小高奥数几何-三角形五大模型及例题解析 (1)
- 格式:docx
- 大小:383.59 KB
- 文档页数:11
小学奥数必学几何五大模型及例题解析一、等积变换模型一一很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图S i : = a :b⑶夹在一组平行线之间的等积变形,如下图S^ ACD = S^ BCD 反之,如果S A ACD =S A BCD,则可知直线AB平行于CD⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:(第四届”迎春杯欄试题)如图‘三角形A眈的面积为1 ,其中AE = 3AB ,,三角形册肉的面积是多少?解析:连接CE,如图。
AE=3AB,所以S A AEC =3S △ABC=3所以S A BCE =2又因为:BD=2BC,所以S A BDE=2S A BCE=4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在△ ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,E 在AC 上( 女口图2) ,则S A ABC:ADE二(AB AC): (AD AE)此模型的结论可以用将来初中学到的正弦定理进行证明!因为S^ABC=AB >ACsinA,S^ADE=AD >AEsinA所以:S A ABC: S A ADE= (AB/CsSA): (AD >AEsinA) = (AB 0C):(AD >AE)经典例题:已知MEF的面积为7平方厘米,BE = CE、AD = 2BD*CF=3AF,求心眈的面积・三、蝴蝶定理模型任意四边形中的比例关系(蝴蝶定理”:① S i: S 2 = S 4 : S3 或者S S^ = S2 S 4②AO:OC 二 $ S 2 : S 4 S 3蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径•通过构造模型,一方面可以使不规则四边形的面积关系 与四边形内的三角形相联系;另一方面,也可以得到与面积对应 的对角线的比例关系。
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ;DC BAbas 2s 1③S 的对应份数为(a+b )2 模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。
①a b c hA B C H=== ; ② S 1︰S 2=a 2︰A 2 模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【习题精讲】【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【例2】(难度等级 ※)F ED CBA如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米.【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF的面积之和。
小学奥数-几何五大模型(等高模型)三角形等高模型与鸟头模型模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积底高2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时1发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的,则三角形面积与原来3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图S1:S2a:bABS1aS2bCD③夹在一组平行线之间的等积变形,如右上图S△ACDS△BCD;反之,如果S△ACDS△BCD,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;⑶6个面积相等的三角形。
【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:B【例2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。
⑴求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?ABDC【解析】因为三角形ABD、三角形ABC和三角形ADC在分别以BD、BC 和DC为底时,它们的高都是从A点向BC边上所作的垂线,也就是说三个三角形的高相等。
【最新整理,下载后即可编辑】几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。
解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC 延长线上的点S△ABC S△ADE=SS×AC SS×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE 的面积为12平方厘米,求ΔABC的面积。
解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。
解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=SS2:SS2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S SSSS=25+35+35+49=144(平方厘米) 2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
【奥数】小升初几何五大模型经典例题二、五大模型经典例题详解(1)等积变换模型例1、图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?例2、如图所示,Q、E、P、M分别为直角梯形ABCD两边AB、CD上的点,且DQ、CP、ME彼此平行,已知AD=5、BC=7、AE=5、EB=3,求阴影部分三角形PQM的面积。
(2)鸟头(共角)定理模型例1、如图所示,平行四边形ABCD,BE=AB、CF=2CB、GD=3DC、HA=4AD,平行四边形ABCD的面积为2,求平行四边形ABCD与四边形EFGH的面积比。
例2、如图所示,△ABC的面积为1,BC=5BD、AC=4EC、DG=GS=SE、AF=FG,求△FGS的面积。
(3)蝴蝶模型例1、如图,正六边形面积为1,那么阴影部分面积为多少?例2、如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、8平方厘米,求余下的四边形OFBC的面积。
例3、如图,已知正方形ABCD的边长为10厘米,E为AD的中点,F为CE的中点,G 为BF的中点,求三角形BDG的面积。
例1、如图,正方形的面积为1,E、F分别为AB、BD的中点,GC=1/3FC,求阴影部分的面积。
例2、如图,长方形ABCD,E为AD的中点,AF与BD、BE分别交于G和H,OE垂直于AD,交AD于E点,交AF于O点,已知AH=5,HF=3,求AG的长。
例1、如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,求四边形BGHF的面积。
例2、如图,在△ABC中,BD=2DA、CE=2EB、AF=2FC,那么△ABC的面积是阴影△GHI 面积的几倍?例3、如图,在△ABC中,点D是AC的中点,点E、F是BC的三等分点,若△ABC的面积是1,求四边形CDMF的面积。
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
板块一 三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =baS 2S 1DCBA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【考点】三角形的等高模型 【难度】1星 【题型】解答【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:例题精讲4-3-1.三角形等高模型与鸟头模型CD BAABFCABDGC⑵ 如下图,答案不唯一,以下仅供参考:(1)(2)(3)(4)(5)⑶如下图,答案不唯一,以下仅供参考:【答案】⑴答案不唯一:CBAABF CABDGC⑵ 答案不唯一:(1)(2)(3)(4)(5)⑶答案不唯一:【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上.⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍?DCBA【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A点向BC 边上所作的垂线,也就是说三个三角形的高相等. 于是:三角形ABD 的面积12=⨯高26÷=⨯高三角形ABC 的面积124=+⨯()高28÷=⨯高 三角形ADC 的面积4=⨯高22÷=⨯高所以,三角形ABC 的面积是三角形ABD 面积的43倍; 三角形ABD 的面积是三角形ADC 面积的3倍. 【答案】43、3【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米.ED CA【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326⨯÷=(平方厘米).【答案】6【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是平方厘米.【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 根据面积比例模型,可知图中空白三角形面积等于平行四边形面积的一半,所以阴影部分的面积也等于平行四边形面积的一半,为50225÷=平方厘米.【答案】25【巩固】如下图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD ,长方形ABCD 的长是20,宽是12,则它内部阴影部分的面积是 .CDE【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 根据面积比例模型可知阴影部分面积等于长方形面积的一半,为120121202⨯⨯=.【答案】120【例 4】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E BAE BA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 本题是等底等高的两个三角形面积相等的应用.连接BH 、CH . ∵AE EB =, ∴AEH BEH S S =△△.同理,BFH CFH S S =△△,S =S CGH DGH ,∴11562822ABCD S S ==⨯=阴影长方形(平方厘米).【答案】28【巩固】图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是 .E D GCBBCG E【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 把另外三个三等分点标出之后,正方形的3个边就都被分成了相等的三段.把H 和这些分点以及正方形的顶点相连,把整个正方形分割成了9个形状各不相同的三角形.这9个三角形的底边分别是在正方形的3个边上,它们的长度都是正方形边长的三分之一.阴影部分被分割成了3个三角形,右边三角形的面积和第1第2个三角形相等:中间三角形的面积和第3第4个三角形相等;左边三角形的面积和第5个第6个三角形相等.因此这3个阴影三角形的面积分别是ABH 、BCH 和CDH 的三分之一,因此全部阴影的总面积就等于正方形面积的三分之一.正方形的面积是144,阴影部分的面积就是48.【答案】48【例 5】 长方形ABCD 的面积为36,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?EDEED【考点】三角形的等高模型 【难度】3星 【题型】解答【解析】 (法1)特殊点法.由于H 为AD 边上任意一点,找H 的特殊点,把H 点与A 点重合(如左上图),那么阴影部分的面积就是AEF ∆与ADG ∆的面积之和,而这两个三角形的面积分别为长方形ABCD面积的18和14,所以阴影部分面积为长方形ABCD 面积的113848+=,为33613.58⨯=.(法2)寻找可利用的条件,连接BH 、HC ,如右上图.可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=,即11()361822EHB BHF DHG AHB CHB CHD S S S S S S ∆∆∆∆∆∆++=++=⨯=;而EHB BHF DHG EBF S S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影.【答案】13.5【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【考点】三角形的等高模型 【难度】3星 【题型】解答【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米.(法2)连接PA 、PC . 由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【答案】15【例 6】 如右图,E 在AD 上,AD 垂直BC ,12AD =厘米,3DE =厘米.求三角形ABC 的面积是三角形EBC 面积的几倍?EDCBA【考点】三角形的等高模型 【难度】3星 【题型】解答【解析】 因为AD 垂直于BC ,所以当BC 为三角形ABC 和三角形EBC 的底时,AD 是三角形ABC 的高,ED是三角形EBC 的高,于是:三角形ABC 的面积1226BC BC =⨯÷=⨯三角形EBC 的面积32 1.5BC BC =⨯÷=⨯ 所以三角形ABC 的面积是三角形EBC 的面积的4倍.【答案】4【例 7】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与△BEC 等积的三角形一共有哪几个三角形?F DECBA【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 △AEC 、△AFC 、△ABF .【答案】△AEC 、△AFC 、△ABF .【巩固】如图,在△ABC 中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与△ABE 等积的三角形一共有哪几个三角形?EDC BA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 3个,△AEC 、△BED 、△DEC .【解析】 【答案】3个,△AEC 、△BED 、△DEC .【巩固】如图,在梯形ABCD 中,共有八个三角形,其中面积相等的三角形共有哪几对?ODCBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 △ABD 与△ACD ,△ABC 与△DBC ,△ABO 与△DCO .【答案】△ABD 与△ACD ,△ABC 与△DBC ,△ABO 与△DCO【例 8】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少?AB EC DC E B A【考点】三角形的等高模型 【难度】2星 【题型】解答 【关键词】第四届,迎春杯【解析】 连接CE ,∵3AE AB =,∴2BE AB =,2BCE ACB S S =V V又∵2BD BC =,∴244BDE BCE ABC S S S ===V V V .【答案】4【例 9】 如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是平方厘米.AA【考点】三角形的等高模型 【难度】2星 【题型】解答 【关键词】2008年,四中考题【解析】 连接CD .根据题意可知,DEF ∆的面积为DAC ∆面积的13,DAC ∆的面积为ABC ∆面积的12,所以DEF ∆的面积为ABC ∆面积的111236⨯=.而DEF ∆的面积为5平方厘米,所以ABC ∆的面积为15306÷=(平方厘米). 【答案】30【巩固】图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF长的3倍.那么三角形AEF 的面积是多少平方厘米?CB【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 ABD V ,ABC V 等高,所以面积的比为底的比,有12ABD ABC S BD S BC ==V V , 所以ABD S V =111809022ABC S ⨯=⨯=V (平方厘米).同理有190303ABE ABD AE S S AD =⨯=⨯=V V (平方厘米),34AFE ABE FE S S BE =⨯=V V 3022.5⨯= (平方厘米).即三角形AEF 的面积是22.5平方厘米.【答案】22.5【巩固】如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积.ABC DZ Y【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 ∵Y 是BD 的中点,Z 是DY 的中点,∴1122ZY DB =⨯⨯,14ZCY DCB S S =V V ,又∵ABCD 是长方形,∴11124442ZCY DCB ABCD S S S ==⨯=V V Y (平方厘米).【答案】24【巩固】如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FE DCBA【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 三角形ADC 的面积是三角形ABC 面积的一半24212÷=,三角形ADE 又是三角形ADC 面积的一半1226÷=.三角形FED 的面积是三角形ADE 面积的一半,所以三角形FED 的面积623=÷=.【答案】3【巩固】如图,在三角形ABC 中,8BC =厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?FE CBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 ∵F 是AC 的中点∴2ABCABFS S = 同理2ABFBEFSS=∴486246BEFABCSS=÷=⨯÷÷=(平方厘米).【答案】6【例 10】 如图所示,A 、B 、C 都是正方形边的中点,△COD 比△AOB 大15平方厘米。
(4)相似模型1、相似三角形:形状相同、大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
3、相似三角形性质:①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。
相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有DE BC ∥。
(一)金字塔模型 (二) 沙漏模型结论:因为DE BC ∥,所以ADE ABC △∽△,则①AD AE DE==;②22::ADE ABC S S AD AB =△△。
②::ABO BCO S S AE EC =△△;ED C BA E DCB A③::ACO BCO S S AF FB =△△。
二、五大模型经典例题详解 (1)等积变换模型例1、图中的E F G 、、分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?GFE D CBA解析:把另外三个三等分点标出之后,正方形的3条边AB BC CD 、、就被分成了相等的三段。
把点H 和这些分点、正方形的顶点连接,这样就把整个正方形分割成了9个形状各不相同的三角形,同时我们把空白部分的6个三角形按顺时针标记1~6。
这9个三角形的底边都是正方形边长的三分之一;阴影部分被分割成了其中的3个三角形。
根据等积变换模型可知,CD 边上的阴影三角形的面积与第1、2个三角形相等;BC 边上的阴影三角形与第3、4个三角形相等;AB 边上的阴影三角形与第5、6个三角形相等。
因此,阴影面积是空白面积的二分之一,是正方形面积的三分之一,即:12×12÷3=48。
例2、如图所示,Q E P M 、、、分别为直角梯形ABCD 两边AB CD 、上的点,且DQ CP ME 、、彼此平行,已知5753AD BC AE EB ====、、、,求阴影部分三角形PQM 的面积。
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积二底高二2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化•但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化•比如当高变为原来的3倍,底变为原来的-,则三角形面积与原来3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化. 同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图S i :& 二a: b③夹在一组平行线之间的等积变形,如右上图ACD BCD;反之,如果S A ACD BCD,则可知直线AB平行于CD •④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;6个面积相等的三角形。
⑴ 如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:【例1】【解⑵ 如下图,答案不唯一,以下仅供参考:【例2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。
⑴ 求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?【解析】因为三角形ABD、三角形ABC和三角形ADC在分别以BD、BC和DC为底时,它们的高都是从点向BC边上所作的垂线,也就是说三个三角形的高相等。
模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积底高2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化•但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化•比如当高变为原来的3倍,底变为原来的1,则三角形面积与原来3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化. 同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图S i :S2 a:b③夹在一组平行线之间的等积变形,如右上图S A ACD S A BCD ;反之,如果S A ACD S A BCD,则可知直线AB平行于CD •④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形; ⑵4个面积相等的三角形; ⑶6个面积相等的三角形。
【解析】⑴ 如下图,D E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:⑵ 如下图,答案不唯一,以下仅供参考:⑶如下图,答案不唯一,以下仅供参考:【例2】如图,BD 长12厘米,DC 长4厘米,B C 和D 在同一条直线上。
⑴求三角形ABC 勺面积是三角形 ABD 面积的多少倍?⑵求三角形ABD 勺面积是三角形 ADC 面积的多少倍?【解析】因为三角形ABD 三角形ABC 和三角形ADC 在分别以BD BC 和DC 为底时,它们的高都是从 A 点向 BC 边上所作的垂线,也就是说三个三角形的高相等。
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.DC BAb二、等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 (“蝴蝶定理”)① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3)梯形中比例关系(“梯形蝴蝶定理”)① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;S 4S 3s 2s 1O DCBA S 4S 3s 2s 1ba②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。
hh H cb a CB Aac b HC BA①a b c hA B C H=== ; ② S 1︰S 2=a 2︰A 2模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ;S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【习题精讲】【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【例2】(难度等级 ※)如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米.【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。
奥数几何-三角形五大模型带解析三角形是几何学中的基本图形之一,具有丰富的性质和应用。
在奥数竞赛中,常常会涉及到三角形的题目。
为了更好地应对这类题目,我们需要掌握三角形的五大模型,即:全等模型、相似模型、正弦定理模型、余弦定理模型和面积模型。
下面将对这五大模型进行详细解析。
一、全等模型全等模型是指两个三角形的对应边长和对应角度都相等。
利用全等模型,我们可以简化一些繁杂的计算,直接得到结论。
例如,已知三角形ABC和三角形DEF的对应边长和对应角度分别相等,我们就可以得出它们全等的结论,即△ABC≌△DEF。
利用全等模型,我们可以将问题简化为求解另一个已知三角形的性质,从而得到答案。
二、相似模型相似模型是指两个三角形的对应角度相等,但对应边长不一定相等。
相似模型在解决一些比例问题时非常有用。
例如,已知△ABC和△DEF的对应角度分别相等,我们可以推出它们相似的结论,即△ABC∽△DEF。
利用相似模型,我们可以通过已知比例关系,求解未知的边长或角度。
三、正弦定理模型正弦定理是指在一个三角形中,三个角的正弦值与对应边的长度之间存在着一定的比例关系。
正弦定理模型在求解三角形的边长和角度时非常有用。
正弦定理的公式为:sinA/a = sinB/b = sinC/c,其中A、B、C为三角形的角度,a、b、c为对应边的长度。
利用正弦定理模型,我们可以通过已知的角度和边长,求解未知的边长或角度。
四、余弦定理模型余弦定理是指在一个三角形中,三个角的余弦值与对应边的长度之间存在着一定的比例关系。
余弦定理模型在求解三角形的边长和角度时非常有用。
余弦定理的公式为:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的角度。
利用余弦定理模型,我们可以通过已知的边长和角度,求解未知的边长或角度。
五、面积模型面积模型是指通过三角形的面积关系求解三角形的边长或角度。
在面积模型中,我们常常使用海伦公式或高度公式来求解三角形的面积。
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADES BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△,设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几 【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=V V V V .方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =【解析】 根据燕尾定理有:2:310:15ABG ACGS S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△ ::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积. 【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影.【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=.根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==, ∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积. 【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该局部知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、等分点结论〔“鸟头定理〞〕DCBAb如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 〔“蝴蝶定理〞〕① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=〔S 1+S 2〕︰〔S 4+S 3〕梯形中比例关系〔“梯形蝴蝶定理〞〕① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为〔a+b 〕2模型四:相似三角形性质如何判断相似(1)相似的根本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形假设有两个角对应相等那么这两个三角形相似;②两个三角形假设有两条边对应成比例,且这两组对应边所夹的角相等那么两个三角形相似。
S 4S 3s 2s 1O DCBA S 4S 3s 2s 1bahh H cb a CB Aac b HC BA①a b c hA B C H === ; ② S 1︰S 2=a 2︰A 2模型五:燕尾定理S △ABG :S △AGC =S △BGE :S △GEC =BE :EC ;S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头〞【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理〞3. “蝴蝶定理〞【习题精讲】【例1】〔难度等级 ※〕如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影局部的面积.【例2】〔难度等级 ※〕如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影局部的面积是____平方厘米.【例3】〔难度等级 ※〕如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】〔难度等级 ※※※〕如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3)DC BAb梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。
hh H cb a CB Aac b HC BA①a b c hA B C H=== ; ② S 1︰S 2=a 2︰A 2 模型五:燕尾定理S△ABG:S△AGC=S△BGE:S△GEC=BE:EC ;S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;【重点难点解析】1.模型一与其他知识混杂的各种复杂变形2.在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【习题精讲】【例1】(难度等级※)如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点,H 为AD边上的任意一点,求阴影部分的面积.【例2】(难度等级※)如右图,ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面积是____平方厘米.【例3】(难度等级※)如图,在三角形ABC中,BC=8 厘米,AD=6厘米,E、F分别为AB和AC的中点,那么三角形EBF的面积是多少平方厘米?【例4】(难度等级※※※)如图,在面积为1的三角形ABC中,DC=3BD,F是AD的中点,延长CF交AB边于E,求三角形AEF和三角形CDF的面积之和。
FED CBAFAB CDE如右图BE=BC ,CD=AC ,那么三角形AED 的面积是三角形ABC 面积的几分之几?【例6】(难度等级 ※)如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.【例7】(难度等级 ※)如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY 的面积.【例8】(难度等级 ※※)如图,正方形ABCD 的边长为4厘米,EF 和BC 平行, ECH 的面积是7平方厘米,求EG 的长。
【例10】(难度等级 ※※)如图已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【例11】(难度等级 ※※)如图,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为?【例12】(难度等级 ※※※)如图,平行四边形ABCD 周长为75厘米,以BC 为底时高是14厘米;以CD 为底时高是16厘米。
求平行四边形ABCD 的面积。
【例13】(难度等级 ※※※)如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积.【例14】(难度等级 ※※※)如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,BD=DC=4,BE=3,AE=6,甲部分面积是乙部分面积的几分之几?GFE D CB AYZDCBAHGF ED CBA 123223dcb a xABCDEFFEDCBA某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园陆地的面积是平方千米,求人工湖的面积是多少平方千米?【例16】(难度等级※※)图中是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【作业】1. 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?2. 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?3. 右图是由大、小两个正方形组成的,小正方形的边长是4厘米, 求三角形ABC 的面积。
4. 如图,平行四边形ABCD ,BE=AB ,CF=2CB ,GD=3DC ,HA=4AD ,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.5. 如图,在△ABC 中,延长BD=AB ,CE=12BC ,F 是AC 的中点,若△ABC 的面积是2,则△DEF 的面积是多少?【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【分析与解】如右图,连接BH 、HC ,由E 、F 、G 分别为AB 、BC 、CD 三边的中点有AE =EB 、BF =FC 、CG =CD .因此S 1=S 2,S 3=S 4,S 5=S 6,而阴影部分面积=S 2+S 3+S 6,空白部分面积=S 1+S 4+S 5.所以阴影部分面积与空白部分面积相等,均为长方形的一半,即阴影部分面积为28.【例2】(难度等级 ※)如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米. 【分析与解】上排4个阴影三角形的高都等于BF ,底边之和恰好为AB ,他们的面积之和为12BF AB ⨯;下排4个三角形的高都等于CF ,底边之和恰好为CD ,他们的面积EDCBAHGFED CB AFEDCB A之和为1122CF CD CF AB ⨯=⨯.所以阴影部分面积为: 11113462222BF AB CF AB BC AB ⨯+⨯=⨯=⨯⨯=(平方厘米). 【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米? 【分析与解】首先,1242ABC S BC AD ∆=⨯=平方厘米,而F 是AC 中点,所以12ABF ABC S S ∆∆=.又E 是AB 中点,所以11624EBF ABF ABC S S S ∆∆∆===平方厘米.【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。
【分析与解】连接DE,于是三角形AEF 的面积=三角形EFD 的面积,所求被转化为三角形EDC 的面积。
因为F 是AD 中点,所以三角形AEC 的面积和三角形EDC 的面积相等,设S ∆BDE 为1份,则S ∆AEC=S ∆EDC 为3份 因此S ∆ABC 一共7份, 每份面积为17 所以S ∆EDC 占3份为37。
【例5】(难度等级 ※※)如右图,,那么三角形AED 的面积是三角形ABC 面积的几分之几?【分析与解】上图中,三角形AEC 与三角形ABC 的高相等,而,于是,23AEC ABC S S = 又由于三角形AED 与三角形AEC 的高相等,而CD=41AC,于是AD=43AC,34AED AEC S S =所以,三角形AED 的面积=43×三角形AEC 的面积=43×23×三角形ABC 的面积 =12×三角形ABC 的面积FE DCB AD ECBAD ECBAABCED【例6】(难度等级 ※)如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等. 【分析与解】 连接BE 显然有12ABE ABCD S S ∆=,12ABE AEGF S S ∆= 所以ABCD AEGF S S =【例7】(难度等级 ※)如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY 的面积. 【分析与解】192ABCD S AB BC =⨯=平方厘米因为Y 是BD 中点,Z 是DY 中点,所以【例8】(难度等级 ※※)如图,正方形ABCD 的边长为4厘米,EF 和BC 平行, ECH 的面积是7平方厘米,求EG 的长。
【分析与解】12×EG ×AE +12×EG ×EB = 7平方厘米 即12×EG ×AB=7平方厘米;EG=厘米 【例10】(难度等级 ※※)如图已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 连接CF由ABCD 和CEFG 都是正方形有45BDC DCF ∠=∠=︒ 所以BD CF P .YZ DCBAHGFED CBA由平行线间距离相等知三角形BDF 和三角形BDC 同底等高所以1502BFD BCD ABCD S S S ∆∆=== 【例11】(难度等级 ※※)如图,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为?【分析与解】 如右图,已知a+b+x=23+a+32+12+b 所以 x=23+32+12x=67.【例12】(难度等级 ※※※)如图,平行四边形ABCD 周长为75厘米,以BC 为底时高是14厘米;以CD 为底时高是16厘米。
求平行四边形ABCD 的面积。
【分析与解】BC ×14=CD ×16,BC :CD=16:14, BC+CD=752,BC=752×161614+=20 ABCD 面积=14×20=280(平方厘米)【例13】(难度等级 ※※※)如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积. 【分析与解】因为△ABE 、△ADF 与四边形AECF 的面积彼此相等,所以四边形AECF 的面积与△ABE 、△ADF 的面积都等于正方形面积的三分之一,也就是:在△ABE 中,因为AB =6.所以BE =4,同理DF =4,因此CE =CF =2, ∴△ECF 的面积为2×2÷2=2.所以=122=10AEF F S S S =--△△EC 四边形AECF (平方厘米).ABCDEFFEDCBA【例14】(难度等级 ※※※)如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,BD=DC=4,BE=3,AE=6,甲部分面积是乙部分面积的几分之几? 【分析与解】由BD DC =BD=DC 有12BD BC =;由3BE =,6AE =,有13BE AB =.由鸟头定理有111326ABC ABC S S S ∆∆=⨯⨯=甲,56ABC ABC S S S S ∆∆=-=乙甲,故15S S =乙甲.【例15】(难度等级 ※)某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园陆地的面积是平方千米,求人工湖的面积是多少平方千米? 【分析与解】由任意四边形的蝴蝶定理有AOB COD AOD BOC S S S S ∆∆∆∆⨯=⨯ 所以132 1.5AOD S ∆=⨯÷=平方千米,故公园总面积为132 1.57.5+++=平方千米,人工湖面积为7.5 6.920.58-=平方千米【例16】(难度等级 ※※)图中是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米? 【分析与解】如下图所示,为了方便所叙,将某些点标上字母,并连接BG . 设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =.所以原题中阴影部分面积为400800202033⨯-=(平方厘米).【作业】1. 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少? 【答案】1202. 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少? 【答案】973. 右图是由大、小两个正方形组成的,小正方形的边长是4厘米, 求三角形ABC 的面积。