电容滤波电路,全波或桥式整流电容滤波的原理
- 格式:pdf
- 大小:215.04 KB
- 文档页数:5
电容滤波工作原理
电容滤波是一种常用的电子电路设计技术,通过电容器对电流进行平滑来削减电流波动和噪音。
其工作原理基于电容器的特性。
在电容器中,通过两个导体之间的绝缘介质存在电场,当电容器与电源相连时,电容器会逐渐充电。
当电源断开后,电容器会逐渐放电。
这种充放电的过程使得电容器可以存储电量,并且可以平滑电流信号。
在电容滤波电路中,电容器与负载电阻并联连接。
当电源输入波动时,电容器可以吸收瞬态电流并缓慢释放,从而平滑输出电流。
具体来说,当电源输出电压较大时,电容器会充电,提供额外的电流给负载。
而当电源输出电压较小或波动时,电容器会释放储存的电量,以保持较稳定的输出电流。
通过采用适当的电容器值和负载电阻值,电容滤波可以有效地削减电流波动和噪音。
较大的电容器可以提供更大的能量存储容量,从而使得输出电流更加平滑。
而较小的电阻值可以提供更小的电阻,从而让电容器更快速地放电,适应更高频率的波动。
总的来说,电容滤波通过电容器的充放电过程来平滑电流信号,减少波动和噪音,从而提供稳定的电源输出。
这种工作原理使得电容滤波广泛应用于电子设备中,例如电源电路、音频放大器等,以提供稳定的电力供应和良好的信号质量。
桥式整流滤波电路工作原理
桥式整流滤波电路是一种通过桥式整流电路和滤波电路组合而成的电路,主要用于将交流电转换为直流电。
工作原理如下:
1. 桥式整流电路是由4个二极管和一个中心点组成的,其中两个二极管是反向接入的,另外两个二极管是正向接入的。
这样可以确保无论输入电流的正半周还是负半周,都能够实现整流。
2. 当交流电源提供正半周电压时,左侧的二极管和右侧的二极管都处于导通状态,将正半周的电流传导至负极上,形成正向的输出电压。
3. 当交流电源提供负半周电压时,左侧的二极管和右侧的二极管都处于截止状态,而中心点上的二极管D1和D2都处于导
通状态,将负半周期电流传导至负极上,同样形成正向的输出电压。
4. 滤波电路通过添加一个电容器,用于平滑输出电压。
当二极管导通时,电容器被充电,而当二极管截止时,电容器通过放电来提供稳定的直流输出电压。
5. 输出电压经过滤波电容器后,可以得到稳定的直流输出电压,用于供电或其他需要直流电的电路。
桥式整流滤波电路的工作原理实质上是将交流电转换为直流电,并通过滤波电路消除残余交流成分,从而获得更稳定的直流电源。
这种电路具有简单、高效、稳定的特点,被广泛应用于电子设备和电力系统中。
滤波电路基本原理(总3页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除滤波电路基本原理整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。
(T为整流输出的直流脉动电压的周期。
)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
如图1(B)RC滤波电路。
若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。
由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。
在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。
而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。
这种电路一般用于负载电流比较小的场合.电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。
因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。
电源的整流滤波原理图详解(五种滤波整流电路)五种滤波整流电路介绍一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb接于晶体管的基极回路,兼作偏置电阻,由于流过Rb的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十kΩ),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie=(1+β)ib之故)。
3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC 无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2可视为开路,RL 上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
电容滤波电路的工作原理
电容滤波电路是一种常用的电子电路,主要用于滤波和平滑直流电信号。
其工作原理基于电容的特性,即电容会阻止直流信号通过,但对于交流信号却具有较低的阻抗。
在电容滤波电路中,直流输入信号经过电容器后,电容器会阻止直流信号通过,将其储存起来。
而交流信号则能够通过电容器,由于电容的阻抗与频率成反比,所以随着频率的增加,电容的阻抗变得越低,这样交流信号能够更容易地通过。
通过选取合适的电容器值,可以使得高频信号通过,而直流信号得到阻断。
这就实现了在电路输出端得到平滑的直流电信号,而滤除了输入信号中的纹波和噪声。
总结来说,电容滤波电路利用电容器的特性,阻止直流信号通过,而允许交流信号通过,从而平滑滤除电路中的噪声和纹波信号。
关于桥式整流电路原理桥式整流电路是一种将交流电转换为直流电的电路,其原理如下:
1.桥式整流电路的基本结构
桥式整流电路主要由四个二极管和两个电容组成。
四个二极管分别连接在交流电源的两端,形成一座“桥”。
两个电容分别连接在桥的两端,用于储存电能并平滑输出直流电。
2.工作原理
当交流电源正半周时,电流通过二极管D1和D2流向负载,同时电容C1和C2充电。
当交流电源负半周时,电流通过二极管D3和D4流向负载,同时电容C1和C2放电。
由于四个二极管的交替导通,使得负载上得到的电流是连续的直流电。
3.整流效果
桥式整流电路可以将正负半周的交流电转换为单向的直流电,实现整流效果。
输出电压的极性可以通过改变二极管的连接方式来改变。
4.滤波效果
在桥式整流电路中,两个电容C1和C2起到了滤波的作用。
它们可以储存电能,并平滑输出直流电,使输出电压更加稳定。
电容的选择应考虑其耐压值和容量,以适应不同的应用需求。
5.应用领域
桥式整流电路因其简单、可靠、高效等优点被广泛应用于各种电子设备中,如电源、充电器、电子仪器等。
同时,它也是各种电力电子设备中的重要组成部分,如变频器、逆变器等。
综上所述,桥式整流电路的原理是通过四个二极管的交替导通和电容的滤波作用,将正负半周的交流电转换为单向的直流电,实现整流效果。
其优点在于简单、可靠、高效等,被广泛应用于各种电子设备和电力电子设备中。
滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。
当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。
★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。
RL、C对充放电的影响电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。
电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大,如图所示。
滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。
滤波电容容量大,因此一般采用电解电容,在接线时要注意电解电容的正、负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。
★当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。
当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。
★当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。
整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。
(T为整流输出的直流脉动电压的周期。
)新艺图库电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
如图1(B)RC滤波电路。
若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。
由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。
在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。
而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。
这种电路一般用于负载电流比较小的场合.新艺图库电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。
因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
(A)电容滤波(B) C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S'(C)L-C电感滤波(D)π型滤波或叫C-L-C滤波图1 无源滤波电路的基本形式并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。
桥式整流电路原理;电感滤波原理;电容滤波原理桥式整流电路原理桥式整流电路如图1所示,图中B为电源变压器,它的作用是将交流电网电压e1变成整流电路要求的交流电压,RL是要求直流供电的负载电阻,四只整流二极管D1~D4接成电桥的形式,故有桥式整流电路之称。
图1桥式整流电路的工作原理可分析如下。
为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。
在e2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管D1流向RL,再由二极管D3流回变压器,所以D1、D3正向导通,D2、D4反偏截止。
在负载上产生一个极性为上正下负的输出电压。
其电流通路可用图1(a)中虚线箭头表示。
在e2的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过二极管D2流向RL,再由二极管D4流回变压器,所以D1、D3反偏截止,D2、D4正向导通。
电流流过RL时产生的电压极性仍是上正下负,与正半周时相同。
其电流通路如图1(b)中虚线箭头所示。
综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。
图2根据上述分析,可得桥式整流电路的工作波形如图2。
由图可见,通过负载RL的电流iL以及电压uL的波形都是单方向的全波脉动波形。
桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高。
因此,这种电路在半导体整流电路中得到了颇为广泛的应用。
桥式整流电路电感滤波原理电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。
从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,所以电感L有平波作用。
整流滤波电路的原理
整流滤波电路是一种常见的电路,它可以将交流电信号转换为直流电信号,并且通过滤波电路去除掉转换过程中产生的波纹或者高频噪声。
整流滤波电路一般由两部分组成:整流电路和滤波电路。
整流电路负责将交流信号转换为直流信号,而滤波电路则负责去除转换过程中产生的波纹或者高频噪声。
整流电路一般采用二极管进行实现。
当输入电压为正向时,二极管正向导通,允许电流通过;当输入电压为反向时,二极管反向截止,不允许电流通过。
通过这种方式,交流信号被转换为了单向导通的直流信号。
然而,由于整流电路的输出仍然存在波纹,因此需要使用滤波电路进一步处理。
滤波电路通常由电容器和电阻器组成。
电容器通过存储电荷的方式平滑输出电压,从而去除波纹成分;同时,电阻器通过阻碍电流的方式稳定输出电压,从而去除高频噪声。
整流滤波电路的工作原理可以简单描述为:输入的交流信号经过整流电路转换为单向导通的直流信号,然后通过滤波电路去除掉波纹和高频噪声,最终输出一段较为稳定的直流信号。
总之,整流滤波电路通过整流和滤波两个步骤,将输入的交流信号转换为稳定的直流信号。
这种电路在实际应用中广泛使用,例如电源适配器、电子设备的电源电路等。
总结桥式整流电容滤波电路的特点桥式整流电路是一种常见的电源电路,它可以将交流电转换为直流电,而电容滤波电路则是用来平滑直流电信号的重要组成部分。
在实际应用中,桥式整流电路与电容滤波电路常常结合使用,以满足对电源稳定性和纹波电压的要求。
本文将就桥式整流电路与电容滤波电路的特点进行总结,以便更好地理解和应用这一电路组合。
首先,桥式整流电路的特点是能够实现全波整流。
它通过四个二极管的配合,可以将输入的交流电信号转换为单向的脉动直流电信号。
相比于半波整流电路,桥式整流电路的输出电压波形更加平滑,纹波电压更小,输出效果更好。
其次,桥式整流电路的输入电压范围广。
由于桥式整流电路的四个二极管可以灵活地组合,因此可以适应不同输入电压的要求。
这使得桥式整流电路在实际应用中具有更大的灵活性和适用性。
另外,电容滤波电路的特点是能够平滑直流电信号。
在桥式整流电路输出的脉动直流电信号经过电容滤波电路后,可以得到更加稳定和平滑的直流电信号。
这对于一些对电源稳定性要求较高的场合,如电子设备的电源供应,具有非常重要的意义。
此外,电容滤波电路还可以起到去除高频噪声的作用。
在实际电路中,由于各种因素的影响,输出的直流电信号往往会伴随着一些高频噪声。
通过合理设计电容滤波电路,可以有效地去除这些高频噪声,提高电路的抗干扰能力。
综上所述,桥式整流电路与电容滤波电路结合使用具有全波整流、输入电压范围广、平滑直流电信号和去除高频噪声等特点。
这使得它在各种电源供应和电子设备中得到广泛应用。
同时,对于工程师和电子爱好者来说,深入理解桥式整流电路与电容滤波电路的特点,可以为他们在实际设计和应用中提供更多的选择和灵感。
希望本文的总结能够对读者有所帮助。
详解4种整流、5种滤波电路1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
(2)全波整流电路由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。
全波整流电路图见图2-3-6。
相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。
整流滤波的工作原理
整流滤波是一种常用的电路设计技术,用于将交流信号转换为直流信号。
它的工作原理可以分为两个步骤:整流和滤波。
首先是整流的步骤。
整流是将交流信号转换为单向电流信号的过程,以便进行后续的滤波处理。
整流可以分为半波整流和全波整流两种方式。
半波整流是将负半周期的信号转换为0,并保留正半周期的信号。
通过使用一个二极管来实现,当信号为正时,二极管导通,信号通过;当信号为负时,二极管截断,信号被阻断。
全波整流则是保留正负半周期的信号。
这可以通过使用两个二极管构成一个桥式整流电路来实现。
当信号为正时,其中一个二极管导通,信号通过;当信号为负时,另一个二极管导通,信号继续通过。
接下来是滤波的步骤。
在整流的过程中,输出的电流信号仍然会存在一些波动,这些波动可能会对后续电路的稳定性和精度产生负面影响。
因此需要使用滤波电路来去除这些波动,使得输出的信号更加稳定。
常见的滤波电路包括电容滤波和电感滤波。
电容滤波器将信号通过一个电容器,通过选择合适的电容值和电阻值可以实现对不同频率成分的滤波效果。
而电感滤波器则是通过一个电感元件,同样可以实现对不同频率成分的滤波效果。
通过整流和滤波的两个步骤,整流滤波器可以将交流信号转换为直流信号,并去除信号中的波动,得到一个更加稳定的输出信号。
这在很多应用中都是非常有用的,例如电源供电、音频放大等领域。
整流滤波的工作原理
整流滤波是一种常用的电源滤波技术,其主要用于将交流电信号转换为直流电信号。
整流滤波的工作原理是通过使用二极管将交流信号的负半周去除,从而得到一个纯直流信号。
当交流电信号输入到整流滤波电路时,通过使用二极管,只有正半周的信号能够正确地通过,而负半周的信号则被二极管屏蔽掉。
这样,输出信号中只剩下了正半周的波形,形成了一个纯直流信号。
在整流滤波电路中,为了进一步减小输出信号中的纹波(即波动),可以添加滤波电容。
滤波电容的作用是在输出电压中平滑电压峰值,使其更接近于稳定的直流电压。
通过选择合适的滤波电容值,可以达到较好的滤波效果。
整流滤波电路的输出信号即为所需的直流电信号,可以用于供电给需要稳定直流电源的设备。
整流滤波技术广泛应用于电源供应、电子设备、通信设备等领域。
电容滤波电路、电感滤波电路原理分析整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉,称为纹波。
为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路整流电路输出电压中的脉动成分以获得直流电压。
常用的滤波电路有无源滤波和有源滤波两大类。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。
有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。
直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。
脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。
对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。
(T为整流输出的直流脉动电压的周期。
)电阻滤波电路RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
如图1(B)RC滤波电路。
若用S 表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。
由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。
在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。
而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。
这种电路一般用于负载电流比较小的场合.电感滤波电路根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。
因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。
电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
(A)电容滤波(B) C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S'(C) L-C电感滤波(D)π型滤波或叫C-L-C 滤波图1 无源滤波电路的基本形式并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。
这四种常见滤波电路,你要注意一下为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示。
它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十k Ω),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因 ie = (1+ β)ib之故)。
3.由于负载凡接于晶体管的射极,故 RL上的直流输出电压UE≈UB,即基本上同RC无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
复式滤波电路常用的有LCГ型、LCπ型和RCπ型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2 可视为开路,RL上的输出直流电压为:对于交流分量而言,其输出交流电压为:由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
滤波效果愈好。
所以R受两方面的制约,只能兼顾选择。
电容滤波电路,全波或桥式整流电容滤波的原理
滤波电路
整流电路虽然可将交流电变成直流电,但其脉动成分较大,在一些要求直流电平滑的场合是不适用的,需加上滤波电路,以减小整流后直流电中的脉动成分。
一般直流电中的脉动成分的大小用脉动系数来表示:
脉动系数(S)=
GS0712
例如,全波整流输出电压uL可用付氏级数展开为:
其中基波最大值为0.6U2,直流分量(平均值)为0.9 U2,故脉动系数S≈0.67。
同理可求得半波整流输出电压的脉动系数为S=1.57,可见其脉动系数是比较大的。
一般电子设备所需直流电源的脉动系数小于0.01,故整流。