4 应用一元一次方程——打折销售
- 格式:doc
- 大小:119.50 KB
- 文档页数:2
4 应用一元一次方程——打折销售1.理解成本、售价、利润、利润率之间的关系.2.会列一元一次方程解决有关商品打折销售的问题.重点理解售价、成本、利润、利润率之间的关系.难点列一元一次方程解决有关商品打折销售的问题.一、复习导入教师:列方程解决实际问题的关键是什么呢?学生回答,教师点评.教师:今天,我们学习一元一次方程的一个应用——打折销售.二、探究新知课件出示问题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师提示:如果进价大于售价就亏损,反之就盈利.要求学生列出方程,写出解题过程.教师点评,并讲解:本题中,设盈利25%的那件衣服的进价是x元,它的利润就是0.25x元,根据进价+利润=售价,列出方程x+0.25x=60.由此得x=48.类似地,可以设另一件衣服的进价为y元,它的利润是-0.25y元,列出方程y-0.25y=60.由此得y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.课件出示练习:在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?要求学生独立思考后列出方程汇报答案,教师点评.教师:在打折销售问题中的利润、利润率、成本、售价之间有怎样的关系?引导学生得出等量关系:①利润=售价-成本;②利润率=利润成本×100%.教师:通过上面的讲解和练习,你能总结出列一元一次方程解决实际问题的步骤吗?引导学生总结:①分析问题,找出等量关系式;②列出方程,求出方程的解;③验证方程的解是否合理.三、举例分析例(课件出示教材第146页例题)要求学生独立完成后汇报答案,教师点评.四、练习巩固1.教材第146页“随堂练习”.2.某服装店以135元的价格卖出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这两件衣服的成本价会一样吗?算一算.五、小结1.通过本节课的学习,你有什么收获?2.成本、售价、利润、利润率之间有怎样的关系?3.列一元一次方程解实际问题的步骤有哪些?六、课外作业教材第146页习题5.7第1~4题.本节课是对前面所学的一元一次方程的一个应用——打折销售.对于打折问题,学生在小学阶段已有所接触和认识,本节课是进一步地延伸此知识.在教学过程中,通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.根据具体问题中的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,让学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.第七章一、选择题(每小题3分,共30分)1.能确定某学生在教室中的具体位置的是( D )A.第3排B.第2排以后C.第2列D.第3排第2列2.如图,小颖从家到达学校要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( D )A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)D.(0,4)→(3,4)→(4,2)→(4,0)3.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( A )4.小明住在学校正东200米处,从小明家出发向北走150米就到了李华家,若选取李华家为原点,分别以正东、正北方向为x轴,y轴正方向建立平面直角坐标系,则学校的坐标为( B )A.(-150,-200) B.(-200,-150)C.(0,-50) D.(150,200)5.已知直角坐标系中,点P(x,y)满足|x-2|+(y+3)2=0,则点P的坐标为( C ) A.(2,3) B.(-2,3)C.(2,-3) D.(2,-3)或(-2,-3)6.若|a-b|·|a+b|=0,则点P(a,b)在( C )A.第一、三象限内B.第一、三象限角平分线上C.第一、三象限角平分线或第二、四象限角平分线上D.第二、四象限角平分线上7.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是 1 km(小圆半径是 1 km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A、B的位置,正确的是( C )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )A.O1B.O2C.O3D.O49.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( C )A.2 B.1C.4 D.310.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,3)=(-1,3);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(-a,-b),如h(1,3)=(-1,-3).按照以上变换有f(g(h(2,-3)))=f(g(-2,3))=f(3,-2)=(-3,-2),那么f(g(h(-3,5)))等于( B )A.(-5,-3) B.(5,3)C.(5,-3) D.(-5,3)二、填空题(每小题3分,共18分)11.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下角的坐标是(0,0),右下角的坐标是(32,0),左上角的坐标是(0,28),则右上角的坐标是__(32,28)__.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,2),(1,3),(1,4),(5,1),则这个英文单词为LOVE .13.如图,已知∠AOC=30°,∠BOC=150°,OD为∠BOA的平分线,则∠DOC=90°.若点A可表示为(30°,1),点B可表示为(150°,4),则点D可表示为__(90°,5)__.14.如图,半径为1的圆,在x轴上从原点O开始向右滚动一周后,落定点M的坐标为__(2π,0)__.15.在平面直角坐标系内,将点P(m+2,n-4)先向左平移1个单位长度,再向上平移3个单位长度得到点P′(2018,-2019),则m=__2017__,n=__-2018__.16.如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示;第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2019的坐标是__(1010,1)__.三、解答题(共72分)17.(8分)如图,长方形ABCD在坐标平面内,点A的坐标是(2,1),且边AB、CD与x轴平行,边AD、BC与y轴平行,AB=4,AD=2.(1)求B、C、D三点的坐标;(2)怎样平移,才能使点A与原点O重合?解:(1)因为A(2,1),AB=4,AD=2,所以BC到y轴的距离为4+2,CD到x轴的距离2+1=3,所以点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度),能使点A 与原点O 重合.18.(8分)一长方形住宅小区长400 m ,宽300 m ,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x 轴,和较短边平行的直线为y 轴,并取50 m 为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A (3,3.5)、B (-2,2)、C (0,3.5)、D (-3,2)、E (-4,4).在平面直角坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不在小区内.解:如题图:在小区内的违章建筑有B 、D ,不在小区内的违章建筑有A 、E 、C .19.(8分)如图是小明家和学校所在地的简单地图,已知OA =2 km ,OB =3.5 km ,OP =4 km ,C 为OP 的中点.解答下列问题:(1)图中哪些地方距小明家的距离相同?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.解:(1)因为C 为OP 的中点,所以OC =12OP =12×4=2(km).因为OA =2 km ,所以图中学校和公园距小明家的距离相同.(2)学校在小明家北偏东45°的方向上,且到小明家的距离为2 km ;商场在小明家北偏西30°的方向上,且到小明家的距离为3.5 km ;停车场在小明家南偏东60°的方向上,且到小明家的距离为4 km.20.(8分)如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D 、点B 与点E 、点C 与点F 分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D 、点B 与点E 、点C 与点F 的坐标,并说出△DEF 是由△ABC 经过怎样的变换得到的;(2)若点Q (a +3,4-b )是点P (2a,2b -3)通过上述变换得到的,求a -b 的值.解:(1)A (2,4)、D (-1,1)、B (1,2)、E (-2,-1)、C (4,1)、F (1,-2).△DEF 是由△ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(2)由题意,得2a -3=a +3,2b -3-3=4-b ,解得a =6,b =103,所以a -b =83. 21.(9分)已知点P (a -2,2a +8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在y 轴上;(3)点Q 的坐标为(1,5),直线PQ ∥y 轴;(4)点P 到x 轴、y 轴的距离相等.解:(1)因为点P (a -2,2a +8)在x 轴上,所以2a +8=0,解得a =-4,故a -2=-4-2=-6,则P (-6,0).(2)因为点P (a -2,2a +8)在y 轴上,所以a -2=0,解得a =2,故2a +8=2×2+8=12,则P (0,12).(3)因为点Q 的坐标为(1,5),直线PQ ∥y 轴,所以a -2=1,解得a =3,故2a +8=14,则P (1,14).(4)因为点P 到x 轴、y 轴的距离相等,所以a -2=2a +8或a -2+2a +8=0,解得a =-10或a =-2.当a =-10时,a -2=-12,2a +8=-12,则P (-12,-12);当a =-2时,a -2=-4,2a +8=4,则P (-4,4).综上所述,点P 的坐标为(-12,-12)或(-4,4).22.(9分)在如图所示的平面直角坐标系中描出下面各点:A (0,3)、B (1,-3)、C (3,-5)、D (-3,-5)、E (3,5)、F (5,7)、G (5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点____重合;(2)连接接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积.解:描点如题图.(1)D(2)如题图,连接CE .因为C 、E 两点的横坐标相同,故直线CE 平行于y 轴.(3)设CE 与x 轴相交于点H ,则DC =6,EC =10,GH =2,所以S 四边形DEGC =S △EDC +S △GEC =12DC ×EC +12EC ×GH =12×6×10+12×10×2=40.23.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P 从原点O 出发,速度为1 cm/s ,且整点P 向上或向右运动,运动时间(s)与整点(个)的关系如下表:整点P 从原点O 出发的时间(s)可以得到整点P 的坐标 可以得到点P 的个数 1(0,1),(1,0) 2 2(0,2),(1,1),(2,0) 3 3(0,3),(1,2),(2,1),(3,0) 4 ………… ……根据上表中的规律,解答下列问题:(1)当整点P 从点O 出发4 s 时,求可以得到的整点P 的个数;(2)当整点P 从点O 出发8 s 时,在直角坐标系中描出可以得到的所有整点;(3)当整点P 从点O 出发多少秒时,可以达到整点(16,4)的位置?解:(1)根据表中所示的规律,点的个数比时间数多1,可计算出整点P 从点O 出发4 s 时,可以得到整点P 的个数为5.(2)由表中所示规律,可知横、纵坐标的和等于时间,则所有整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如题图.(3)由表中规律,可知整点的横、纵坐标的和等于到达该点的时间,则当点P 从点O 出发16+4=20(s)时,可以达到整点(16,4)的位置.24.(12分)如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4 cm ,OA =5 cm ,DE =2 cm ,动点P 从点A 出发,沿A →B →C 路线运动到点C 停止;动点Q 从点O 出发,沿O →E →D 路线运动到点D 停止.若P 、Q 两点同时出发,且点P 的运动速度为1 cm/s ,点Q 的运动速度为2 cm/s.(1)直接写出B 、C 、D 三个点的坐标;(2)当P 、Q 两点出发112s 时,试求△PQC 的面积; (3)设两点运动的时间为t s ,用含t 的式子表示运动过程中△OPQ 的面积S .(单位:cm 2) 解:(1)B (4,5)、C (4,2)、D (8,2).(2)当t =112时,点P 运动的路程为112cm ,点Q 运动到点D 处停止.由已知条件可得BC =OA -DE =5-2=3(cm).因为AB +BC =7 cm >112 cm ,AB =4 cm <112 cm ,所以当t =112时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32(cm),所以S △CPQ =12CP ·CD =12×32×4=3(cm 2).(3)当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图1所示.因为OA =5 cm ,OQ =2tcm ,所以S △OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图2所示.过点P 作PM ∥x 轴交ED 延长线于点M ,则OE =8 cm ,EM =(9-t )cm ,PM =4 cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,所以S △OPQ =S 梯形OPME -S △PMQ -S △OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);当5<t ≤7时,点P 在BC 上,点Q 停在点D ,如图3所示,过点P 作PM ∥x 轴交ED 的延长线于点M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,所以S △OPQ =S 梯形OPME -S △PDM -S △DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧ 5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).图1 图2 图310.1.3 画轴对称图形1.使学生能够按要求作出简单平面图形经过一次对称后的图形.2.通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操.重点让学生识别轴对称图形与画轴对称图形的对称轴.难点画轴对称图形.一、创设情境,问题引入1.如图,作出它们的对称轴.2.如图,给出一个图形和一条直线,那么如何画出这个图形关于这条直线的对称图形呢?二、探索问题,引入新知如图,实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形.思考下面两个问题:(1)你可以通过什么方法来验证你画的是否正确.(2)和其他同学比较一下,你的方法是最简单吗?在格点图中,很容易画出已知图形的轴对称图形,如果没有格点图,我们还能比较准确地画出已知图形的轴对称图形吗?你能画出点A关于直线L的对称点吗?画法:(1)过点A向直线L画垂线段AO,垂足点O;(2)延长AO至OA1,使OA1=OA.则点A1就是点A关于直线L的对称点.做一做:你能画出线段AB关于直线L的对称线段吗?画法:(1)画点A,点B关于直线L的对称点A1,B1;(2)连结A1,B1.则线段A1 B1就是线段AB关于直线L的对称线段.做一做:你能画出三角形ABC关于直线L的对称图形吗?画法:(1)画出点A,点B和点C关于直线L的对称点A1,B1和C1;(2)连结A1 B1,B1 C1,A1 C1,则△A1 B1 C1就是△ABC关于直线L的对称三角形.从上面的例子可以知道,如果图形是由直线、线段或射线组成时,那么只要画出图形中的特殊点的对称点,然后连结对称点,就可以画出关于这条直线的对称图形.结论:先画点的对称点,再画线段的对称图形,最后画三角形的对称图形.由易到难,这样学生就很容易的知道了知识的形成过程.【例1】如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.画出△ABC 关于直线BM对称的△A1B1C1.分析:画出图形中的特殊点的对称点,然后连结对称点,就可以画出关于这条直线的对称图形.解:如图所示,△A1B1C1即为所求【例2】如图,请把△ABC和△A′B′C′图形补充完整,使得它们关于直线l对称.(保留作图痕迹)分析:过点C,点B′作关于直线l的对称点,连结AB,BC,B′C及A′C′即可.解:如图所示:三、巩固练习1.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是( )2.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上).3.如图,先画△ABC关于直线l1的对称△A1B1C1,(直线l1过点C),再画出△A1B1C1,关于直线l2的对称△A2B2C2.4.如图,在网格中有两个大小、形状一样的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图中画出两种不同的拼法.四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第110页“习题10.1”中第6 题.2.完成练习册中本课时练习.学生是学习的主体,要让学生成为真正的主人,就必须在数学活动中学习数学,也就是在创造中学习数学.本课从最基本的图形中,让学生自己动手画,体验探索成功的快乐;通过动手操作,小组讨论来解决自己提出的问题;通过有层次的练习,提高学生解决问题的能力,巩固所学知识.。
5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。
难点:用列方程的方法解决打折销售问题。
【教学流程】一、知识链接。
1.引例一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。
看课本p141—142内容,解决提出的问题。
例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。
4 应用一元一次方程——打折销售1.商品销售中与打折有关的概念及公式(1)与打折有关的概念 ①进价:也叫成本价,是指购进商品的价格. ②标价:也称原价,是指在销售商品时标出的价格. ③售价:商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润. ⑤利润率:利润占进价的百分比. ⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 【例1】 (1)某商品成本100元,提高40%后标价,则标价为__________元;(2)500元的9折是__________元,__________元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________. 解析:(1)成本×(1+提高率)=标价,即100×(1+40%)=140(元);(2)九折即原价的十分之九,所以500元打9折,就是500×0.9=450(元),设x 的八折是340,所以有0.8x =340,解得x =425;(3)利润率=利润进价=售价-进价进价=70-4040=75%. 答案:(1)140 (2)450 425 (3)75%2.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系. ②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一.②解、答时必须写清单位名称. ③求出的方程的解要判断是否符合实际意义,即必须检验.【例2-1】 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?分析:利润=销售价×打折数-让利数-进价.解:设进价是x 元,依题意,得x ×20%=10×0.8-2-x .解得x =5.答:一个玩具赛车进价是5元.【例2-2】 某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?分析:本题的题情稍复杂,需要求四个未知量.可以先求出标价,然后再求进价.解:设甲种服装的标价为x 元,则进价为x 1.4元,乙种服装的标价为(210-x )元,进价为210-x 1.4元. 根据题意,得0.8x +0.9(210-x )=182.解得x =70.所以210-x =140.x 1.4=50,210-x 1.4=100.答:甲种服装的进价为50元,标价是70元;乙种服装的进价是100元,标价是140元.3.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数 利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润 根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.【例3-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%.解得x =7. 答:售货员最低可以打7折出售此商品.【例3-2】 某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.解:因为200×0.9=180(元)<212(元),所以购书超过了200元.设应该付x 元,根据题意,得200×0.9+(x -200)×0.8=212.解方程,得x =240. 答:若没有任何优惠,则李明应该付240元.。
4 应用一元一次方程——打折销售
1.商品销售中与打折有关的概念及公式
(1)与打折有关的概念 ①进价:也叫成本价,是指购进商品的价格. ②标价:也称原价,是指在销售商品时标出的价格. ③售价:商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润. ⑤利润率:利润占进价的百分比.
⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.
打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.
(2)利润问题中的关系式
①售价=标价×折扣;
售价=成本+利润=成本×(1+利润率).
②利润=售价-进价=标价×折扣-进价.
③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价
. 【例1】 (1)某商品成本100元,提高40%后标价,则标价为__________元;
(2)500元的9折是__________元,__________元的八折是340元;
(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________.
解析:(1)成本×(1+提高率)=标价,即100×(1+40%)=140(元);
(2)九折即原价的十分之九,所以500元打9折,就是500×0.9=450(元),设x 的八折是340,所以有0.8x =340,解得x =425;
(3)利润率=利润进价=售价-进价进价
=70-4040=75%. 答案:(1)140 (2)450 425 (3)75%
2.列方程解应用题的一般步骤及注意事项
(1)列方程解应用题步骤
①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系.
②找:找出能够表示应用题全部含义的一个相等关系.
③设:设未知数(一般求什么就设什么).
④列:根据相等关系列出方程.
⑤解:解所列的方程,求出未知数的值.
⑥验:检验所求出的解是否符合实际意义.
⑦答:写出答案.
(2)列方程解应用题应注意
①列方程时,要注意方程两边应是同一类量,并且单位要统一.
②解、答时必须写清单位名称.
③求出的方程的解要判断是否符合实际意义,即必须检验.
【例2-1】 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?
分析:利润=销售价×打折数-让利数-进价.
解:设进价是x 元,依题意,得x ×20%=10×0.8-2-x .
解得x =5.
答:一个玩具赛车进价是5元.
【例2-2】 某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?
分析:本题的题情稍复杂,需要求四个未知量.可以先求出标价,然后再求进价.
解:设甲种服装的标价为x 元,则进价为x 1.4元,乙种服装的标价为(210-x )元,进价为210-x 1.4
元. 根据题意,得0.8x +0.9(210-x )=182.解得x =70.所以210-x =140.x 1.4=50,210-x 1.4
=100. 答:甲种服装的进价为50元,标价是70元;乙种服装的进价是100元,标价是140元.
3.利用一元一次方程确定商品的利润
与商品的利润有关的实际问题主要有以下三类:
(1)确定商品的打折数
利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.
(2)确定商品的利润
根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.
(3)优惠问题中的打折销售
商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.
【例3-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?
分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.
解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%.解得x =7.
答:售货员最低可以打7折出售此商品.
【例3-2】 某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?
分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.
解:因为200×0.9=180(元)<212(元),
所以购书超过了200元.
设应该付x 元,根据题意,得200×0.9+(x -200)×0.8=212.解方程,得x =240.
答:若没有任何优惠,则李明应该付240元.。