信号与系统期末试卷-含答案全
- 格式:doc
- 大小:288.00 KB
- 文档页数:10
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统期末考试题库及答案信号与系统期末考试题库及答案信号与系统期末考试题库及答案1.下列信号的分类⽅法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和⾮周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )⼀定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、⼀般周期信号为功率信号。
B 、时限信号(仅在有限时间区间不为零的⾮周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0)B 、f (k–k 0)C 、f (at )D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at )B 、f (t –k 0)C 、f (t –t 0)D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t t- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、?∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =?+∞∞-δC 、)(d )(t tεττδ=?∞- D 、?∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
《 信号与系统 》考试试卷(时间120分钟)院/系 专业 姓名 学号一、填空题(每小题2分,共20分)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?)2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常 数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (Fωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
《信号与系统》考核试卷
专业班级:电子、通信工程考核方式:闭卷考试时量:120 分钟试卷类型: A
第2页共 8 页第1页共 8 页
图:
域模型图:
)的表达式:
第3页共 8 页第4页共 8 页
(a)
(b) (c) (d)
A 、
B 、
C 、
D 、
Y(w):
5、已知离散系统的差分方程为)(2)2(2)1(3)(n f n y n y n y =-+-+,求该
系统的系统函数)(z H 、单位响应)(n h 以及当激励信号)(2)(n n f n ε=时,
系统的零状态响应)(n y 。
(13分)
利用z 变换的移位特性,将差分方程变换为零状态下的z 域方程:
)(2)(2)(3)(21z F z Y z z Y z z Y =++--
2
322312)()()
(2221++=
++==--z z z z z z F z Y z H
2
412232)(22+++-=++=z z
z z z z z z H )(])2(4)1(2{)(n n h n n ε+--=∴
当激励信号)(2)(n n f n ε=时,2
)(-=
z z
z F 22)()()(3
2==z z z z H z F z Y 2
2
-
z
z 第5页 共 8 页
④由于该系统函数的所有极点均在
所以该系统是稳定系统。
第7页共页第8页共页第9页共页第10页共页
第7页共 8 页第8页共 8 页。
长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。
)('4)(2)("t t t f δε+ 2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。
}4,6,8,3,4,10,3{)()(-=*k h k f 3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。
0)(t j Ke j H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。
m T ωπωπ4max max ==5. 信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。
101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统______。
故系统为线性时变系统。
7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。
故傅立叶变换)(ωj F 不存在。
8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。
故系统不稳定。
9. =+-+⎰∞∞-dt t t t )1()2(2δ______。
310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。
关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系 统的零状态响应)(t y ,画出)(t y 的波形。
信号与系统》期末试卷与答案信号与系统》期末试卷A卷班级:__________ 学号:_________ 姓名:_________ 成绩:_________一.选择题(共10题,20分)1、序列x[n] = e^(j(2πn/3)) + e^(j(4πn/3)),该序列的周期是:A。
非周期序列B。
周期 N = 3C。
周期 N = 3/8D。
周期 N = 242、连续时间系统 y(t) = x(sin(t)),该系统是:A。
因果时不变B。
因果时变C。
非因果时不变D。
非因果时变3、连续时间LTI 系统的单位冲激响应h(t) = e^(-4t)u(t-2),该系统是:A。
因果稳定B。
因果不稳定C。
非因果稳定D。
非因果不稳定4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a_k 是:A。
实且偶B。
实且为奇C。
纯虚且偶D。
纯虚且奇5、信号x(t) 的傅立叶变换X(jω) = {1,|ω|2},则x(t) 为:A。
sin(2t)/2tB。
sin(2t)sin(4t)sin(4t)/πtC。
0D。
16、周期信号x(t) = ∑δ(t-5n),其傅立叶变换X(jω) 为:A。
∑δ(ω-5)B。
∑δ(ω-10πk)C。
5D。
10πjω7、实信号 x[n] 的傅立叶变换为X(e^jω),则 x[n] 奇部的傅立叶变换为:A。
jRe{X(e^jω)}B。
Re{X(e^jω)}C。
jIm{X(e^jω)}D。
Im{X(e^jω)}8、信号 x(t) 的最高频率为 500Hz,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为:A。
500B。
1000C。
0.05D。
0.0019、信号 x(t) 的有理拉普拉斯共有两个极点 s = -3 和 s = -5,若 g(t) = e^(xt),其傅立叶变换G(jω) 收敛,则 x(t) 是:A。
左边B。
右边C。
双边D。
不确定10、系统函数 H(s) = (s+1)/s,Re(s)。
信 号与系统 期 末 考 试 试 题一、选择题(共10 题,每题 3 分 ,共30 分,每题给出四个答案,其中只有一个正确的)1、 卷积 f 1(k+5)*f2 (k-3)等于。
( A ) f 1 (k)*f 2(k)( B ) f 1(k)*f 2(k-8) ( C ) f 1(k)*f 2 (k+8) (D ) f 1(k+3)*f 2 (k-3)2、 积分(t 2) (1 2t )dt 等于。
( A )( B )( C ) 3( D ) 53、 序列 f(k)=-u(-k) 的 z 变换等于。
( A )z z ( B ) - z ( C ) 1 ( D ) 11 z 1 z 1z 14、 若 y(t)=f(t)*h(t), 则 f(2t)*h(2t) 等于。
( A )1y( 2t ) ( B ) 1 y(2t ) ( C ) 1 y( 4t ) ( D ) 1 y(4t)4 2 4 25、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+(t ) ,当输入 f(t)=3e — t u(t) 时,系统的零状态响应 y f (t) 等于(A ) (-9e -t +12e -2t )u(t)( B )(3-9e -t +12e -2t )u(t)(C ) (t) +(-6e -t +8e -2t )u(t)(D )3 (t )+(-9e -t +12e -2t)u(t) 6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 ( C )离散性、周期性(D )离散性、收敛性7、 周期序列 2COS (1.5 k 45 0 ) 的 周期 N 等于(A ) 1( B )2( C )3(D )48、序列和k 1 等于k( A ) 1 (B) ∞ (C)u k 1 (D) ku k19、单边拉普拉斯变换 F s2s 1e 2s 的愿函数等于s 210、信号 f tte 3t u t 2 的单边拉氏变换 F s 等于二、填空题(共 9 小题,每空 3 分,共 30 分)1、卷积和 [ ()k+1u(k+1)]* (1 k) =________________________、单边 z 变换 F(z)= z 的原序列 f(k)=______________________2 2z 1s、已知函数f(t) 的单边拉普拉斯变换F(s)=,则函数 y(t)=3e-2t ·f(3t)的单边拉普3s 1拉斯变换 Y(s)=_________________________4、频谱函数 F(j )=2u(1-)的傅里叶逆变换 f(t)=__________________5、单边拉普拉斯变换 F (s)s23s 1的原函数 f(t)=__________________________s 2s6、已知某离散系统的差分方程为 2y(k) y(k 1) y(k 2)f (k ) 2 f ( k 1) ,则系统的单位序列响应 h(k)=_______________________ 7、已知信号 f(t) 的单边拉氏变换是 F(s),则信号 y(t )t 2f ( x)dx 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应 h(t)=9、 写出拉氏变换的结果 66u t, 22t k三、 ( 8 分)四、( 10 分)如图所示信号f t,其傅里叶变换F jw F f t ,求( 1) F 0 ( 2)F jw dw六、( 10 分)某 LTI系统的系统函数H ss 2,已知初始状态y 00, y2, 激s 2 2s1励 f tu t , 求该系统的完全响应。
长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。
)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。
}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。
0)(t j Ke j H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。
m T ωπωπ4max max == 5.信号t t t f ππ30cos 220cos 4)(+=的平均功率为___。
101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统 ______。
故系统为线性时变系统。
7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。
故傅立叶变换)(ωj F 不存在。
8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。
故系统不稳定。
9. =+-+⎰∞∞-dt t t t )1()2(2δ______。
310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。
关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系统的零状态响应)(t y ,画出)(t y 的波形。
信号与系统期末考试题库及答案1.以下信号的分类方法不正确的选项是〔 A 〕: A 、数字信号和离散信号 B 、确定信号和随机信号 C 、周期信号和非周期信号 D 、因果信号与反因果信号2.以下说法正确的选项是〔 D 〕:A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,那么其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.以下说法不正确的选项是〔 D 〕。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;f (t )变换为〔 A 〕称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )f (t )变换为〔 A 〕称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.以下关于冲激函数性质的表达式不正确的选项是〔 B 〕。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.以下关于冲激函数性质的表达式不正确的选项是〔 D 〕。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.以下关于冲激函数性质的表达式不正确的选项是〔 B 〕。
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3)等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )53、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性(C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s ()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 ()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
,考试作弊将带来严重后果!《 信号与系统 》试卷 A1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;3分/每题,共21 分,单选题) 、下列哪个系统不属于因果系统( A )]1[][][+-=n x n x n y B 累加器 ∑-∞==nk k x n y ][][一LTI 系统,其)()(2t u e t h t-= D LTI 系统的)(s H 为有理表达式,ROC :1->σ 、信号45[]cos()2jn x n n eππ=+,其基波周期为(A )A 20B 10C 30D 5 、设]3[]1[2][][---+=n n n n x δδδ和]1[2]1[2][-++=n n n h δδ,][*][][n h n x n y =,求=]0[y ( B )A 0B 4C ][n δD ∞、已知一离散LTI 系统的脉冲响应h[n]= δ[n]+2δ[n-1]-3δ[n-2],则该系S[n]等于(B )A δ[n ]+δ[n-1]-5δ[n-2]+ 3δ[n-3]B δ[n]+3δ[n-1]C δ[n]D δ[n]+ δ[n-1]-2δ[n-2]、信号)}2()2({-+--t u t u dt d的傅立叶变换是( C )A ω2sin 2jB )(2ωπδC -2j ω2sinD 、己知)(t x 的频谱函数⎩⎨⎧>=<==2rad/s ||0,2rad/s,||1,)X(j ωωω 设t t x t f 2cos )()(=,对信号)(t f C )A 4 rad/sB 2 rad/sC 8 rad/sD 3 rad/s 、下列说法不正确的是(D )当系统的频率响应具有增益为1和线性相位时,系统所产生的输出就是输入ωωj e j 2-信号的时移;B 取样示波器和频闪效应是欠采样的应用;C 对离散时间信号最大可能的减采样就是使其频谱在一个周期内的非零部分扩 展到将π-到π的整个频带填满;D 听觉系统对声音信号的相位失真敏感。
《信号与系统》参考答案及评分标准基本题:一、答:二、答: (a) √ (b)× (c)× (d)√ (e)×三、解:(a) 周期 (1分), (1分)。
()()22443()2sin(4)3sin(2)2j t j t j t j t x t t t j e e j e e --=+=----(3分) (b)周期 (1分), (1分)。
225533[]22j n j n x n e e ππ-=+(3分) 四、解:()()j t X j x t e dt ωω+∞--∞=⎰(2分)011t j t j t e e dt e dt ωω---∞-=-⎰⎰(3分) 11j ω=-(2分)2sin ωω-(3分) 五、解:t5分()[]j j n n X e x n e ωω+∞-=-∞=∑(2分)101132n nj n j n n n e e ωω-+∞---==-∞⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑(3分) 1113j e ω-=-(2分)112j e ω---(3分) 六、解: ()()st X s x t e dt +∞--∞=⎰(2分) ()st t e dt δ∞--∞=⎰(1分)0t st e e dt ∞---⎰(1分)0t st e e dt --∞-⎰(1分) 1=(1分)11s -+(1分)11s +-(1分) ROC: (2分)七、解:211()34()(1)(3)X j j j j j ωωωωω==++++(2分) 1213A A j j ωω=+++(2分) 1111(1)(1)(3)2v A v v v =-=+=++(4分) 2311(3)(1)(3)2v A v v v =-=+=-++(4分) ∴ 1()()2t x t e u t -=(2分)31()2t e u t --(2分) 八、解: 211/25/2()(1)(3)13s X s s s s s +-==+++++(2分) 其极点 (1分), 因而收敛域及反变换可能有三种情况:(1) []1:Re 1ROC s >-(2分)时, 351()()()22t t x t e u t e u t --=-(5分) (2) []2:1Re 3ROC s ->>-(2分)时, 351()()()22t t x t e u t e u t --=+-(5分) (3) (2分)时, (5分)附加题:解:(1) 对系统方程的两端分别求傅里叶变换可得32()()5()()9()5()()j Y j j Y j j Y j Y j X j ωωωωωωωω+++=所以321()()5()95H j j j j ωωωω=+++(5分) 由于22111()(1)(45)1()45H j j j j j j ωωωωωωω==⋅+-+++++ 因此系统幅频响应的波特图近似如下图。
信号与系统考试题及答案第一题:问题描述:什么是信号与系统?答案:信号与系统是电子工程和通信工程中重要的基础学科。
信号是信息的传递载体,可以是电流、电压、声音、图像等形式。
系统是对信号进行处理、传输和控制的装置或网络。
信号与系统的研究内容包括信号的产生、变换、传输、处理和控制等。
第二题:问题描述:信号的分类有哪些?答案:信号可以根据多种特征进行分类。
按照时间域和频率域可以将信号分为连续时间信号和离散时间信号;按照信号的能量和功率可以分为能量信号和功率信号;按照信号的周期性可以分为周期信号和非周期信号;按照信号的波形可以分为正弦信号、方波信号、脉冲信号等。
第三题:问题描述:什么是线性时不变系统?答案:线性时不变系统是信号与系统领域中重要的概念。
线性表示系统满足叠加性原理,即输入信号的线性组合经过系统后,输出信号也是输入信号的线性组合。
时不变表示系统的性质不随时间变化而改变。
线性时不变系统具有许多重要的性质和特点,可以通过线性时不变系统对信号进行处理和分析。
第四题:问题描述:系统的冲激响应有什么作用?答案:系统的冲激响应是描述系统特性的重要参数。
当输入信号为单位冲激函数时,系统的输出即为系统的冲激响应。
通过分析冲激响应可以得到系统的频率响应、幅频特性、相频特性等,从而对系统的性能进行评估和优化。
冲激响应还可以用于系统的卷积运算和信号的滤波等应用。
第五题:问题描述:如何对信号进行采样?答案:信号采样是将连续时间信号转换为离散时间信号的过程。
常用的采样方法包括周期采样和非周期采样。
周期采样是将连续时间信号按照一定的时间间隔进行等间隔采样;非周期采样是在信号上选取一系列采样点,采样点之间的时间间隔可以不相等。
采样频率和采样定理是采样过程中需要考虑的重要因素。
第六题:问题描述:什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是对离散时间信号进行频域分析的重要工具。
通过计算离散傅里叶变换可以将离散时间信号转换为复数序列,该复数序列包含了信号的频率成分和相位信息。
信号与系统 2002-2003 学年第二学期 B 卷25 dr (t)6r (t ) 2 de( t) e(t ) ,初始状态1. 给定某系统的微分方程为d2 r (t )dtdtdt为 dr (t )2 , r( t) t 02 ,试求当 e(t ) e t u(t ) 时的零输入响应、零状态dtt 0响应和全响应。
(12’)2. 下 图 为 某 LTI系 统 的 模 拟 图 , 设 h 1 (t ) e (t 2) u(t 2) , 试 求 当e(t ) u(t 1) u( t 2) 时的输出 r (t) 。
(8’)3. 已知信 号 x(t ) 的幅 频特性为 X ()A u( )t 0 ,求 x(t ) 。
(6’)cuc,相频特性为4. 已 知 信 号f (t ) 3 t 2 u(t 1) u(t 5) , 记 其 傅 里 叶 变 换 为F ( )F ( ) e j ( ) ,试求:5. (1) ( );6. (2) F (0) ;7. (3)F ( ) d 。
(12’)3s 38.已知某因果稳定系统的系统函数为H ( s)s 2 7s 10。
9. (1) 求系统的单位冲激响应 h(t ) ;10. (2) 画出系统的零、极点分布;11. (3) 粗略画出系统的频率响应特性;12. (4) 若有输入信号e(t )7sin 3t ,求系统的稳态响应。
(15’)13. 一个 LTI 系统,它对输入e( t) e 2t3e 3t u(t) 的响应为 r (t ) 2e t2e 3t u(t ) 。
14.(1)求系统的频率响应;15.(2)确定该系统的单位冲激响应;16.(3)求出描述该系统的微分方程。
(12’)17. 求下列三种收敛域情况下X (z)7 z2 的逆变换 x(n) :(12’) 2 z 9z 418. (1) z 4 (2) 1 z 4 (3) z 12 219.某系统的输入输出关系可由二阶常系数线性差分方程描述,如果相应于输入为 u( n) 的零状态响应为g(n) 2n 3 5n10 u(n) ,求:20.(1) 系统的单位样值响应h(n),并决定此二阶差分方程;21.(2) 若激励为x(n) 5 u(n) u(n 5),求响应y( n)。
一.填空题(本大题共10空,每空2分,共20分。
)1.()*(2)k k εδ-= . 2.sin()()2td πτδττ-∞+=⎰.3. 已知信号的拉普拉斯变换为1s a-,若实数a ,则信号的傅里叶变换不存在. 4. ()()()t h t f t y *=,则()=t y 2 .5. 根据Parseval 能量守恒定律,计算⎰∞∞-=dt t t 2)sin (. 6. 若)(t f 最高角频率为m ω,则对)2()4()(tf t f t y =取样,其频谱不混迭的最大间隔是 .7. 某因果线性非时变(LTI )系统,输入)()(t t f ε=时,输出为:)1()()(t t e t y t--+=-εε;则)2()1()(---=t t t f εε时,输出)(t y f = .8. 已知某因果连续LTI 系统)(s H 全部极点均位于s 左半平面,则∞→t t h )(的值为 .9. 若)()(ωj F t f ↔,已知)2cos()(ωω=j F ,试求信号)(t f 为 .10.已知某离散信号的单边z 变换为)3(,)3)(2(2)(2>+-+=z z z z z z F ,试求其反变换)(k f =.二.选择题(本大题共5小题,每题4分,共20分。
)1.下列信号的分类方法不正确的是 :A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号 2. )]2()()[2()]()2([2)(1--++-+=t t t t t t f εεεε,则)]1()21()[21()(--+-=t t t f t f εε的波形是 。
3. 已知一连续时间LTI 系统的频响特性ωωωj j j H -+=11)(,该系统的幅频特性=)(ωj H ______,相频特性)(ωϕj =______,是否是无失真的传输系统______A 、2,2arctan()ω,不是B 、2,arctan()ω,是C 、1,2arctan()ω,不是D 、1,arctan()ω,是4. 设有一个离散反馈系统,其系统函数为:)1(2)(k z zz H --=,问若要使该系统稳定,常数应k 该满足的条件是A 、5.15.0<<kB 、5.0>kC 、5.1<kD 、+∞<<∞-k5. 函数2sgn(4)t -等价于下面哪个函数?A 、(2)(2)t t εε-+--B 、12(2)2(2)t t εε--+--C 、(2)(2)(2)t t t εεε-+---+D 、12(2)2(2)t t εε-++-三.计算题(本大题共4小题,每题9分,共36分)1. 已知某系统:)()(n nf n y =试判断其线性,时不变性,因果性,稳定性等特性,并说明理由(可在下页作答)。
得分 阅卷人2. 已知信号)(t f 和)(t g 如图A-1所示,画出卷积()*()f t g t 的波形并写出信号[()*()]df tg t dt的表达式。
图 A-13. 已知H(s)的零、极点分布图如示,并且h(0+)=2。
求H(s)和h(t)的表达式。
4.已知描述连续系统输入)(t x 和输出)(t y 的微分方程为 )()()()()(''''''t x t dy t cy t by t ay =+++式中,d c b a ,,,为常数。
若选取状态变量为)()()()()()()()()('''3'21t cy t by t ay t t by t ay t t ay t ++=+==λλλ试列写该系统的状态方程和输出方程;四.综合题(本大题共2小题,每题12分,共24分)1、一线性时不变因果离散时间系统的差分方程描述为0)()2(2)1(3)(≥=-+-+k k f k y k y k y已知,3)2(,2)1(),()(=--=-=y y k k f ε由z 域求解:(1)零输入响应)(k y x ,零状态响应)(k y f ,完全响应)(k y ;(2)系统函数)(z H ,单位脉冲响应)(k h ; (3)若)5()()(--=k k k f εε,重求(1)、(2)。
2. 在图A-2 所示系统中,已知输入信号)(t f 的频谱)(ωj F ,试分析系统中A 、B 、C 、D 、E 各点频谱并画出频谱图,求出)(t y 与)(t f 的关系。
)f )t )t图A-2参考答案及评分标准一.填空题(本大题共5小题,每空2分,共20分。
) 1.(2)k ε-2.()u t3.a >0 或 大于零4. ()()t h t f 222*5. π6.mT ωπωπ34max max ==7. )1()2()()1()2()1(t t e t t et t -----+-----εεεε 8. 09. )]2()2([21)(++-=t t t f δδ10. )(])3(2[)]([)(1k s F z k f kk ε-+==-注解:5. 由于)(sin 2ωπg t t⇔,根据Parseval 能量守恒定律,可得πωππωωππ===⎪⎭⎫⎝⎛⎰⎰⎰-∞∞-∞∞-d d g dt t t 11222221)(21sin6. 信号)(t f 的最高角频率为m ω,根据傅立叶变换的展缩特性可得信号)4/(t f 的最高角频率为4/m ω,信号)2/(t f 的最高角频率为2/m ω。
根据傅立叶变换的乘积特性,两信号时域相乘,其频谱为该两信号频谱的卷积,故)2/()4/(t f t f 的最高角频率为m mmωωωω4324max =+=根据时域抽样定理可知,对信号)2/()4/(t f t f 取样时,其频谱不混迭的最大抽样间隔m axT 为m T ωπωπ34max max ==二.选择题(本大题共5小题,每题4分,共20分。
) 1. A 2. B3. C4. A5. D注:3. 由于)(ωj H 的分子分母互为共轭,故有 )arctan(2)(ωωj e j H =所以系统的幅度响应和相位响应分别为1)(=ωj H ,)arctan(2)(ωωφ=由于系统的相频响应)(ωφ不是ω的线性函数,所以系统不是无失真传输系统。
三. 计算题1. 解:)()(n nf n y =代表的系统是线性,时变性,因果,不稳定的系统。
理由如下: 线性特性:已知)()()(n nf n y n f =⇒,对于任意给定的不为零的常数α和β,设)()()(111n nf n y n f =⇒;)()()(222n nf n y n f =⇒,则有)()()]()([)()(212121n y n y n f n f n n f n f βαβαβα+=+⇒+因此,该系统是线性系统。
时不变性:已知)()()(n nf n y n f =⇒,则有 )()()(000n n y n n nf n n f -≠-⇒-因此,该系统是时变系统。
因果性:由)()(n nf n y =可知,系统的当前输出仅与当前输入有关,与未来输入无关,因此是因果系统。
稳定性:设系统的输入有界,即:∞<≤M n f )(,则有∞−−→−≤=∞→n nM n nf n y )()(因此,该系统不是稳定系统。
2. 解:)(t f 和)(t g 的卷积的波形如下图所示。
()(1)(1)f t t t εε=--+;()2()(1)(2)g t t t t εεε=----[()*()]'()*()[(1)(1)]*()(1)(1)df tg t f t g t t t g t g t g t dtδδ==--+=--+ 答案为2(1)()3(1)(2)(3)t t t t t εεεεε+---+-+-3. 解:由分布图可得2(1)(1)(22)()(1)(2)(1)(2)K s j s j K s s H s s s s s s s ---+--==++++根据初值定理,有(0)lim ()2s h sH s K →∞+===22(22)()(1)(2)s s H s s s s --=++设 21)(321++++=s k s ks k s H由 )()(lim s H s s k i s s i i-=→ 得:k 1=2 k 2=-10 k 3=10即21010()12H s s s s =-+++ 2()2(155)()t t h t e e t ε--=-+另解:也可通过部分分式展开得到()h t 的表达式(包括未知数K )后令0t +=再求出K 值。
4. 解:因为:)()()()()()(2121t t ab t by t t y a t λλλλ+-=-='=',同理可得:)()()(312t t ac t λλλ+-=',)()()(13t x t adt +-='λλ,因此系统的状态方程为:)(100)()()(001001)()()(321321t x t t t ada c ab t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''λλλλλλ输出方程为:)(1)(1t a t y λ=四.综合题(本大题共2小题,每题12分,共24分)1、解:(1)对差分方程两边进行z 变换得 )()}2()1()({2)}1()({3)(121z F y y z z Y z y z Y z z Y =-+-++-++---整理后可得11212211214142314231)2(2)1(2)1(3)(--------+++=++=++------=z z z z z z z y y z y z Y x进行z 变换可得系统零输入响应为 )(])2(4)1(4[)(k k y k k x ε---=零状态响应的z 域表示式为)21(3/4)1(2/1)1(6/1113311331)()(11112121--------+++-+-=-++=++=z z z z z z z z z F z Y f进行z 反变换可得系统零状态响应为114()[(1)(2)]()623k k f y k k ε=--+-系统的完全响应为)(]61)2(38)1(27[)()()(k k y k y k y k k f x ε+---=+=(2)根据系统函数的定义,可得1121212112311)()()(----+++-=++==z z z z z F z Y z H f进行z 反变换即得)(])2(2)1([)(k k h k k ε-+--=(3) 若)5()()(--=k k k f εε,则系统的零输入响应)(k y x 、单位脉冲响应)(k h 和系统函数)(z H 均不变,根据时不变特性,可得系统零状态响应为55{()()}()(5)114114[(1)(2)]()[(1)(2)](5)623623f f k k k k T k k y k y k k k εεεε---=--=--+----+--完全响应为55()(){()(5)}178114[(1)(2)]()[(1)(2)](5)623623x k k k k y k y k T k k k k εεεε--=+--=--+----+-- 2.解A 、B 、C 、D 和E 各点频谱分别为)]100()100([)]100[cos()(++-==ωδωδπωt FT j F A)]100()100([21)()(21)(++-=*=ωωωωπωF F j F j F j F A B)()()(1ωωωj H j F j F B C =)]100()100([21)(-++=ωωωC C D F F j F)()()()(2ωωωωj H j F j Y j F D E ==A 、B 、C 、D 和E 各点频谱图如图A-7所示。