杆运动的最大速度为4/m v m s =,
有22sin sin m
B L v F mg F mg R
αα=+=+
安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安
得222222
212sin 182100.5
2/2/2
B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:2
11sin 2
Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】