北京工业大学数字信号处理期末试题及答案
- 格式:doc
- 大小:112.50 KB
- 文档页数:4
一、填空题(每空1分, 共10分)分)1.序列()sin(3/5)x n n p =的周期为的周期为 。
2.线性时不变系统的性质有.线性时不变系统的性质有 律、律、 律、律、 律。
律。
3.对4()()x n R n =的Z 变换为变换为 ,其收敛域为,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)分)1.δ(n)的Z 变换是变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是则它们线性卷积的长度是( )A. 3 B. 4 C. 6 D. 7 3.L TI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为,输出为 ( )A. y (n-2)B.3y (n-2)C.3y (n )D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是的是( ) A.时域为离散序列,频域为连续信号时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号全不失真恢复原信号 ( )A.理想低通滤波器理想低通滤波器B.理想高通滤波器理想高通滤波器C.理想带通滤波器理想带通滤波器D.理想带阻滤波器理想带阻滤波器6.下列哪一个系统是因果系统下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴实轴B.原点原点C.单位圆单位圆D.虚轴虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为,则该序列为 ( )A.有限长序列有限长序列B.无限长序列无限长序列C.反因果序列反因果序列D.因果序列因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是需满足的条件是 ( ) A.N≥M B.N≤MC.N≤2M D.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B .∞ C. - -∞∞ D.1 四、简答题四、简答题 (每题5分,共20分)分)1.用DFT 对连续信号进行谱分析的误差问题有哪些?对连续信号进行谱分析的误差问题有哪些?2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、双边序列z 变换的收敛域形状为 圆环或空集 。
3、某序列的DFT 表达式为∑-==10)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
第一套试卷学号 姓名 成绩一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R 3(n),则当输入为u(n)-u(n -2)时输出为 。
A.R 3(n)B.R 2(n)C.R 3(n)+R 3(n -1)D.R 2(n)+R 2(n -1) 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列 B.右边序列 C.左边序列 D.双边序列 二、填空题(每题3分,共5题)1、离散时间信号,其时间为 的信号,幅度是 。
2、线性移不变系统的性质有__ ____、___ ___和分配律。
3、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
4、序列R 4(n)的Z 变换为_____ _,其收敛域为____ __。
5、对两序列x(n)和y(n),其线性相关定义为 。
三、10)(-≤≥⎩⎨⎧-=n n ba n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)五、已知两个有限长序列如下图所示,要求用作图法求。
(10分)六、已知有限序列的长度为8,试画出按频率抽选的基-2 FFT算法的蝶形运算流图,输入为顺序。
(10分)七、问答题:数字滤波器的功能是什么?它需要那几种基本的运算单元?写出数字滤波器的设计步骤。
页脚内容1一、 填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。
6、FFT 利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=N K kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
页脚内容2二、 选择题(每题3分,共6题)1、 1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z < B.a Z ≤ C.a Z > D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在括号。
1.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想⾼通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输⼊序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲⽤圆周卷积计算两者的线性卷积,则圆周卷积的长度⾄少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正⽐。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第⼆种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
数字信号处理期末试卷(含答案)填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、)()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。
6、FFT 利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
一、选择题(每题3分,共6题)1、 1、 )63()(π-=n j en x ,该序列是 。
A.非周期序列 B.周期6π=NC.周期π6=ND. 周期π2=N2、 2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
矿大《数字信号处理》 内部资料<<数字信号处理01级试卷>>A 卷附参考答案一. (26分,题(1)每空2分,其他每空3分)填空题.(1)系统 236()()sin[]y n x n n ππ=+ 是线性的, 不是 时不变的;系统()()nk y n x k =-∞=∑ 不是稳定的, 是因果的.(2)设()[()]j X e FT x n ω=,则)](Re[n x 的FT 为12j j X e X e ωω-+*[()()];()j X e d ωω的IFT 为 j nx n -⋅(). (3)设因果性序列()x n 的Z 变换为12111505()..X z z z--=-+,则0()x = 1 ; ()x ∞= 2 ;(4) 设{}{}1,2,1,3)(301-==n n x ,{}{}1,3,2,1)(32==n n x ,则1()x n 与2()x n 线性卷积为{}6037139511n =--,,,,,,,4点循环卷积为3086129n ={,,,}. 二. (8分)设一个因果的线性时不变系统的网络结构如下: 求系统的单位取样响应解: 由网络结构得差分方程为:111122()()()()y n x n x n y n =+-+- 令()()x n n δ=,得111122()()()()h n n n h n δδ=+-+-由于系统是因果的,故 00(),h n n =<,那么就有110011122()()()()h h δδ=+-+-= 111100122()()()()h h δδ=++=1112211222()()()()h h δδ=++= 1112()()()()n h n n u n δ-=+-三. (8分)利用DFT 对实数序列作谱分析,要求分辨率50F Hz ≤,信号最高频率为1K Hz ,求以下参数:(1)最小记录时间m in p T ;(2)最大采样间隔m ax T ;(3)最小采样点数min N ;(4)在频带宽度不变的情况下,将频率分辨率提高一倍的N 值.解: 因为 1100250.p T s F ≥== 所以 002min .p T s = ……2分又要求 c s f f 2≥ 所以311051022100max .c T s f -===⨯⨯…2分 3002400510min ..p TN T -===⨯为使频率分辨率提高一倍,则Hz F 5=,那么3004800510min ..p T N T -===⨯ 四.(10分)一个线性时不变系统的单位脉冲响应为01()()(),n h n u n αα=<<当输入为01()()()n x n u n ββ=<<, (1)输出(),y n 并将结果写成形式:12()()()n ny n k k u n αβ=-; (2)分别计算(),()h n x n 和()y n 的傅里叶变换(),()j j H e X e ωω和()j Y e ω,并验证()()().j j j Y e X e H e ωωω=⋅解:(1)y n x n h n =*()()()kn k k k x k h n k u k u n k αβ∞∞-=-∞=-∞=-=-∑∑()()()()111111[()]()nn nn k k βαββαβαβ-+--=-==-∑11111011,n n n βαβαβαβ-+--=-+≥-- 或 ()()()n n y n u n αβαβαβαβ=---(2) 011()()j j nn j nj n n X e x n eee ωωωωαα∞∞---=-∞====-∑∑ 011()j n j n j n H e e e ωωωββ∞--===-∑ ()j Y e ω=0()n n j n n e ωαβαβαβαβ∞-=---∑111()j j e eωωαβαβαβ--=---- 由于 111111()()()j j j j e e e e ωωωωαβαβαβαβ-----=----- 故 ()()().j j j Y e X e H e ωωω=⋅ 五.(8分)设05()(.)()nx n u n =, 1)求出其偶函数()e x n 和奇函数()o x n 的傅里叶变换; 2)求()x n 的Z 变换及收敛域.解: 1)105105()()(.).j j nn j n j n n X e x n ee e ωωωω∞∞---=-∞====-∑∑ 1105105125.cos [()]Re[()]Re[]..cos j e j FT x n X e e ωωωω--===-- 105105125.sin [()]Im[()]Im[]..cos j o j FT x n j X e j e ωωωω--===-- 2)111051052()()(.),.n n n n n X z x n z z z z ∞∞---=-∞====>-∑∑ 六.(8分)设1123252()z X z z z ----=-+,122z <<,求其逆Z 变换)(n x .解:1121111321112121122()()()z A A X z z z z z ------==+----②按照式①和式②可画出其流程图如下:八.(8分)设二序列:{}{}1311301,,,)(==n n x 及{}{}2212302,,,)(==n n x ,利用一次FFT 计算出)(k X 1与)(k X 2. 解: 令)]([)(),()()(n x DFT k X n x n x n x =+=21,则 )]()([)(*k X k X k X -+=4211,① )]4()([21)(*2k X k X jk X --=, ②由式①和式②,可得:},,,{)(22261--=k X ,},,,{)(j j k X -=172九.(12分)设一因果线性时不变系统的系统函数为:111113111124()()()z H z z z ---+=--1110733111124z z ---=+-- 分别画出系统的直接型.级联型和并联型结构. 解: (1)因为111113111124()()()z H z z z ---+=--11211331148z z z ---+=-+所以,直接型为:x x x x x x x X (0) X (1)X (2) X (3) X (4) X (5) X (6) X (7) (x ()y n jx 210+=)(j x 232+=)(jx +=11)(jx 213+=)(1-1-j44+2-j32+j-04W 14W 1-1-)(n x )(k X jX 760+=)(31-=)(X jX +=22)(13-=)(X<<数字信号处理>>(B 卷) 01级附参考答案1. 一、判断题(正确的打“√”, 错误的打“×”, 每小题2分, 共10分)。
《数字信号处理》课程期末考试试卷(A )一、填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n=至为线性卷积结果。
2. DFT 是利用nkN W 的、和三个固有特性来实现FFT 快速运算的。
3. IIR 数字滤波器设计指标一般由、、和等四项组成。
4. FIR 数字滤波器有和两种设计方法,其结构有、和等多种结构。
一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。
()2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。
()3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。
()4. 冲激响应不变法不适于设计数字带阻滤波器。
()5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。
()6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。
()7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。
()8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。
()二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。
1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。
数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。
答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。
答案:两倍3.傅里叶变换可以将信号从时域变换到________。
答案:频域4.信号的频率和________有关。
答案:周期5.数字信号处理系统的输出信号一般是________信号。
答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。
2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。
答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。
3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。
答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。
四、简答题1.请简要介绍数字信号处理的基本原理。
答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。
数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) (n)=x 3(n) (n)=x(n)x(n+2) (n)=x(n)+2(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+N+N-1+N+1(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
≥M ≤M ≤2M ≥2M5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
2 C6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数 D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、双边序列z 变换的收敛域形状为 圆环或空集 。
3、某序列的DFT 表达式为∑-==1)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n Nh n h --=,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、椭圆滤波器 。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
数字信号处理期末试卷(含答案)填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、)()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DF T,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。
6、FF T利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FI R滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。
一、选择题(每题3分,共6题)1、 1、 )63()(π-=n j en x ,该序列是 。
A.非周期序列ﻩﻩB.周期6π=N ﻩ C .周期π6=N ﻩD. 周期π2=N2、 2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为 。
A .a Z <ﻩ B.a Z ≤ﻩﻩC.a Z >D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B .∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理期末试卷(A)一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 .2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 .4.抽样序列的Z变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LT I系统输入为x(n) ,系统单位序列响应为h (n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z→∞时,X(Z)= .二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是( )A 。
1B 。
δ(ω) C。
2πδ(ω)D.2π2.序列x1(n )的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是( ) A。
3 B 。
4 C. 6D . 73.L TI系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为 ( ) A。
y (n —2) B 。
3y(n—2) C.3y(n) D。
y (n)4.下面描述中最适合离散傅立叶变换DFT 的是( )A.时域为离散序列,频域为连续信号B 。
时域为离散周期序列,频域也为离散周期序列 ﻫC 。
时域为离散无限长序列,频域为连续周期信号ﻫD.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B 。
理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统()A。
y(n)=x (n+2) B。
y(n)= cos(n+1)x(n) C. y(n)=x(2n)D.y(n)=x (— n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括( )A. 实轴B。
原点C。
单位圆D.虚轴8.已知序列Z变换的收敛域为|z|〉2,则该序列为( )A。
一、填空题(每空1分, 共10分)
1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)
1.δ(n)的Z 变换是 ( )
A.1
B.δ(ω)
C.2πδ(ω)
D.2π
2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )
A. 3
B. 4
C. 6
D. 7
3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )
A. y (n-2)
B.3y (n-2)
C.3y (n )
D.y (n )
4.下面描述中最适合离散傅立叶变换DFT 的是 ( )
A.时域为离散序列,频域为连续信号
B.时域为离散周期序列,频域也为离散周期序列
C.时域为离散无限长序列,频域为连续周期信号
D.时域为离散有限长序列,频域也为离散有限长序列
5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完
全不失真恢复原信号 ( )
A.理想低通滤波器
B.理想高通滤波器
C.理想带通滤波器
D.理想带阻滤波器
6.下列哪一个系统是因果系统 ( )
A.y(n)=x (n+2)
B. y(n)= cos(n+1)x (n)
C. y(n)=x (2n)
D.y(n)=x (- n)
7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )
A. 实轴
B.原点
C.单位圆
D.虚轴
8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )
A.有限长序列
B.无限长序列
C.反因果序列
D.因果序列
9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频
域抽样点数N 需满足的条件是 ( )
A.N≥M
B.N≤M
C.N≤2M
D.N≥2M
10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )
A.0 B .∞ C. -∞ D.1
四、简答题 (每题5分,共20分)
1.用DFT 对连续信号进行谱分析的误差问题有哪些?
2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。
3.简述用双线性法设计IIR 数字低通滤波器设计的步骤。
4.8点序列的按时间抽取的(DIT )基-2 FFT 如何表示?
五、计算题 (共40分)
1.已知2
(),2(1)(2)z X z z z z =>+-,求x(n)。
(6分)
2.写出差分方程表示系统的直接型和级联..
型结构。
(8分) )1(3
1)()2(81)1(43)(-+=-+--n x n x n y n y n y 3.计算下面序列的N 点DFT 。
(1))0()
()(N m m n n x <<-=δ(4分) (2))0()(2N m e n x mn N j <<=π (4分)
4.设序列x(n)={1,3,2,1;n=0,1,2,3 },另一序列h(n) ={1,2,1,2;n=0,1,2,3},
(1)求两序列的线性卷积 y L (n); (4分)
(2)求两序列的6点循环卷积y C (n)。
(4分)
(3)说明循环卷积能代替线性卷积的条件。
(2分)
5.设系统由下面差分方程描述:
)1()2()1()(--+-=n x n y n y n y
(1)求系统函数H (z );(2分)
(2)限定系统稳定..
,写出H (z )的收敛域,并求出其单位脉冲响应h(n)。
(6分)
一、填空题(本题共10个空,每空1分,共10分)
答案:
1.10
2.交换律,结合律、分配律
3. 4
11,01z z z
--->- 4. k N j e
Z π2=
5.{0,3,1,-2; n=0,1,2,3}
6.()()()
=*
y n x n h n
7. x(0)
二、单项选择题(本题共10个小题,每小题2分,共20分)
1.A
2.C
3.B
4.D
5.A
6.B
7.C
8.D
9.A 10.A
三、判断题(本题共10个小题,每小题1分,共10分)
1—5全对 6—10 全错
四、简答题(本题共4个小题,每小题5分,共20分)
答案:
1.答:混叠失真;截断效应(频谱泄漏);栅栏效应
2.答:
第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工;第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。
3.答:确定数字滤波器的技术指标;将数字滤波器的技术指标转变成模拟滤波器的技术指标;
按模拟滤波器的技术指标设计模拟低通滤波器;将模拟低通滤波器转换成数字低通滤波器。
4.答:
五、计算题(本题共5个小题,共40分)
本题主要考查学生的分析计算能力。
评分标准:
1.所答步骤完整,答案正确,给满分;全错或不答给0分。
2.部分步骤正确、答案错误或步骤不清、答案正确,可根据对错程度,依据答案评分点给分。
3.采用不同方法的,根据具体答题情况和答案的正确给分。
答案:
1.解:由题部分分式展开
()(1)(2)12F z z A B z z z z z ==++-+- 求系数得 A=1/3 , B=2/3
所以 2
32131)(-++=z z z z z F (3分) 收敛域⎪z ⎪>2,故上式第一项为因果序列象函数,第二项为反因果序列象函数, 则 12()(1)()(2)()33k k f k k k εε=
-+ (3分) 2.解:(8分)
3.解:(1) kn N W k X =)( (4分) (2)⎩⎨⎧≠==m
k m k N k X ,0,)( (4分) 4.解:(1) y L (n)={1,5,9,10,10,5,2;n=0,1,2…6} (4分)
(2) y C (n)= {3,5,9,10,10,5;n=0,1,2,4,5} (4分)
(3)c ≥L 1+L 2-1 (2分)
5.解:(1) 1
)(2--=z z z z H (2分) (2)511522
z -+<< (2分); )1()251(5
1)()251(51)(--+---
=n u n u n h n n (4分)。